On the Galois Group of the 2-Class Field Towers of Some Imaginary Quadratic Fields

dc.contributor.advisorWashington, Lawrenceen_US
dc.contributor.authorSteurer, Aliza Anneen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2006-09-12T05:38:26Z
dc.date.available2006-09-12T05:38:26Z
dc.date.issued2006-06-02en_US
dc.description.abstractLet $k$ be a number field, $p$ a prime, and $k^{nr,p}$ the maximal unramified $p$-extension of $k$. Golod and Shafarevich focused the study of $k^{nr,p}/k$ on $Gal(k^{nr,p}/k)$. Let $S$ be a set of primes of $k$ (infinite or finite), and $k_S$ the maximal $p$-extension of $k$ unramified outside $S$. Nigel Boston and C.R. Leedham-Green introduced a method that computes a presentation for $Gal(k_S/k)$ in certain cases. Taking $S=\{(1)\}$, Michael Bush used this method to compute possibilities for $Gal(k^{nr,2}/k)$ for the imaginary quadratic fields $k=\mathbb{Q}(\sqrt{-2379}),\mathbb{Q}(\sqrt{-445}),Q(\sqrt{-1015})$, and $\mathbb{Q}(\sqrt{-1595})$. In the case that $k=\mathbb{Q}(\sqrt{-2379})$, we illustrate a method that reduces the number of Bush's possibilities for $Gal(k^{nr,2}/k)$ from 8 to 4. In the last 3 cases, we are not able to use the method to isolate $Gal(k^{nr,2}/k)$. However, the results in the attempt reveal parallels between the possibilities for $Gal(k^{nr,p}/k)$ for each field. These patterns give rise to a class of group extensions that includes each of the 3 groups. We conjecture subgroup and quotient group properties of these extensions.en_US
dc.format.extent370674 bytes
dc.format.extent4671 bytes
dc.format.extent7141 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/3740
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolled2-classen_US
dc.subject.pquncontrolledclass fielden_US
dc.subject.pquncontrolledclass groupen_US
dc.subject.pquncontrolledunramifieden_US
dc.subject.pquncontrolledp-group generation algorithmen_US
dc.titleOn the Galois Group of the 2-Class Field Towers of Some Imaginary Quadratic Fieldsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
umi-umd-3568.pdf
Size:
361.99 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
tree_diagram_i.eps
Size:
4.56 KB
Format:
Postscript Files
No Thumbnail Available
Name:
tree_diagram_ii.eps
Size:
6.97 KB
Format:
Postscript Files