A Simple Problem of Flow Control I: Optimality Results.

dc.contributor.authorMa, Dye-Jyunen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:37:58Z
dc.date.available2007-05-23T09:37:58Z
dc.date.issued1987en_US
dc.description.abstractThis paper presents a problem of optimal flow control for discrete M|M|1 queues. The problem is cast as a constrained Markov decision process, where the throughput is maximized with a bound on the average queue size. By Lagrangian arguments, the optimal strategy is shown to be of threshold type and to saturate the constraint. The method of analysis proceeds through the discounted version of the Lagrangian problems for which the corresponding value functions are shown to be integer-concave. Dynamic Programming and stochastic comparison ideas constitute the main ingredients of the solution.en_US
dc.format.extent1163786 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4610
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1987-102en_US
dc.titleA Simple Problem of Flow Control I: Optimality Results.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_87-102.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format