Fock–Goncharov coordinates for semisimple Lie groups

dc.contributor.advisorZickert, Christianen_US
dc.contributor.authorGilles, Sen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2021-07-07T05:47:43Z
dc.date.available2021-07-07T05:47:43Z
dc.date.issued2021en_US
dc.description.abstractFock and Goncharov introduced cluster ensembles, providing a framework for coordinates on varieties of surface representations into Lie groups, as well as a complete construction for groups of type $A_n$. Later, Zickert, Le , and Ip described, using differing methods, how to apply this framework for other Lie group types. Zickert also showed that this framework applies to triangulated $3$-manifolds. We present a complete, general construction, based on work of Fomin and Zelevinsky. In particular, we complete the picture for the remaining cases: Lie groups of types $F_4$, $E_6$, $E_7$, and $E_8$.en_US
dc.identifierhttps://doi.org/10.13016/2ihm-x8ls
dc.identifier.urihttp://hdl.handle.net/1903/27312
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.titleFock–Goncharov coordinates for semisimple Lie groupsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gilles_umd_0117E_21462.pdf
Size:
1018.38 KB
Format:
Adobe Portable Document Format