AEROSOL EFFECTS IN HIGH SUPERSONIC FLOWS

dc.contributor.advisorLaurence, Stuart Jen_US
dc.contributor.authorSchoneich, Antonio Giovannien_US
dc.contributor.departmentAerospace Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2025-01-25T06:52:44Z
dc.date.available2025-01-25T06:52:44Z
dc.date.issued2024en_US
dc.description.abstractThe understanding of high-speed aerodynamics is becoming evermore pertinent with thegrowth of space tourism, continued interest in space exploration, and pursuit of advanced highspeed aircraft for both military and commercial use. For initial investigations, ground test facilities are preferred to flight tests as they are far cheaper and carry significantly less risk, although wind tunnels can only replicate a subset of the conditions experienced in actual flight. One of these conditions that has not been adequately captured in wind tunnels is the effect of particulates in the atmosphere. Typical wind tunnels use a pure, clean gas (air, nitrogen, etc.) for testing, but this does notcapture the aerosolized nature of the atmosphere, where humidity and condensation can produce a distribution of liquid droplet sizes ranging from the average rain drop of 2mm to sub-micron diameter particles. Similarly, volcanic eruptions and ever-present wildfires result in solid particles exhibiting a variety of species and sizes that are transported to every layer of the atmosphere. At supersonic speeds, encounters with particulates have been shown to lead to detrimental effects, such as material erosion and boundary layer transition. Previous attempts to study this problem in wind tunnels have focused mainly on sub-micronsized solid particles, since aerosol settling time is a major limiting factor. On the other hand, most high-speed experiments involving large liquid droplet impacts have been carried out in gas guns or ballistic ranges due to the difficulty of trying to accelerate a droplet to high speeds without causing it to break up. While these facilities can be used to study impacts, the moving model means that detailed aerodynamic studies are nearly impossible, leading to a large gap in knowledge. To perform high-speed wind tunnel testing with liquid aerosols representative of cloud-likeenvironments (5-20 μm), a Mach-4 facility, referred to as the Multi-phase Investigations Supersonic Tunnel (MIST) has been designed and developed at the University of Maryland (capable of producing supersonic, particle-laden flows). This range of aerosol sizes makes MIST a unique facility with significant potential for expanding the state of the art in high-speed multi-phase flows. The present work discusses the design and characterization of MIST as well as two major experimental investigations carried out using this new facility. The first investigation examines the force augmentation on a free-flying sphere exposed to supersonic, particle-laden flows. Freeflight measurements are performed with five different particle size and concentration combinations. When comparing the results for particle-free flow in the same facility, the drag coefficient of the sphere was shown to be 1.75-4.5% greater for all multi-phase cases; this is significantly higher than simple estimates based on the increased momentum flux in the freestream would indicate. In addition to force measurements, an experimental investigation into the effect of particle-ladenflows on boundary-layer transition was conducted. It is important to characterize the disturbance environment in wind tunnels since they typically do not represent the levels in atmospheric flight and can lead to earlier onset of boundary-layer transition. In performing such measurements using a single-point Focused Laser Differential Interferometer, it was discovered that the presence of particles in the flow could significantly attenuate the acoustic disturbances generated by the wind tunnel. This finding was further reinforced when investigating the boundary-layer transition on a 5◦ half-angle, sharp cone using high-speed schlieren visualization. For each case presented in this work, the boundary-layer disturbance amplitudes were reduced and transition Reynolds numbers increased in the particle-laden flow cases. This was contrary to expectations, given that prior numerical studies have indicated that particles can induce early transition. These findings potentially open a path to substantially reduce freestream disturbance levels in conventional hypersonic wind tunnels.en_US
dc.identifierhttps://doi.org/10.13016/ip2c-pfqv
dc.identifier.urihttp://hdl.handle.net/1903/33643
dc.language.isoenen_US
dc.subject.pqcontrolledAerospace engineeringen_US
dc.subject.pqcontrolledFluid mechanicsen_US
dc.subject.pquncontrolledAerodynamicsen_US
dc.subject.pquncontrolledBoundary Layer Transitionen_US
dc.subject.pquncontrolledMulti-phase Flowen_US
dc.subject.pquncontrolledSupersonicen_US
dc.subject.pquncontrolledWind Tunnelen_US
dc.titleAEROSOL EFFECTS IN HIGH SUPERSONIC FLOWSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Schoneich_umd_0117E_24751.pdf
Size:
47.83 MB
Format:
Adobe Portable Document Format