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Let k be a number field, p a prime, and knr,p the maximal unramified p-

extension of k. Golod and Shafarevich focused the study of knr,p/k on Gal(knr,p/k).

Let S be a set of primes of k (infinite or finite), and kS the maximal p-extension

of k unramified outside S. Nigel Boston and C.R. Leedham-Green introduced a

method that computes a presentation for Gal(kS/k) in certain cases. Taking S =

{(1)}, Michael Bush used this method to compute possibilities for Gal(knr,2/k)

for the imaginary quadratic fields k = Q(
√
−2379),Q(

√
−445),Q(

√
−1015), and

Q(
√
−1595). In the case that k = Q(

√
−2379), we illustrate a method that reduces

the number of Bush’s possibilities for Gal(knr,2/k) from 8 to 4. In the last 3 cases,

we are not able to use the method to isolate Gal(knr,2/k). However, the results in

the attempt reveal parallels between the possibilities for Gal(knr,2/k) for each field.

These patterns give rise to a class of group extensions that includes each of the 3

groups. We conjecture subgroup and quotient group properties of these extensions.
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Chapter 1

Introduction

A fundamental property of the integers is that any nonzero element different

from ±1 can be factored uniquely (up to order and multiplication by −1) into a

product of irreducibles. However, if k is a finite extension of Q, the ring of algebraic

integers in k need not have unique factorization. There is a naturally defined finite

extension, H1, of k called the Hilbert class field of k. A property of H1 is that

the degree of H1 over k is equal to one (i.e. H1 = k) if and only if the ring of

algebraic integers in k is a unique factorization domain. That is, the degree of H1

over k measures how much the ring of algebraic integers in k fails to have unique

factorization.

One way to restore unique factorization is to embed k in a finite extension F

whose ring of integers is principal ideal domain. To do this, we start with k and form

H1. We replace k by H1 and form the Hilbert class field, H2, of H1. Continuing, we

form the Hilbert class field tower of k,

k ⊆ H1 ⊆ H2 . . . ⊆ Hn ⊆ . . . .

This tower stops if and only if there is a finite extension F of k such that F has

unique factorization. Let k∞:=∪i≥1Hi.

In 1964, Golod and Shafarevich gave a group theoretic condition necessary for

k∞ to be a finite extension of k [12]. Using this condition, they showed, for example,
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that k = Q(
√
−2 · 3 · 5 · 7 · 9 · 11) is such that k∞/k is infinite.

It is standard to fix a prime p and look only at the Hilbert p-class field tower of

k. This means that we take the largest subfield, ki, of Hi that has degree a (possibly

trivial) power of p over k. Again, this forms a tower of fields

k = k0 ⊆ k1 ⊆ k2 ⊆ . . . ⊆ kn ⊆ . . .

called the Hilbert p-class field tower of k.

Let knr,p:=∪i≥1ki (“nr” is French for “non ramifié”). Golod and Shafarevich

actually gave a necessary condition on the Galois group Gal(knr,p/k) for knr,p/k

to be finite. Their condition shows that the structure of Gal(knr,p/k) is the most

important object of study.

There is current interest in studying Gal(knr,2/k). In 1996, Hajir [7] showed

that if k is imaginary quadratic and its ideal class group has 4-rank 3 or greater,

then k has an infinite 2-class field tower. More recently, Benjamin, Lemmermeyer,

and Snyder [2] showed that knr,2 = k2 for certain k with Gal(knr,2/k) of 2-rank 3.

On the other hand, Gerth [6] gave conditions on Gal(knr,2/k) for certain k which

imply that knr,2/k must be infinite.

Let S be a finite set of primes (finite or infinite) of k and let kS/k denote the

maximal 2-extension of k unramified outside S. Nigel Boston and C.R. Leedham-

Green [4] introduced a general method that can compute presentations forGal(kS/k)

in certain cases. Because the presentations define finite groups, they are able to

conclude that kS/k is a finite extension. The method utilizes the fact that structure

of the p-class groups of subfields of kS can be obtained. This information corresponds
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to the abelianizations of subgroups of Gal(kS/k). The method then uses the p-group

generation algorithm (to be discussed in detail in Section 2.1), which computes

presentations for finite p-groups. The group Gal(kS/k) is searched for among the

groups generated by the p-group generation algorithm.

Michael Bush [5] took S = {(1)} and applied Boston and Leedham-Green’s

method to generate Gal(knr,2/k) where k is one of the 4 imaginary quadratic fields

Q(
√
−2379), Q(

√
−445), Q(

√
−1015), and Q(

√
−1595).

The field k = Q(
√
−2379) has 2-class group C4 × C4, and is the first such

imaginary quadratic field. In light of Hajir’s work mentioned above, Bush wondered

whether knr,2/k was finite. He showed that it is by generating presentations for 8

distinct groups of order 211, one of which must define Gal(knr,2/k). This also enables

him to conclude that k has a 2-class tower of length 2.

In the case where k = Q(
√
−445), Bush generated 2 groups of order 28 as

possibilities for Gal(knr,2/k). This shows that k has a finite 2-class tower of length

3. Finally, for k = Q(
√
−1015) and k = Q(

√
−1595), he generates 2 groups which

are possibilities for Gal(knr,2/k) in each case. This shows that each field has a

finite 2-class tower of length 3. The above 3 fields are the first known examples of

imaginary quadratics with 2-class towers of length 3. However, his method could

not determine the Galois group in any the above examples.

This dissertation studies Bush’s possibilities for Gal(knr,2/k) in each of his

examples. We attempt to isolate the Galois group among the possibilities in each

example. Also, we investigate the Galois groups of 2-class field towers. To study

properties of these groups, we use the software package MAGMA [3]. To generate
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number theoretic information, we use the number theory package PARI [1].

Chapter 2 provides an explanation of basic results. Chapter 3 pertains to

k = Q(
√
−2379), which we refer to as Example One. We illustrate a method

which explicitly identifies Gal(knr,2/k) as one of 4 of the original 8 possibilities. We

explain how this method should eventually isolate Gal(knr,2/k) among the remaining

4 possibilities. However, current software cannot perform the computations we see

necessary to show which possibility is actually Gal(knr,2/k).

In Chapter 4, we attempt to apply Example One’s method to k = Q(
√
−445)

(referred to as Example Two) to identify Gal(knr,2/k) among the 2 possibilities. Un-

fortunately, the method does not isolate Gal(knr,2/k). However, the results obtained

during the attempt bear similarities to Q(
√
−1015) and Q(

√
−1595). Additionally,

we highlight other distinctions between the two possibilities for Gal(knr,2/k).

In Chapter 5, we attempt to apply Example One’s method to each of k =

Q(
√
−1015) and k = Q(

√
−1595) (the attempt for each is described in Example

Three). Again, we are unsuccessful in isolating Gal(knr,2/k) in either case. Using

the results obtained in the attempt, we observe parallels between the possibilities

in Examples Two and Three. We use these patterns to describe a class of group

extensions by certain subgroup and quotient group properties. In doing so, we show

that the two possibilities for Gal(knr,2/k) have isomorphic subgroup lattices such

that corresponding proper subgroups and quotients are isomorphic.
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Chapter 2

Background

In this chapter, we discuss background material used in Chapters 3, 4, and 5.

2.1 The p-group generation algorithm

Let G be a finite p-group. The p-group generation algorithm computes a

presentation for a certain extension (to be defined below) of G. For proofs and

details of what follows, see [9] and also [10]. If H ≤ G, then [H,G] denotes the

subgroup generated by the commutators h−1g−1hg where h ∈ H, g ∈ G.

Definition 1. Define P0(G) to be G. For each integer i ≥ 1, define

Pi(G) = [Pi−1(G), G]Pi−1(G)p.

By induction, Pi(G) is a characteristic subgroup of G for all i ≥ 0. It follows

that Pi−1(G) ≥ Pi(G) for i = 0, 1, . . .. The series

G = P0(G) ≥ P1(G) ≥ . . . ≥ Pi−1(G) ≥ Pi(G) ≥ . . .

is the lower exponent-p central series of G. If Pc(G) = 1 and c is the smallest such

integer, then G has exponent p-class c. Consider D4 =< r, s|r4, s2, rsrs−1 >, the

dihedral group of order 8. Then D4 has exponent-2 class 2: P1(D4) =< r2 > and

P2(D4) =< 1 >.
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Two properties of the p-central series are:

1. If φ is a homomorphism, then φ(Pi(G))=Pi(φ(G)) for all i ≥ 0.

2. If N �G and G/N has exponent p-class c, then Pc(G) ≤ N .

Property 1 follows by induction. Property 2 follows from Property 1. Let Φ(G) be

the Frattini subgroup of G. We have:

Proposition 1. If G is a finite p-group, then P1(G) = Φ(G).

Proof: If M is a maximal subgroup of G, we have by basic p-group theory that

G/M ∼= Cp. It follows that P1(G) ≤M . Conversely, it is easy to see that G/P1(G) is

elementary abelian. Suppose thatG/P1(G) has dimension n with Fp-basis v1, . . . , vn.

Consider the subspaces < v2, . . . , vn >,< v1, v3, . . . , vn >, . . . , < v1, . . . , vn−1 >.

Suppose x = a1v1 + . . . + anvn. Then x ∈< v2, . . . , vn > implies a1 = 0. Next,

x ∈< v1, v3, . . . , vn > implies a2 = 0, etc. Let ∩(M/P1(G)) be the intersection of all

maximal subgroups of G/P1(G) (i.e. the intersection of all subspaces of codimension

1). Then, ∩(M/P1(G)) =< P1(G) > and Φ(G)/P1(G) ≤ ∩(M/P1(G)) imply that

Φ(G) ≤ P1(G). �

Suppose G has exponent-p class c. By Property 1, we see that G/Pi(G) has

exponent-p class i for 1 ≤ i ≤ c. Property 2 shows that G/Pi(G) is the maximal

exponent-p-class i quotient of G for 1 ≤ i ≤ c. By Proposition 1, the minimal num-

ber of generators for G is given by the p-rank of G/Φ(G) = G/P1(G). Throughout,

we refer to this number as the Frattini-quotient rank of G.

Definition 2. The group H is a descendant of G if H/Pc(H) ∼= G.

As an example, consider D4. By the above, c = 2 and D4/P2(D4) ∼= C2 × C2,
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the group Z/2Z × Z/2Z. Thus, D4 is an immediate descendant of C2 × C2.

Definition 3. The group H is an immediate descendant of G if H is a descen-

dant of G and H has exponent-p class c+ 1.

Above, we saw that D4 is an immediate descendant of C2 × C2.

Definition 4. Suppose d is the Frattini-quotient rank of G and G ∼= F/R, where F

is the free group on d generators. Let R∗ = [F,R]Rp, the subgroup of R generated

by the set of commutators [F,R] and pth powers of elements of R. The p-covering

group of G is F/R∗ and is denoted by G∗. The p-multiplicator of G is R/R∗.

The nucleus of G is Pc(G
∗).

It can be shown that G∗ is independent of the choice of R. Also, note that

G∗/(R/R∗) ∼= G. It follows that G∗ is finite. This is because R/R∗ is finitely

generated abelian and of exponent p, and G is finite. Also, Property 1 implies that

Pc(G
∗) ≤ R/R∗.

Definition 5. A subgroup M/R∗ < R/R∗ is an allowable subgroup if it is a

proper subgroup that supplements the nucleus.

A subgroup M/R∗ < R/R∗ supplements the nucleus if (M/R∗)Pc(G
∗) =

R/R∗. Let H be an immediate descendant of G. It can be shown that there is

an allowable subgroup M/R∗ such that G∗/(M/R∗) ∼= H. Note that since R/R∗ is

finite, G can have only finitely many immediate descendants.

By Property 1, G∗ has exponent-p class at least c. Since G∗ surjects onto H

and H has exponent-p class c + 1, it follows that G∗ has exponent-p class at most
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c+ 1. We see that G has no immediate descendants whenever its nucleus is trivial.

Such a group is called terminal. MAGMA shows that the quaternion group Q8 has

no immediate descendants, for example.

One question is: is there a unique allowable subgroup M/R∗ such that we have

G∗/(M/R∗) ∼= H? The answer is: not necessarily. It can be shown that there are 3

distinct allowable subgroups of (C2 ×C2)
∗ whose quotients are D4. It is easy to see

that C2 × C4 is an immediate descendant of C2 × C2. There is a unique allowable

subgroup whose quotient is C2 × C4. The algorithm selects allowable subgroups in

such a way as to provide an irredundant list of immediate descendants. For more

details, see [10].

For i ≥ c − 1, it is easy to see that the group G/Pi+1(G) is an immediate

descendant of G/Pi(G) by Property 1. The p-group generation algorithm takes a

finite p-groupG and gives a method that computes the presentations of all immediate

descendants of G. By starting with G/P1(G), the p-group generation algorithm can

compute a presentation for G/P2(G). Applying the algorithm to G/P2(G) computes

a presentation for G/P3(G), etc. After c iterations of the algorithm, one obtains a

presentation for G/Pc(G) ∼= G.

2.2 The standard presentation of a finite p-group

Newman [9] gives an outline of the p-group generation algorithm. In this

outline, he shows that the presentation of G given by the algorithm is unique.

We call this presentation the standard presentation of G. Therefore, whenever the
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standard presentations of the finite p-groups G and H (i.e. the presentations of G

and H computed by the p-group generation algorithm) are different, then G � H.

We state this as a proposition for later use.

Proposition 2. Two finite p-groups are isomorphic if and only if they have the

same standard presentations.

Proof: See [9]. �

If G is a finite p-group of order pn, then the standard presentation of G is given

as the quotient of the free group F (n) on n generators x1, . . . , xn. The relations

are words in pth powers and commutators of x1, . . . , xn. Whenever a pth power

or commutator is trivial, we omit it from the set of relations. As we will see in

Section 2.2.1, the standard presentation of D4 is

< x1, x2, x3|[x2, x1] = x3 > .

For example, this indicates that x1, x2, and x3 have order 2 and that [x3, x1] = 1.

The standard presentation for Q8 is

< x1, x2, x3|x2
1 = x3, x

2
2 = x3, [x2, x1] = x3 > .

This shows that x1 and x2 have order 4, x3 has order 2, and [x3, x2] = 1.
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2.2.1 Example: Generation of D4 using the p-group generation algo-

rithm.

As described in Section 2.1, we begin with a presentation of D4/P1(D4) ∼=

C2 × C2:

< x1, x2 | x2
1 = 1, x2

2 = 1, [x1, x2] = 1 > .

We apply the p-group generation algorithm to obtain D4 as a quotient of K =

(C2 × C2)
∗ by an allowable subgroup. First, the 2-multiplicator of C2 × C2 is

R/R2[R,F ] = R/R∗ =< x2
1R

∗, x2
2R

∗, [x1, x2]R
∗ > .

We refer to R/R∗ later. MAGMA shows that K is defined by:

< x1, x2, x3, x4, x5 | x2
1 = x3, x

2
2 = x4, [x2, x1] = x5 > .

As in Section 2.2, whenever the 2nd powers or commutators of x1, x2, x3, x4, x5 are

trivial, we omit them (e.g. x2
3 = 1 and [x3, x1] = 1).

Recall that an allowable subgroup M/R∗ is a proper subgroup of R/R∗ that

supplements the nucleus. MAGMA shows that P2(K) = R/R∗, so any proper

subgroup of R/R∗ is an allowable subgroup. Let M1/R
∗ =< x2

1R
∗, x2

2R
∗ > so that

K/(M1/R
∗) is given by

< x̄1, x̄2, x̄5|x̄1
2 = 1, x̄2

2 = 1, [x̄2, x̄1] = x̄5 >

Consider x1x2 and x̄2. These generate K/(M1/R
∗) and are such that (x1x2)

4 = 1

and (x1x2)x̄2(x1x2)x̄2
−1 = 1. Hence, K/(M1/R

∗) is D4. Recall that we can omit

the first two relations from the presentation of K/(M1/R
∗). This gives the standard

presentation of D4 from Section 2.2.
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Additionally, let

M2/R
∗ =< x2

1[x2, x1]R
∗, x2

2[x2, x1]R
∗ >

Then, K/(M2/R
∗) is Q8. Let

M3/R
∗ =< x2

1R
∗, [x2, x1]R

∗ > .

The group K/(M3/R
∗) defines C2 × C4. Lastly, let M4/R

∗ =< [x2, x1]R
∗ >. It is

easy to see that C4 × C4 is an immediate descendant of C2 × C2. The group

K/(M4/R
∗)

defines C4 × C4.

We will see in Section 2.3 that C2 × C2 has 7 immediate descendants. The

other 3 are K and 2 groups H3 and H4 of order 16 given by:

H3 =< x1, x2, x3, x4|x2
1 = x4, [x2, x1] = x2x3 >,

H4 =< x1, x2, x3, x4|y2
1 = y4, y

2
2 = y3, [y2, y1] = y2y3 > .

2.3 Bush’s results

In this section, we describe the details and results of Bush’s method presented

in [5]. He considers the 2-class towers of each of the imaginary quadratic fields

Q(
√
−2379), Q(

√
−445), Q(

√
−1015), and Q(

√
−1595). Let k denote one of these

fields and G = Gal(knr,2/k). He uses the p-group generation algorithm to compute

G/Pi(G) for i ≥ 1. As the algorithm produces a large number of possibilities for

G/Pi(G), he establishes criteria that subgroups of a possibility must fulfill.
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Note that G is a profinite 2-group and that G/Pi(G) is a finite 2-group for all

i ≥ 1. This means that for each i ≥ 1 a presentation for G/Pi(G) can be computed

using the p-group generation algorithm.

Let G1, G2, . . . , Gn denote a collection of closed subgroups ofG such that for all

j, we have Gj ≥ Pi(G) for all i greater than some i0. Let Ḡj denote the image of Gj

in G/Pi(G), i ≥ i0. At the ith iteration of the p-group generation algorithm, the goal

is to find a group Q such that Q ∼= G/Pi(G). Suppose (Q, {Qj}nj=1) is an ordered

pair such that Q1, . . . , Qn are subgroups of Q. Additionally, suppose there exists

an isomorphism ψi : Q → G/Pi(G) such that ψi(Qj) = Ḡj for each j = 1, . . . , n.

Such a group is called a representative of the pair (G/Pi(G), {Ḡj}nj=1). Suppose

(R, {Rj}nj=1) and (Q, {Qj}nj=1) are representatives for G/Pi(G) and G/Pi−1(G), re-

spectively. Property 1 of the p-group generation algorithm, shows that ψi induces

an isomorphism R/Pi−1(R) → G/Pi−1(G). Additionally, R has 2-class i. Therefore,

R is an immediate descendant of Q. Let π : G/Pi(G) → G/Pi−1(G) be given by

gPi(G) 7→ gPi−1(G). The composition f = ψ−1
i−1 ◦π ◦ψi is an epimorphism such that

f(Rj) = Pj for all i = 1, . . . , n.

What is the significance of the subgroups Ḡ1, . . . ,Ḡn? In each case, the dis-

criminant of the imaginary quadratic is the product −p1 · p2 · p3, where p1, p2, p3

are distinct positive primes. For example, −1015 = −7 · 5 · 29. By genus theory,

the 2-class group Cl
(2)
k of k (the 2-Sylow subgroup of the class group Clk of k) has

Frattini-quotient rank 2 (i.e. has 2-rank 2). It follows from Class Field Theory that

G has Frattini-quotient rank 2. By the remarks made in Section 2.1, we see that G

is a descendant of C2×C2. Basic p-group theory shows that knr,2/k contains exactly
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3 quadratic extensions

L2 = k(
√
−p1), L3 = k(

√
p2), L4 = k(

√
p3).

Let G1 = G and Gj = Gal(knr,2/Lj), so that [G : Gj] = 2 for j = 2, 3, 4.

Since G/P1(G) is the largest quotient of G having exponent-2 class one, P1(G) ≤

G2, G3, G4. It follows that Pi(G) ≤ Gj for i ≥ 1. The field L5 = k(
√−p1,

√
p2,

√
p3)

is a subfield of knr,2/k. Let G5 = Gal(knr,2/L5). Since G/G5
∼= C2 × C2, it follows

that P1(G) = G5 and Pi(G) ≤ G5 for all i ≥ 1. Let K denote the fixed field of P2(G).

Using the number theory package KASH, Bush finds a generating polynomial for a

subfield L8 of degree 8 over k such that

Q(
√

−p1,√p2,
√
p3) ⊂ L8 ⊂ K.

The lattice of subfields of the extension L8/k shows that Gal(L8/k) is a group

having exponent-2 class 2. Therefore, P2 ≤ Gal(knr,2/L8). This implies that Pi ≤

Gal(knr,2/L8) for i ≥ 2. The field L8 contains two fields L6 and L7 of degree 4

over k. Let G6 and G7 denote the subgroups of G fixing these subfields. Then

Pi(G) ≤ G6, G7 for i ≥ 2.

Let i ≥ 2. Fix j ∈ {1, . . . , 7}. By the remarks above, we may let Ḡj de-

note the image of Gj in G/Pi(G). The abelianization Gj/[Gj, Gj] surjects onto

Ḡj/[Ḡj, Ḡj]. By Proposition 1 in Chapter 3, Gj/[Gj, Gj] ∼= Cl2Lj
for j ≥ 2 and

G1/[G1, G1] ∼= Cl2k. Hence, the abelianization of the image of Gj in G/Pi(G) is a

quotient of Cl2Lj
. Let (R, {Rj}7

j=1) be a representative for G/Pi(G). Recall from

above that there is an isomorphism ψi : R → G/Pi(G) such that ψi(Rj) = Ḡj for

j = 1, . . . , 7. In particular, R/[R,R] is a quotient of G/[G,G]. The group R must
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contain maximal subgroups R2, R3, R4 whose abelianizations are quotients of Cl2L2
,

Cl2L3
, and Cl2L4

, respectively. Lastly, R must have 3 index 4 subgroups R5, R6, R7

whose abelianizations are quotients of Cl2L5
, Cl2L6

, and Cl2L7
.

Given a list L(i−1) containing a representative of (G/Pi−1(G), {Ḡj}7
j=1), Bush

composes a list L(i) of pairs containing a representative (R, {Rj}7
j=1) of the pair

(G/Pi(G), {Ḡj}7
j=1) as follows. Recall that there exists an isomorphism ψi : R →

G/Pi(G) such that ψi(Rj) = Ḡj for all j = 1, . . . , 7. Let (Q, {Qj}7
j=1) be a pair on

L(i−1) (so that (Q, {Qj}7
j=1) is a potential representative of (G/Pi−1(G), {Ḡj}7

j=1)).

In Section 2.1 above, we showed that Q has finitely many immediate descendants

R1, . . . , RlQ . Let l0 ∈ {1, . . . , 7} be such that Rl0
∼= G/Pi(G). Fix a k ∈ {1, . . . , lQ}

and an epimorphism f : Rk → Q. If for each j = 1, . . . , 7 the abelianization of

f−1(Qj) is a quotient of Gj/[Gj, Gj], then the pair (Rk, {f−1(Qj)}7
j=1 gets added to

L(i). This way, L(i) will contain a representative of (G/Pi(G), {Ḡj}7
j=1).

Suppose m is the smallest such integer such that L(m) is empty. In this case,

L(i) is empty for all i ≥ m. The lists L(i), 1 ≤ i ≤ m form a finite collection of finite

groups containing G. In particular, G must be finite. A group R is called a candidate

for G is there exists a pair (R, {Rj}7
j=1) such that Rj/[Rj, Rj] ∼= Gj/[Gj, Gj] for all

j = 1, . . . , 7. Hence, G will be among the candidates contained on the lists.

2.3.1 Example of Bush’s computations: k = Q(
√
−445)

The field k has class group C2 × C4. The quadratic extensions of k are

L2 = k(
√
−1), L3 = k(

√
5), L4 = k(

√
89).
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The field L5 = Q(
√
−1,

√
5,
√

89) is a subfield of knr,2 such thatGal(L5/k) ∼= C2×C2.

Bush computes the 2-class groups of these fields using KASH:

G1/[G1, G1] ∼= ClL1
∼= Clk ∼= C2 × C4

G2/[G2, G2] ∼= ClL2
∼= C2 × C8

G3/[G3, G3] ∼= ClL3
∼= C4 × C4 × C8

G4/[G4, G4] ∼= ClL4
∼= C2 × C2 × C2

G5/[G5, G5] ∼= ClL5
∼= C4 × C4.

Since G/[G,G] ∼= C2×C4, we see that G/P1(G) ∼= C2×C2. Moreover, Gal(L5/k) =

P1(G). A representative of (G/P1(G), {Ḡj}5
j=1) is (C2 × C2, {Rj}5

j=1) where R1 =

C2 × C2, and R2, R3, R4 are the three subgroups of order 2, and R5 =< 0 >. Let

L(1) consist of this single pair.

Recall from Section 2.2.1 that the group C2×C2 has 7 immediate descendants.

They are the groups:

C2 × C4, D4, Q8, C4 × C4,

H3 =< x1, x2, x3, x4|x2
1 = x4, [x2, x1] = x2x3 >,

H4 =< x1, x2, x3, x4|y2
1 = y4, y

2
2 = y3, [y2, y1] = y2y3 >,

K = (C2 × C2)
∗.

MAGMA computes that K/[K,K] ∼= C4 × C4. Since C4 × C4 is not a quotient of

C2 × C4, this implies that K does not appear in a pair on L(2). Similarly, C4 × C4

does not appear in a pair on L(2).

Next, we consider H4. Computations show that each index 2 subgroup of H4

has the abelianization C2×C4. Since C2×C4 is not a quotient of C2×C2×C2
∼= ClL4 ,

15



we cannot have H4 appear in a pair on L(2).

The group Q8 is terminal (i.e. has no immediate descendants). Hence, in order

for G/P2(G) ∼= Q8, it would have to be that G/P2(G) ∼= G. Since, Q8/[Q8, Q8] ∼=

C2 × C2, this cannot occur.

Now consider D4 and C2 × C4. Bush finds subfields F1 and F2 of knr,2/k such

that Gal(F1/k) ∼= C2×C4 and Gal(F2/k) ∼= D4. Both groups have exponent-2 class

2. By the second property of the lower p-central series, G/P2(G) surjects onto any

quotient of G having exponent-2 class 2. Therefore, G/P2(G) can be neither C2×C4

nor D4. Hence, G/P2(G) must be H3.

Let f : H3 → C2×C2 be a surjection. The groupH3 is such thatH3/[H3, H3] ∼=

C2 × C4. It has three maximal subgroups M1,M2,M3 such that M1/[M1,M1] ∼=

M2/[M2,M2] ∼= C2 ×C4 and M3/[M3,M3] ∼= C2 ×C2. Computations show that any

normal index 4 subgroups has abelianization C2 ×C2. Therefore, if f is a surjection

such that f−1(Rj) = Mj, the pair (H3, {f−1(Rj)}) is appended to L2. Since H3 is

an immediate descendant of C2 × C2, we have that H3/P1(H3) ∼= C2 × C2. The

map f with kernel P1(H3) is surjection satisfying the necessary requirements. Bush

iterates his method and the sequence of lists terminates to give 81 candidates for G.

To further isolate G, Bush incorporates two more subgroups G6 and G7 defined

below. He begins by computing an unramified degree 8 extension L8 over k with

generating polynomial over Q given by

x16 + 12x14 + 4554x12 + 17928x10 + 2231251x8+

13625880x6 − 10866150x4 − 143437500x2 + 244140625.
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such that Gal(L8/k) ∼= C2 × C4. The remarks above imply Pi ≤ Gal(knr,2/L8) for

all i ≥ 2. Bush shows that the fields L6 = k(
√−µ) and L7 = k(

√
µ) are subfields of

L8/k, where µ = −3 + 4
√
−5. Hence, Pi(G) ≤ G6, G7 for all i ≥ 2. Computations

show that ClL6
∼= C2 × C2 × C4 and ClL7

∼= C4 × C4

Next, Bush computes all surjections f : H3 → C2×C4 (instead of all surjections

H3 → C2 × C2), and adjoins pairs accordingly. This gives him L2. Reiterating this

procedure, he finds that L6 is empty. Computations in MAGMA show that the

groups in L5 are terminal. Among the collection of groups on L1, . . . ,L5, there are

12 candidates, each having exponent-2 class 5. Therefore, G must be one of these

12 groups. In particular, G ∼= G/P5(G), and has exponent-2 class 5.

He finds that exactly 2 of the 12 groups have index 4 subgroups with abelian-

izations C2×C16. We denote the two groups by C2,1 and C2,2. Bush’s computations

indicate that the field k(
√

13 + 4
√

5) is a subfield of knr,2/k with 2-class group

C2×C16. As we will show later, C2,1 and C2,2 have different standard presentations,

so that they are not isomorphic.

Similar considerations apply to each of the fields Q(
√
−2379), Q(

√
−1015) and

Q(
√
−1595). The main results of Bush’s method are summarized in the following

theorems.

Theorem 1. The field k = Q(
√
−445) has finite 2-class tower of length 3, i.e.

k = k0 ⊂ k1 ⊂ k2 ⊂ k3 = knr,2. We have Gal(k1/k0) ∼= C2 × C4, Gal(k2/k1) ∼=

C2 × C2 × C4, and Gal(k3/k2) ∼= Z/2Z.

The two candidates are quotients of the free group, F (8), on 8 generators,
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x1, x2, . . . x8. With r ∈ {0, 1}, they are defined by F (8)/Rr, where Rr is the normal

subgroup generated by the set

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2(x5x7)

−1, [x3, x1]x
−1
5

x2
3(x6x7)

−1, [x3, x2]x
−1
6

x2
6x

−1
8 , [x4, x2](x5x6x7x8)

−1

x2
4(x

r
8)

−1, [x4, x3]x
−1
7

[x5, x1]x
−1
7 , [x5, x4]x

−1
8

[x5, x2]x
−1
8 , [x7, x1]x

−1
8

[x5, x3]x
−1
8 , [x7, x2]x

−1
8 .

Proceeding with k = Q(
√
−2379) as in the above example, Bush obtains 8

candidates for Gal(knr,2/k). He does not further isolate Gal(knr,2/k) among these

groups.

Theorem 2. The field k = Q(
√
−2379) has finite 2-class tower of length 2, i.e.

k = k0 ⊂ k1 ⊂ k2 = knr,2. We have Gal(k1/k0) ∼= C4 × C4 and Gal(k2/k1) ∼=

C2 × C4 × C16.

Each candidate is the quotient of the free group F (9) on 9 generators. The

sets of relations defining each candidate are the same except for two elements. We

give one set of relations below. The variables r, s, t ∈ {0, 1} denote the exponents

below. Let C1,rst denote the candidate with exponents r, s, t. The group C1,rst is
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defined by F (9)/Rrst where Rrst is the normal subgroup generated by the relations

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2x

−1
5 , [x3, x1]x

−1
6

x2
3(x6x8x9x10)

−1, [x3, x2]x
−1
7

x2
4(x7x

r
11)

−1, [x4, x2]x
−1
8

x2
5(x6x9x

s
10x

t
11)

−1, [x4, x3]x
−1
10

x2
6(x9x10x11)

−1, [x5, x1](x6x7x8x9x10)
−1

x2
7(x10x11)

−1, [x5, x3](x10x11)
−1

x2
9x

−1
11 , [x6, x1]x

−1
9

[x5, x4](x10x11)
−1, [x8, x2](x10x11)

−1

[x8, x1]x
−1
10 , [x9, x1]x

−1
11 .

Bush refines his method with k = Q(
√
−1015). He computes 3 degree 8 subex-

tensions L8,1, L8,2, and L8,3 of knr,2/k. Fixing r ∈ {1, 2, 3}, he proceeds with L8,r as

he did in the above example with L8. This gives him 3 sets of subgroups. He applies

his procedure using all 3 sets and obtains two candidates for Gal(knr,2/k). Bush

finds that k = Q(
√
−1595) has 3 degree 8 subextensions with subfield lattices and

corresponding 2-class groups identical to the ones considered for k = Q(
√
−1015).

Therefore, Gal(knr,2/k) must be one of the two candidates above. He does not

further isolate the Galois group in either case.

Theorem 3. The fields k = Q(
√
−1015) and k = Q(

√
−1595) have finite 2-class

towers of length 3, i.e. k = k0 ⊂ k1 ⊂ k2 ⊂ k3 = knr,2. In both cases, we have

Gal(k1/k0) ∼= C2 × C8, Gal(k2/k1) ∼= C2 × C2 × C4, and Gal(k3/k2) ∼= C2.
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The candidates for each field are quotients of the free group, F (9) on 9 gener-

ators. Let r ∈ {0, 1}. Each candidate is defined by F (9)/Rr where Rr is the normal

subgroup generated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2(x5x7)

−1, [x3, x1]x
−1
5

x2
3(x7x8)

−1xr−1
9 , [x3, x2]x

−1
6

x2
4x

−1
6 , [x4, x2]x

−1
8 xr−1

9

x2
6x

−1
8 , [x4, x2](x5x7x8x

r
9)

−1

x2
8x

−1
9 , [x4, x3]x

−1
7

[x5, x1]x
−1
7 [x5, x4]x

−1
9

[x5, x2]x
−1
9 [x7, x1]x

−1
9

[x5, x3]x
−1
9 [x7, x2]x

−1
9 .

2.4 Partially ordered sets and lattices

We briefly recall some elementary facts about partially ordered sets and lat-

tices. For more details, see [8].

Definition 6 (Lattice). Let P be a partially ordered set (poset) with partial order-

ing ≤. Let x, y ∈ P and

{x, y}u = {w ∈ P |x ≤ w, y ≤ w}.

If there is some w ∈ {x, y}u such that w ≤ z for all z ∈ {x, y}u, then w is called a

supremum of x and y, denoted by x ∨ y = w. An infimum of x and y is defined

similarly, and is denoted by x ∧ y. We say that P is a lattice if x ∨ y and x ∧ y
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exist for all x, y ∈ P .

It follows from the definitions that x∨ y and x∧ y are unique. As an example

of a lattice, consider the set of subgroups of a group ordered by inclusion. For any

subgroups H and K, H ∨K is the subgroup generated by H and K, and H ∧K is

the subgroup H ∩K.

Definition 7 (Order-isomorphism). Let P and Q be partially ordered sets with

partial orderings ≤,≤′, respectively, and f : P → Q a map of sets. Then f is an

order-isomorphism if f is surjective and x ≤ y in P iff f(x) ≤′ f(y) in Q.

Definition 8 (Lattice-isomorphism). Let L and K be lattices and f : L → K

a map of sets. Then f is a lattice-isomorphism if f is bijective and f(x ∨ y) =

f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) , for all x, y ∈ L.

Proposition 3. Let L,K be lattices and f : L → K be a map of sets. Then, f is

an order-isomorphism if and only if f is a lattice isomorphism.

Proof: This follows from the definitions of ∨, ∧, order-isomorphism, and lattice

isomorphism. �

For an arbitrary group, G, a partial ordering, ≤, can be placed on the set of

conjugacy classes of subgroups, S, of G. Let a, b ∈ S. This ordering is given by

a ≤ b if given any H ∈ a, there exists K ∈ b such that H ⊆ K. Reflexivity and

transitivity are clear. If a ≤ b and b ≤ a, then order considerations imply that

a = b. We will use that S is a poset in Chapters 3 and 5.
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Chapter 3

Example One: k = Q(
√
−2379)

Bush takes k = Q(
√
−2379) and shows that G = Gal(knr,2/k) is one of 8

groups. In this Chapter, we isolateGal(knr,2/k) among 4 of the original 8 candidates.

In doing so, we develop a general method that can actually identify Gal(knr,2/k)

provided that current technology could make the necessary computations.

Throughout, we refer to any one of the 8 groups as a candidate forG. Each can-

didate is the quotient of the free group F (11) on 11 generators x1, . . . , x11. The sets

of relations defining each candidate are the same except for two elements. We give

one set of relations below. The variables r, s, t ∈ {0, 1} denote the exponents in the

relations (∗) and (∗′) below. Let C1,rst denote the candidate with exponents r, s, t.

The “1” in the subscript signifies the first example. For instance, C1,011 is defined

by the relations x2
4(x7x

r
11)

−1 = x2
4(x7)

−1 and x2
5(x6x9x

s
10x

t
11)

−1, = x2
5(x6x9x10x11)

−1.

The group C1,rst is defined by F (11)/Rrst where Rrst is the normal subgroup gener-
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ated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2x

−1
5 , [x3, x1]x

−1
6

x2
3(x6x8x9x10)

−1, [x3, x2]x
−1
7

(∗) x2

4
(x7x

r

11
)−1, [x4, x2]x

−1
8

(∗′) x2

5
(x6x9x

s

10
xt

11
)−1, [x4, x3]x

−1
10

x2
6(x9x10x11)

−1, [x5, x1](x6x7x8x9x10)
−1

x2
7(x10x11)

−1, [x5, x3](x10x11)
−1

x2
9x

−1
11 , [x6, x1]x

−1
9

[x5, x4](x10x11)
−1, [x8, x2](x10x11)

−1

[x8, x1]x
−1
10 , [x9, x1]x

−1
11 .

The above gives the standard presentation for G. As indicated in Section 2.2, if the

2nd power of a generator does not appear above, then it is trivial, and similarly for

the commutators of two generators. For example, the images of x8, x10, and x11 in a

candidate each have order 2. As additional examples, we see that in any candidate

the image of x4 commutes with the image of x1 and that the image of x9 commutes

with the image of xm, where 2 ≤ m ≤ 11. Note that each group has order 211. Also,

each group has Frattini-quotient rank 2 because each is a descendant of C2 ×C2, as

we showed in Section 2.3.

Our goal is to show that G is one of C1,000, C1,100, C1,011, and C1,111. In other

words, we will decrease the number of possibilities for G by one-half and explicitly

state the remaining possibilities for G. We start with an outline of our strategy.

The first step is to use MAGMA to show that G contains a unique abelian subgroup

23



H of index 8. If F is any subfield of knr,2, we let Cl
(2)
F denote the 2-class group of

F . Let FH denote the fixed field of H. The second step is to compute the action

of Gal(FH/k) on Cl
(2)

FH . The third and last step is to observe that this action gives

rise to a set E0 of groups. We show that one of these groups must be G. Finally,

Frattini-quotient rank information about the groups in E0 shows that G is one of

C1,000, C1,100, C1,011, and C1,111.

Before executing the strategy, we make some briefly give some background

about three topics: MAGMA and conjugacy classes of subgroups of a finite group,

subfields of knr,2, and group extensions. The material presented in these remarks

will be used to carry out our strategy. If F is a number field, we let F (2) denote the

Hilbert 2-class field of F .

Proposition 4. Let F be such that k ⊆ F ⊆ knr,2. Let H = Gal(knr,2/F ), and

L be an unramified 2-extension of F . Then, k ⊆ F ⊆ L ⊆ knr,2. In particular,

k ⊆ F ⊆ F (2) ⊆ knr,2 and Gal(F (2)/F ) ∼= H/H ′ ∼= Cl
(2)

F (2) .

Proof: We have that F ⊆ L
⋂
knr,2 ⊆ L. Then, L/F is an unramified 2-

extension implies L/(L
⋂
knr,2) is also such an extension (by Galois theory and the

multiplicative property of ramification index). Hence, Lknr,2/knr,2 is an unramified

2-extension by lifting. If Lknr,2 6= knr,2, then Lknr,2/knr,2 is a nontrivial unramified

2-extension and Gal(Lknr,2/knr,2) is a finite 2-group. A basic result in p-group

theory implies that Gal(Lknr,2/knr,2) contains a subgroup, K, of index 2. The fixed

field, B, of K then gives an unramified quadratic extension of knr,2, which is a

contradiction. It follows that L ⊆ knr,2. In particular, k ⊆ F ⊆ F (2) ⊆ knr,2, so let
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M = Gal(knr,2/F (2)) E H. Since F (2) is the maximal abelian unramified 2-extension

of F , Gal(F (2)/F ) ∼= H/H ′. Lastly, Gal(F (2)/F ) ∼= Cl
(2)

F (2) by the Artin map. �

We saw in Section 2.4 that the set of conjugacy classes of a group forms a

poset. Recall that these sets have a partial ordering given by x ≤ y in Pl if and

only if for each subgroup M ∈ x, there is some subgroup K ∈ y such that M ≤ K.

Let C denote a candidate for G and S the partially ordered set of conjugacy classes

of subgroups of C. MAGMA can compute S. In the output of these computations,

MAGMA uses a positive integer to identify a conjugacy class of subgroups of C, so

throughout we let i denote the ith conjugacy class of subgroups of C. A computation

in MAGMA indicates that #S = 272. In other words, C has 272 conjugacy classes

of subgroups. For example, 1 denotes the class of < idC > and 272 denotes the class

of C.

Next, suppose that subgroup class i is such that i = {H1, . . . , Hmi
}, where

H1, . . . , Hmi
are subgroups of C. We write length(i)=mi. For example,

length(272) = length(1) = 1.

More generally, if H E C and i denotes the subgroup class containing H, then

length(i)=1. We write index(i) = r if [G : H] = r for H ∈ i. For example,

index(1)=[C :< idC >] = 211 (recall from above) and index(272)=[C : C]=1.

The next proposition pertains to group extensions.

Proposition 5. Suppose we are given an extension, e, of groups

e : 1 −→M
j−→ E

p−→ G −→ 1,
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where M is abelian. This extension gives rise to an action of G on M , denoted by

· and given by, for g ∈ G and m ∈ M , g · m = g̃j(m)g̃−1, where p(g̃) = g. This

action is independent of the choice of g̃.

Recall that this follows from the exactness of e and the fact that M is abelian.

Given such an extension e, we will refer to E as the extension group of e. Whenever

G acts on M , there is a resulting second cohomology group H2(G,M). This abelian

group is in 1-1 correspondence with the set E of equivalence classes of extensions

giving rise to the action of G on M . When G and M are finite, MAGMA can

compute H2(G,M). Additionally, in our case, MAGMA can compute all extension

groups. For example, if G = M = C2 =< σ > and C2 acts trivially on C2, then

there are two equivalence classes of extensions of C2 by C2 giving rise to the trivial

action. A representative, e1, for the trivial class is

e1 : 1 −→ C2
j1−→ C2 × C2

p1−→ C2 −→ 1,

where j1 : σ 7→ (σ, 1) and p1 : (σ, 1) 7→ 1, (1, σ) 7→ σ. For the second class, let

C4 =< τ >. A representative e2 for the nontrivial class is

e2 : 1 −→ C2
j2−→ C4

p2−→ C2 −→ 1,

where j2 : σ 7→ τ 2 and p2 : τ 7→ σ. Hence, E = {e1, e2}, the extension groups are

C2×C2 and C4, and MAGMA therefore outputs presentations for these two groups.

We now carry out our strategy. In the the first step, we will show that G

contains a unique abelian normal subgroup H of index 8. The fixed field FH with

have 2-class field knr,2 by Proposition 1. The field FH has degree 16 over Q, which
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is a low enough degree to perform computations with FH and Cl
(2)

FH . In step two we

will be use PARI to compute a generating polynomial for FH over the Q.

To find such an H, we show that each candidate contains the subgroup C2 ×

C8×C16 and this is the unique largest abelian subgroup of the candidate. This gives

us the necessary H. Let C denote an arbitrary candidate.

Let S denote the set of conjugacy classes of subgroups of C. Subgroup classes

233 through 272 form the subset of S of subgroup classes of index at most 8.

A sequence of commands in MAGMA which tests whether a representative

subgroup is abelian shows that class 235 is the only class whose representative is

abelian. We compute that length(235) = 1. Let K235 denote the subgroup in class

235. Then K235 � C. We compute that K235
∼= C2 × C8 × C16. Finally, we see that

the quotient C/K235
∼= D4, the dihedral group of order 8.

Since C is an arbitrary candidate, G contains a unique abelian normal sub-

group, H ∼= C2 × C8 × C16 such that G/H ∼= D4. As mentioned above, FH/k is a

normal extension of degree 8 such that and Cl
(2)

FH
∼= C2 × C8 × C16 and has 2-class

field knr,2. We remark also that FH/Q is a normal extension of degree 16. This fol-

lows from the fact that knr,2/Q is Galois with normal subgroup G and H is unique

hence characteristic in G.

The second step of our strategy is to find a generating polynomial over Q

for FH . The purpose of this step is to use the generating polynomial to compute

in PARI the 2-class group of FH . The method used in the second step can be

broken down into three parts. In the first part, we show that H is a maximal

subgroup of a subgroup J . In the second part, we show that J has fixed field
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E := Q(
√
−3,

√
13,

√
61). This implies that FH is a quadratic subfield of E(2) that

contains E. In the third part, we compute in MAGMA the generating polynomials of

all unramified quadratic subfields of E(2) that contain E. This gives us a generating

polynomial for FH .

We start with the first part. Let C be an arbitrary candidate. MAGMA

indicates that 235 ≤ 260 (as in our description of the poset of conjugacy classes of

a group in Section 2.4), index(260) = 4, and length(260) = 1. Let M260 denote

the subgroup in class 260, so M � C and |M | = 29. Let K235 be as above. Then,

K235 ≤ M260 and [K235 : M260] = 2. We compute the invariant factors of the

abelianizations of all index 4 subgroups. Evidently, M260 is the unique normal

subgroup of index 4 in G whose abelianization is C4 × C4 × C8

We have that G contains a unique index 4 subgroup J with abelianization

C4 × C4 × C8 such that H ≤ J . The fixed field F J has 2-class group C4 × C4 × C8.

We begin the second part of the second step, where we show that FH is a

quadratic extension of E = Q(
√
−3,

√
13,

√
61). So far, we only know that H is a

subgroup of index 2 of J . We show further that J = Gal(knr,2/E).

We verify in PARI that E is an unramified 2-extension of k such that Cl
(2)
E

∼=

C4 × C4 × C8. Also, we remark that the class group of E is equal to Cl
(2)
E . By the

first part of Proposition 1, E is a subfield of knr,2, so let I = Gal(knr,2/E). Then,

I � G, has index 4 in G, and abelianization C4 × C4 × C8. The uniqueness of J

shows that I = J and E = F J . Since H is a subgroup of index 2 of J , we have that

FH is a quadratic extension of E. It follows that FH is a quadratic extension of E

that is contained in E(2).
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The third part is to use MAGMA to compute generating polynomials over Q

of all quadratic subfields of E(2) containing E, and isolate among these the one that

generates FH. First, Cl
(2)
E was computed in MAGMA. Evidently (and it can be

shown using basic p-group theory), this group has seven subgroups N1, N2, . . . , N7

of index 2. Let m ∈ {1, . . . , 7} and Fm denote the fixed field of Nm. A sequence of

commands computing class fields in MAGMA outputs a generating polynomial, pm,

of Fm over Q.

We use these polynomials to compute in PARI the 2-class groups of the sub-

fields F1, F2, . . . , F7. By the uniqueness of H, the polynomial pm0 , where m0 ∈

{1, . . . , 7}, that generates a field having 2-class group C2 × C8 × C16 is guaranteed

to generate FH .

The field, F2, generated by

p2(x) = x16 + 338x14 + 105445x12 + 2973386x10 + 77308156x8

+ 2973386x6 + 105445x4 + 338x2 + 1

has 2-class group C2 × C8 × C16. (Moreover, the class group, ClL, of L is such that

ClL = Cl
(2)
L .) We see that FH = F2, which we denote by L. As we mentioned

above, L/Q is Galois. This concludes the second step of our strategy.

Now that we have a generating polynomial for L/Q, we generate in PARI the

class group information for L. The roots in L of x2 +2379 are also generated. PARI

can compute ideals, I, J,K, representing generators for Cl
(2)
L . Let [I] denote the class

of I in Cl
(2)
L , and similarly for J and K. These ideals are such that order([I]) = 2,

order([J ]) = 8, and order([K]) = 16, and Cl
(2)
L

∼=< [I] > × < [J ] > × < [K] >.
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The first goal is to find in PARI a pair of generators for Gal(L/k). Since

we observed in the first step that Gal(L/k) ∼= D4, it suffices to find a pair σ, τ ∈

Gal(L/Q) that satisfies:

1. σ, τ fix a root of x2 + 2379,

2. σ has order 4, τ has order 2, and

3. σ2 6= τ .

For 1., we test σ, τ on a root, α, of x2 + 2379 to check if they fixed α. For 2., we

check that σ2 was not the identity. Once we find two distinct such σ, any other

automorphism τ satisfying 1. must have order two by the structure of D4. We then

verify that σ2 6= τ , thereby satisfying 3. Once a pair σ, τ is found, we compute the

actions of σ and τ on the generators of Cl
(2)
L . The results are:

σ([I]) = [I][J ]4

σ([J ]) = [J ]3[K]4

σ([K]) = [J ]6[K]7

τ([I]) = [I][J ]4[K]8

τ([J ]) = [J ]3[K]4

τ([K]) = [K].

Let δ : Gal(L/k1) → Aut(Cl
(2)
L ) denote this action.

We observed above that

Cl
(2)
L

∼= Gal(knr,2/L) ∼= C2 × C8 × C16 and Gal(L/k) ∼= D4.

MAGMA can compute the corresponding set of extension groups, as mentioned after
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Proposition 5. Let E0 denote this set. Also, denote the Artin map by

Φ : ClF → Gal(L(2)/L) = Gal(knr,2/L).

We showed in step one of our strategy that these last two groups are equal. Recall

that the Artin map is a Gal(L/k)-module homomorphism. Also recall that the

Gal(L/k)-module structure on ClF arises from the sequence

e′0 : 1 −→ ClF ∼= Gal(knr,2/L)
⊆−→ G

res−→ Gal(L/k) −→ 1,

where the isomorphism is given by the Artin map and res denotes the restriction

map. Since the Artin map is a Gal(L/k)-module homomorphism, e′0 gives rise to δ,

the action of Gal(L/k) on ClL computed in PARI.

We thus compute in MAGMA H2(D4, C2×C8×C16) and the set E0 of extension

groups. The remarks in the previous paragraph imply that Gal(knr,2/k) ∈ E0. We

find that

H2(D4, C2 × C8 × C16) ∼= C2 × C2 × C2.

By comparing the standard presentations of the extension groups, we find that E0

consists of 8 distinct groups. We also find that 4 of the groups are C1,000, C1,100, C1,011,

and C1,111. The remaining 4 are not candidates. We have therefore achieved our

goal.

Theorem 4. G is one of the four groups C1,000, C1,100, C1,011, and C1,111.

The question is whether or not it is possible to further isolate G among the

remaining 4 candidates. Computations in MAGMA show that G contains the sub-

group C8 × C16 and that C/(C8 × C16) ∼= Q, a group of order 16. Fix C. When

31



we compute H2(Q,C8 × C16) and the set EC extension groups, we find that C is

the unique candidate in EC. Proceeding as we did above, we would like to com-

pute the generating polynomial of the fixed field M of C8 × C16. From there, we

could compute the action of Gal(M/k) on Cl
(2)
M . Let E0 denote the corresponding

set of extension groups. There is a candidate C0 among the remaining 4 such that

E0 = EC0 . Then, G ∈ EC0. But this set contains exactly one candidate, and so

G = C0. However, current technology cannot compute a field of degree 32 over Q.
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Chapter 4

Example Two: k = Q(
√
−445)

Bush obtains two candidates for G = Gal(knr,2/k), where k = Q(
√
−445).

Ideally, we would apply the method we used in Example One and obtain a set of

extensions containing exactly one of the candidates. This candidate would be G.

Unfortunately, we obtain a set of extension groups that contains both candidates.

However, we describe the results from the attempt with the reason being that they

relate to Example Three. Lastly, we describe distinctions between the two candi-

dates that can be utilized to isolate G. Unfortunately, current technology cannot

perform what we see to be the necessary computations to achieve this.

The two possibilities for G are quotients of the free group, F (8), on 8 genera-

tors. With r ∈ {0, 1}, they are defined by C2,r = F (8)/Rr, where Rr is the normal
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subgroup generated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2(x5x7)

−1, [x3, x1]x
−1
5

x2
3(x6x7)

−1, [x3, x2]x
−1
6

x2
6x

−1
8 , [x4, x2](x5x6x7x8)

−1

x2
4(x

r
8)

−1, [x4, x3]x
−1
7

[x5, x1]x
−1
7 , [x5, x4]x

−1
8

[x5, x2]x
−1
8 , [x7, x1]x

−1
8

[x5, x3]x
−1
8 , [x7, x2]x

−1
8 .

Note that the above set of relations gives the standard presentations for the

candidates. The remarks made about powers and commutators of generators in

Chapter 3 apply here. Also, we shall continue using the word candidate to describe

any one of the possibilities for Gal(knr,2/k). Each candidate has order 28, 2-class 5,

and Frattini-quotient rank two. The two groups are indistinguishable up until the

very last step of the p-group generation algorithm. Equivalently,

C2,1/Pi(C2,1) ∼= C2,2/Pi(C2,2) for 1 ≤ i ≤ 4.

At the last step we have that

C2,1/P5(C2,1) ∼= C2,1 and C2,2/P5(C2,2) ∼= C2,2,

but we see from the above that C2,1 � C2,2 since their standard presentations are not

identical. It is the case that P4(C2,1) is a normal subgroup of order two of C2,1, and

similarly for C2,2. That is, modulo an order two subgroup, the groups are identical.

Moreover, P4(C2,i) is the unique normal subgroup of order two in C2,i for i = 1, 2.
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Let C denote an arbitrary candidate. We proceed as in Example One by

testing whether a subgroup of index at most 8 is abelian. Fix i ∈ {1, 2}. There

exists an abelian subgroup Ai ≤ C2,i such that [C2,i : Ai] = 8 and

Ai ∼= C2 × C2 × C8,

Moreover, Ai is the unique abelian subgroup of C2,i of index eight, hence normal

in C2,i. There is no abelian subgroup of C2,i of greater order. Computations reveal

that C2,i/Ai ∼= D4. Hence, G is an extension of D4 by C2 × C2 × C8.

Let ai,1, ai,2, ai,3 ∈ Ai of orders 2, 2, and 8, respectively, be such that Ai is

the internal direct product of < ai,1 >,< ai,2 >, and < ai,3 >. Suppose that

Qi = C2,i/Ai is defined by

< ri, si|r4
i = 1, s2

i = 1, risiris
−1
i = 1 > .

Let ◦i denote the action of Qi on Ai by conjugation. Computations in MAGMA

show that

ri ◦i ai,1 = ai,1 + ai,2 + 4ai,3

ri ◦i ai,2 = ai,2 + 4ai,3

ri ◦i ai,3 = ai,1 + ai,2 + ai,3

si ◦i ai,1 = ai,1 + 4ai,3

si ◦i ai,2 = ai,2 + 4ai,3

si ◦i ai,3 = ai,1 + ai,2 + ai,3.
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Let πi : C2,i → Qi denote the quotient map and ψ : A1 → A2 be the homomorphism

given by

ψ : a1,l 7→ a2,l, l ∈ {1, 2, 3}.

Let φ : Q1 → Q2 be the homomorphism given by

φ : r1 7→ r2

s1 7→ s2

Then ψ and φ are isomorphisms that make the following diagram commute:

A1
⊂−−−→ C2,1

π1−−−→ Q1

∼= ψ

y
yφ ∼=

A2
⊂−−−→ C2,2

π2−−−→ Q2.

That is, the action of Q1 on A1 is isomorphic to the action of Q2 on A2. Let Ei

denote the set of extension groups corresponding to the action of Qi on Ai, i = 1, 2.

Then we have that E1 = E2. In particular, each set contains both candidates.

Proceeding as we did in Example One, let FK denote the fixed field of K ≤ G

found above. Let E0 denote the set of extension groups arising from the action of

Gal(FK/k2) on Cl
(2)

FK . We have that E0 = E1 = E2, so C3,1, C3,2 ∈ E0. Therefore, no

new information results from computing E0.

Nonetheless, we make a few observations about cohomology and the groups in

E0. A computation yields

H2(D4, C2 × C2 × C8) ∼= C2 × C2 × C2.

The set E0 consists of 8 groups distinct up to isomorphism. Four of these groups

have Frattini-quotient rank 2, and the remaining 4 have Frattini-quotient rank 3.
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Note that the semi-direct product has Frattini-quotient rank 3, so that neither of

the candidates are the semi-direct product.

These results are similar to those obtained in Example Three. Because of this,

various patterns can be detected among the two examples. In Chapter 5, we further

discuss Example Three and explore these patterns.

Since Example One’s method fails to isolate G, we search for other differences

between the two candidates. In MAGMA, we compute that C2,1 has 64 elements

of order eight and C2,2 has 128 elements of order eight. Suppose we could compute

the cyclic subfields of knr,2/k of degree 32 over k (there are either 16 or 32 of them).

The candidate having the correct number of such elements would be G. However,

any such subfield has degree 64 over Q, which makes computations difficult.

The question becomes whether or not a similar disparity occurs in the set of

elements having order m > 8. It turns out that 16 is the greatest order of any

element. Since an element of order 16 corresponds to a cyclic subgroup with fixed

field having degree 32 over Q, our technology again fails to help. Regardless, both

groups have the same number of elements of order 16.

Another distinction occurs with the set of conjugacy classes of subgroups of

each candidate. The subgroup posets of the two candidates have cardinalities that

differ only by two: C2,1 has 85 conjugacy classes of subgroups and C2,2 has 87

conjugacy classes of subgroups. This is because of the difference in the number of

conjugacy classes of order 4. Recall that the order of a conjugacy class is the order

of a subgroup in that class. The candidate C2,1 has 11 conjugacy classes of order

4, while C2,2 has 13. Consequently, C2,2 has 32 more subgroups of order 4. The
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numbers of conjugacy classes having order different from 4 are the same for each

candidate. By the above, these 32 subgroups must be cyclic. As a result, C2,1 has

279 subgroups and C2,1 has 311 subgroups. We have not yet found distinctions in

addition to these.
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Chapter 5

Example Three: k = Q(
√
−1015), k = Q(

√
−1595)

5.1 Description of Candidates

In this example, Bush takes k = Q(
√
−1015) and uses his method to generate

two possibilities for G = Gal(knr,2/k). As we noted in Chapter 2, he shows that the

same two groups are candidates for G, where k = Q(
√
−1595). We demonstrate our

attempt at applying the method from Example One. Although the method fails to

isolate G, the attempt does reveal certain parallels with Example Two.

The two possibilities for G are C3,1 and C3,2. Each group has order 29,

exponent-2 class 5, and Frattini-quotient rank 2. Each candidate is a quotient

of the free group F (9) on 9 generators. Let r ∈ {0, 1}. Each candidate is defined
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by F (9)/Rr where Rr is the normal subgroup generated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2(x5x7)

−1, [x3, x1]x
−1
5

x2
3(x7x8)

−1xr−1
9 , [x3, x2]x

−1
6

x2
4x

−1
6 , [x4, x2]x

−1
8 xr−1

9

x2
6x

−1
8 , [x4, x2](x5x7x8x

r
9)

−1

x2
8x

−1
9 , [x4, x3]x

−1
7

[x5, x1]x
−1
7 [x5, x4]x

−1
9

[x5, x2]x
−1
9 [x7, x1]x

−1
9

[x5, x3]x
−1
9 [x7, x2]x

−1
9 .

The above gives the standard presentation of the two candidates. The remarks

about powers and commutators of generators made in Chapter 3 apply here.

Like in Example Two, the candidates are indistinguishable through the fourth

iteration of the p-group generation algorithm. After the fifth iteration, the two

groups are generated. Also, P4(C3,1) is the unique normal subgroup of order two of

C3,1, and similarly for C3,2. Hence, modulo a unique normal subgroup of order two,

the groups are identical.

We proceed as we did in Chapter 3. Let C denote either C3,1 or C3,2. By

examining the poset of conjugacy classes of C, we find that C contains a abelian

subgroup, K, of index 8, and this is the largest abelian subgroup. It is the case that

K � C and K ∼= C2 × C2 × C16. Additionally, C/K ∼= D4. Thus, G is an extension

of D4 by C2 × C2 × C16.

Fix i ∈ {1, 2}. Denote by Ai the subgroup of C3,i isomorphic to C2×C2 ×C16.
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Let ai,1, ai,2, ai,3 ∈ Ai of orders 2, 2, and 16, respectively, be such that Ai
∼=< ai,1 >

× < ai,2 > × < ai,3 >. Define Qi = C2,i/Ai by the presentation

< ri, si|r4
i = 1, s2

i = 1, risiris
−1
i = 1 > .

Let ◦i denote the action of Qi on Ai by conjugation. Computations in MAGMA

show that

ri ◦i ai,1 = ai,1 + ai,2 + 8ai,3

ri ◦i ai,2 = ai,2 + 8ai,3

ri ◦i ai,3 = ai,1 + ai,2 + ai,3

si ◦i ai,1 = ai,1 + 8ai,3

si ◦i ai,2 = ai,2 + 8ai,3

si ◦i ai,3 = ai,1 + ai,2 + ai,3

Note that if we replace each 8 above by a 4, we obtain the action in Example

Two. As with Example Two, the actions are isomorphic and the method applied in

Example One fails to isolate G.

Nonetheless, we use MAGMA to compute the resulting second cohomology

group and corresponding set of extensions. Interestingly, we continue to obtain

results similar to those from Example Two. Indeed, we compute that

H2(D4, C2 × C2 × C16) ∼= C2 × C2 × C2.

The set E of extension groups consists of 8 groups, distinct up to isomorphism. Four
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of the groups have Frattini-quotient rank two. The remaining four have Frattini-

quotient rank three and include the semi-direct product.

Next, we examine the subgroup posets of C3,1 and C3,2. We find that the

subgroup lattices are isomorphic. We show this now.

5.2 Subgroup Lattice Isomorphism for C3,1 and C3,2

Fix m ∈ {1, 2}. Let Pm denote the set of conjugacy classes of subgroups of

C3,m. Recall from Section 2.4 that these sets have a partial ordering given by x ≤ y

in Pm if and only if for each subgroup M ∈ x, there is some subgroup K ∈ y such

that M ≤ K. Let Lm denote the subgroup lattice of C3,m. We saw in Chapter 3

that MAGMA can compute P1 and P2. We continue to use an integer to denote

a conjugacy class of subgroups. We extend to subgroups the idea of identifying a

subgroup class by an integer. Let i.j denote the jth subgroup in the ith subgroup

class of P1. Similarly, let i′.j denote the jth subgroup in subgroup class i′ of P2. For

example, 24.3 denotes the 3rd subgroup in the 24th subgroup class of C3,1 as output

in MAGMA, and 24′.3 denotes the 3rd subgroup in subgroup class 24′ of C3,2.

We give some definitions of terms which we will use to describe subgroups of

C3,1 and C3,2. Let C be one of Bush’s final candidates and P its partially ordered

set of subgroup classes.

Definition 9. Subgroup class i = {i.1, i.2, . . . , i.ji} ∈ P has order s, denoted by

order(i) = s, if |i.1| = |i.2| = . . . = |i.ji| = s.

In other words, order(i) is just the order of any subgroup in i.
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Definition 10. Let i, k ∈ P . If i ≤ k and order(k)=order(i)/2, then we say that i

is a maximal subclass of k.

This second definition was inspired by the term maximal subgroup. We have that i is

a maximal subclass of k if given i.j ∈ i, there is some k.l ∈ k such that [k.l : i.j] = 2.

Also, [k.l : i.j] = 2 if and only if i.j is a maximal subgroup of k.l. This is by the

fact about finite p-groups that a subgroup H of a finite p-group G is a maximal

subgroup of G if and only if [G : H] = p.

Definition 11. We say that k.l is a minimal overgroup of i.j is a maximal

subgroup of k.l.

Using MAGMA, we find that P1 and P2 are very similar. Specifically, we find

that #P1 = #P2 = 95,#L1 = #L2 = 252. Recall that we denote the number of

subgroups in subgroup class i by length(i). We find that order(i) = order(i′) and

length(i) = length(i′) for all 1 ≤ i, i′ ≤ 95. This shows that for each subgroup

i.j ∈ L1, there is a corresponding subgroup i′.j ∈ L2. Additionally, we run an

iterative loop to compare the standard presentation of a subgroup representing class

i with the standard presentation of a subgroup representing class i′. Interestingly,

we find it is the case that for all 1 ≤ i, i′ ≤ 94, the subgroups of class i are of the

same isomorphism class as the subgroups of class i′. Since for all 1 ≤ i, i′ ≤ 94,

length(i) = length(i′), this shows that i.j ∼= i′.j for all 1 ≤ j ≤ length(i). In other

words, for any i.j ∈ L1, we have that i.j is isomorphic to its corresponding subgroup

i′.j ∈ L2. Using an iterative loop in MAGMA, we also find that i ≤ j in P1 if and
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only if i′ ≤ j ′ in P2. This implies that the map

h : P1 → P2, given by

i 7→ i′

is an order-isomorphism. Some additional results are that in C3,1 there are 9 sub-

groups of order 2, 35 of order 4, 35 of order 8, 59 of order 16, 59 of order 32, 39 of

order 64, 7 of order 128, 3 of order 256, and 1 of order 512. The same is true of C3,2.

Recall that P1 and P2 are the conjugacy classes of subgroups, while L1 and L2

are the subgroup lattices. Because P1 and P2 are order-isomorphic and #L1 = #L2,

the natural question is whether L1 and L2 are lattice isomorphic. We find that

the answer to this question is yes. We show this is true by constructing a lattice

isomorphism f : L1 → L2. The rest of this section is devoted to defining this map

f and then verifying that f so defined is a lattice isomorphism.

The goal is to show that L1 and L2 are isomorphic as lattices by first showing

that they are order-isomorphic and then using Proposition 3 in Chapter 2. Com-

putationally, it seems easier to test if a map is an order-isomorphism then if it is a

lattice isomorphism. The map h above inspires the idea for the map h̃ : L1 → L2

defined by h̃ : i.j 7→ i′.j. It turns out to be that h̃ is not an order-isomorphism,

so nor is h̃ a lattice isomorphism by Proposition 3. However, we are able to use

the idea of h̃ to define a map f : L1 → L2 such that f is an order-isomorphism.

There are 3 steps here. The first step is to determine on which pairs of subgroups

h̃ fails to be an order-isomorphism. The second step is to change the definition of h̃

on a subset of L1 to a map f . To do this, we use minimal overgroup and maximal
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subgroup information provided by MAGMA. The third step is to verify that f is an

order isomorphism. Then by Proposition 3, f will be a lattice isomorphism.

The first step is to see on which subgroups of C3,1 the map h̃ fails to be an order-

isomorphism. To do this, we write a loop to test if the Boolean (i.j ≤ k.l) equals the

Boolean (i′.j ≤ k′.l) for all subgroups i.j, k.l, i′.j, k′.l and run it in MAGMA. The

result is that i.j ≤ l.k has the same truth value as i′.j ≤ l′.k for all i.j, k.l, i′.j, k′l,

except for i = 3, i′ = 3′ and k = 12, k′ = 12′. For i = i′ = 3 and k = k′ = 12, it is

the case that:

3.1 ≤ 12.2, 12.3, 12.4, 12.6, 3.2 ≤ 12.1, 12.5, 12.7, 12.8 in L1, (∗)

while the reverse held in L2:

3′.1 ≤ 12′.1, 12′.5, 12′.7, 12′.8, 3′.2 ≤ 12′.2, 12′.3, 12′.4, 12′.6 in L2. (∗′)

The second step is to figure out how to change h̃ to a map f that is an order-

isomorphism f : L1 → L2. Therefore, we would like it to be that f : i.j 7→ i′.l, where

i′.l is some subgroup that is conjugate to i′.j. This way, we have that i.j ∼= f(i.j),

for 1 ≤ i ≤ 94 and 1 ≤ j ≤ length(i), by the remarks made above. The issue is

that if we define f(i.j) = i′.m 6= i′.j and i.j is a maximal subgroup of k.l, then

we may need to define f(k.l) 6= k′.l for i 6= 3, k 6= 12. For example, in L1 we have

that 3.1 ≤ 10.1, 10.3 and 3.2 ≤ 10.2, 10.4. We know the analogous containments

3′.1 ≤ 10′.1, 10′.3 and 3′.2 ≤ 10′.2, 10′.4 hold in L2 by the output in MAGMA.

Hence, if we define f(3.1) = 3′.2, then we are forced to also define f(10.1) = 10′.2

or 10′.4. Similarly, if we define f(k.l) = k′.n 6= k′.l and k.l is a minimal overgroup

of i.j, then we may need to define f(i.j) 6= i′.j In L1, we have that 4.1, 4.4 ≤ 10.1
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and 4.3, 4.4 ≤ 10.2, and as above, the analogous containments hold in L2. Thus, if

we choose that f(10.1) = 10′.2, then we must also define f(4.1) = 4′.3 or 4′.4. In

light of these examples, our first move is to define

f : 3.1 7→ 3′.1 and

3.2 7→ 3′.2,

By (∗), and (∗′), we see that f must be such that f(12.1) = 12′.2, 12′.3, 12′.4, or

12′.6, so in particular, f(12.1) 6= 12′.1. Now, in MAGMA 12 ≤ 24 and 12.1 ≤ 24.1,

and the analogous containments hold in P2 and L2. As we will see below, if we first

define f(24.1), this restricts f(12.1) to two of four of the above subgroups. Hence,

we explain first how to define f(24.1) and then define f(12.1) after this.

To define f(24.1), we first examine the minimal overgroups of the subgroups

in classes 12 and 24. We compute in MAGMA that 12 is a maximal subclass of 24,

and 24 is a maximal subclass of 35,38, and 39. In the table below, the subgroups

in these classes and their maximal subgroups are enumerated. For H = i.j where

i ∈ {24, 35, 38, 39}, the ratio H : m1.n1, m2.n2, . . . , mrH .nrH in the table indicates

that the maximal subgroups of H are m1.n1, m2.n2, . . . , mrH .nrH . Similar ratios hold

for the corresponding subgroups in L2.
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H ≤ C1,3 : maximal subg. of H H ≤ C1,3 : maximal subg. of H

24.1 : 6.1, 12.1, 12.5 35.1 : 14.1, 24.1, 24.2

24.2 : 6.1, 12.2, 12.3 35.2 : 14.1, 24.3, 24.4

24.3 : 6.1, 12.4, 12.6 38.1 : 15.1, 24.1, 24.3

24.4 : 6.1, 12.7, 12.8 38.2 : 15.1, 24.2, 24.4

39.1 : 16.1, 24.1, 24.4

39.2 : 16.1, 24.2, 24.3

For example, the first row in the right-hand column indicates that the maximal

subgroups of 35.1 are 14.1, 24.1, and 24.2. In particular, 35.1 has three maximal

subgroups.

Additionally, 35, 39 are maximal subclasses of 49 only, while 38 is a maximal

subclass of each of 49, 54, and 57. Recall that the analogous containments are true

for P2 by the map h above. Moreover, length(49)=1, so 49.1 is a normal subgroup

of C3,1 and hence contains all the subgroups in classes 35, 38, and 39,and the same

is true for P2. We see that if we define f : 49.1 7→ 49′.1, we are free to define

f(35.1) = 35′.1 or f(35.1) = 35′.2. With either choice, the biconditional 35.1 ≤ 49.1

if and only if f(35.1) ≤ f(49.1), holds. We have similar freedom in defining f on

the subgroups 35.2, 39.1, and 39.2. Since 38 is a maximal subclass of 49,54, and 57,

and length(54) = length(57) = 2, we do not have the same kind of freedom with
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38. Hence, we define

f : 38.1 7→ 38′.1

38.2 7→ 38′.2

i.j 7→ i′.j, i.j is any (other) maximal subg. of 54.1, 54.2, 57.1, or 57.2.

This way, we can define

f : 54.1 7→ 54′.1,

f : 54.2 7→ 54′.2,

f : 57.1 7→ 57′.1,

f : 57.2 7→ 57′.2

and have that 38.1 ≤ 54.1 if and only if f(38.1) ≤ f(54.1), etc. hold.

By the table above and that f(38.1) = 38′.1, we must have that f : 24.1 7→

24′.1 or f : 24.1 7→ 24′.3. Now, we have that 12.1 ≤ 24.1, the analogous contaiment

in L2, and that the possible images for 12.1 are 12′.2, 12′.3, 12′.4, 12′.6. The table

above indicates that 12′.2, 12′.3, 12′.4, 12′.6 ≤ 24′.2 or 24′.3. Hence, we are forced to

define f(24.1) = 24′.3. Similarly, we are forced to have

f : 24.2 7→ 24′.4,

f : 24.3 7→ 24′.1,

f : 24.4 7→ 24′.2.

Next, we define f on the subgroups of 12. Defining f on the remaining sub-

groups of L1 follows easily after this. Because f : 24.1 7→ 24′.3, we must define
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f(12.1) = 12′.4 or f(12.1) = 12′.6. We choose f(12.1) = 12′.4. We make similar

choices for the remaining subgroups of 12. For the subgroups in L1 whose images

were not specified above, we define f(i.j) = i′.j. Then, f : L1 → L2 is given by

f(i.j) =






i.j if i /∈ {12, 24, 35, 39}

12′.4 if i.j = 12.1

12′.7 if i.j = 12.2

12′.8 if i.j = 12.3

12′.1 if i.j = 12.4

12′.6 if i.j = 12.5

12′.5 if i.j = 12.6

12′.2 if i.j = 12.7

12′.3 if i.j = 12.8

24′.3 if i.j = 24.1

24′.4 if i.j = 24.2

24′.1 if i.j = 24.3

24′.2 if i.j = 24.4

35′.2 if i.j = 35.1

35′.1 if i.j = 35.2

39′.2 if i.j = 39.1

39′.1 if i.j = 39.2

We have that f is surjective. Suppose we are given any subgroup k′.l ∈ k′ of C3,2.

If k′ ∈ {12, 24, 35, 39}, then by definition of f we have that k′.l = f(k.jl) for some

subgroup k.jl ∈ k. If k′ /∈ {12, 24, 35, 39}, then k′.l = f(k.l). Hence, f is surjective.
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Since #L1 = #L2, it must also be that f is injective. We note that f = h̃ on the

set L1 − S̃, where S̃ = {12.1, 12.2, . . . , 12.8, 24.1, . . . , 24.4, 35.1, 35.2, 39.1, 39.2}.

The last step is to verify that f defines an order-isomorphism. From there, we

will have that f defines a lattice isomorphism by Claim 1. This last step is divided

into four parts. We want to show that i.j ≤ k.l in L1 if and only if f(i.j) ≤ f(k.l)

in L2. To show this, the first part is to show that i.j ≤ k.l if and only if f(i.j) ≤

f(k.l) is true on maximal subgroups, then this biconditional is true for any pair of

subgroups i.j, k.l ≤ C3,1. More precisely, we show that if

(1) i.j is a maximal subgroup of k.l if and only if

f(i.j) is a maximal subgroup of f(k.l)

then

(2) i.j ≤ k.l if and only if

f(i.j) ≤ f(k.l) for every pair of subgroups i.j, k.l ∈ L1.

Our ultimate goal is to prove (2), so that by first showing (1) implies (2), we reduce

our work in this step to showing that (1) holds. Hence, the first part is showing that

(1) implies (2). We are then left with showing that (1) holds. The second part is to

construct a set S, given explicitly below, where S consists of the subgroups on which

we have changed the definition of h̃ together with each of these subgroups’ minimal

overgroups. The third part is to show that (1) holds in the case that k.l ∈ S. The

fourth part then is to show that holds for k.l /∈ S. This covers the two possible cases

for k.l, and thus shows that (1) holds.

We begin by showing that (1) implies (2). This implication follows from
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Proposition 6. Let p be a prime, G a finite p-group, and any subgroups H,K of G

for which H ≤ K. Then there is a subnormal series H = H1 E H2 E · · · E Hs−1 E

Hs = K such that each factor has order p.

Proof: This follows from basic properties of finite p-groups. �

We now use Proposition6 to prove (1) implies (2). The point here is that

i.j ≤ k.l in L1, then i.j is a maximal subgroup of k.l if and only if [k.l : i.j] = 2, and

similarly for L2. We assume (1) holds and start by proving the forward direction

of (2). If i.j � k.l, then by Claim 2 there exist subgroups i1.j1, i2.j2, . . . , is.js of k.l

such that

i.j = i1.j1 E i2.j2 E · · · E is.js = k.l

whose factors have order 2. In other words, for all t ∈ {2, . . . , s}, it−1.jt−1 is a

maximal subgroup of it.jt. Then by the forward direction of (1), we have that for

all t ∈ {2, . . . , s}, it−1.jt−1 ≤ it.jt implies that f(it−1.jt−1) ≤ f(it.jt). Transitivity

then gives f(i.j) ≤ f(k.l). For the reverse direction, apply the above with f−1.

The second part is to construct the set S described above. As mentioned, we let

S consist of all k.l ∈ L1 such that either f(k.l) 6= k′.l or k.l is the minimal overgroup

of some i.j such that f(i.j) 6= i′.j. For example, 12.1 ∈ S since f(12.1) = 12′.4.

Also, 38.1 ∈ S: although f(38.1) = 38′.1, by the table above, 24.1 is a maximal

subgroup of 38.1 and f(24.1) = 24′.3. By the definition of f and the discussion on

the minimal overgroups of classes 35, 38, 39 above, we see that

51



S = {12.1, 12.2, 12.3, 12.4,

12.5, 12.6, 12.7, 12.8,

24.1, 24.2, 24.3, 24.4,

35.1, 35.2, 38.1, 38.2,

39.1, 39.2,

49.1}

In other words, S consists of the subgroups of classes {12, 24, 35, 38, 49}. To show

that (1) holds for k.l ∈ S, we use a 3-column table. The idea is to use this table to

show that for k.l ∈ S,

i1.j1, . . . , iqk.l
.jqk.l

are the maximal subgroups of k.l if and only if

f(i1.j1), . . . , f(iqk.l
.jqk.l

) are the maximal subgroups of f(k.l). (∗∗)

Since (∗∗) clearly implies (1), we will then have (1) holds for k.l ∈ S.

In the first column of the table is a ratio

k.l : i1.j1, . . . , iqk.l
.jqk.l

,

where i1.j1, . . . , iqk.l
.jqk.l

are the maximal subgroups of k.l ∈ S. This is just like

the ratio used in the table above. For example, the ratio 24.1 : 6.1, 12.1, 12.5 ap-

pears in a row of the first column since 6.1, 12.1, and 12.5 comprise the maximal

subgroups of 24.1 in L1. The second column is the ratio f(k.l) : a′1.b1, . . . a
′
qk.l
.bqk.l

,

where a′1.b1, . . . a
′
qk.l
.bqk.l

are the maximal subgroups in L2 of f(k.l). Note that k.l
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and f(k.l) have the same number of maximal subgroups since the isomorphism class

of the subgroups in k is the same as the isomorphism class of the subgroups in k′.

Keeping with the same example, the second column is 24′.3 : 6′.1, 12′.4, 12′.6 since

f(24.1) = 24′.3 and in L2 the maximal subgroups of 24′.3 are 6′.1, 12′.4, 12′.6. The

purpose of the second column will only be to use it to write the third column. The

third column is the ratio f(k.l) : f(m1.n1), . . . , f(mqk.l
.nqk.l

), where f(m1.n1) =

a′1.b1, . . . , f(mqk.l
.nqk.l

) = a′qk.l
.bqk.l

. In other words, the third column is the second

column rewritten as its image under f . In the example above, the third column reads

f(24.1) : f(6.1), f(12.1), f(12.5) since 24′.3 = f(24.1), 6′.1 = f(6.1), 12′.4 = f(12.1),

and 12′.6 = f(12.5). Note that this last column is well-defined since f is bijective.

The table is:
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H:maximal subgroups f(H):maximal subgroups f(H):maximal subgroups

of H of f(H) of f(H) rewritten as image under f

12.1:3.2 12’.4:3’.2 f(12.1) : f(3.2)

12.2:3.1 12’.7:3’.1 f(12.2) : f(3.1)

12.3:3.1 12’.8:3’.1 f(12.3) : f(3.1)

12.4:3.1 12’.1:3’.1 f(12.1) : f(3.1)

12.5:3.2 12’.6:3’.2 f(12.5) : f(3.2)

12.6:3.1 12’.5:3’.2 f(12.6) : f(3.1)

12.7:3.2 12’.2:3’.2 f(12.7) : f(3.2)

12.8:3.2 12’.3:3’.2 f(12.8) : f(3.2)

24.1 : 6.1, 12.1, 12.5 24′.3 : 6′.1, 12′ .4, 12′ .6 f(24.1) : f(6.1),

f(12.1), f(12.5)

24.2 : 6.1, 12.2, 12.3 24′.4 : 6′.1, 12′ .7, 12′ .8 f(24.2) : f(6.1),

f(12.2), f(12.3)

24.3 : 6.1, 12.4, 12.6 24′.1 :′ 6′.1, 12′ .1, 12′.5 f(24.3) : f(6.1),

f(12.4), f(12.6)

24.4 : 6.1, 12.7, 12.8 24′.2 : 6′.1, 12′ .2, 12′ .3 f(24.4) : f(6.1),

f(12.4), f(12.1)

35.1 : 14.1, 24.1, 24.2 35′.2 : 14′ .1, 24′ .3, 24′.4 f(35.1) : f(14.1),

f(24.1), f(24.2)

35.2:14.1,24.3,24.4 35’.1:14’.1,24’.1,24’.2 f(35.2) : f(14.1),

f(24.3), f(24.4)

38.1:15.1,24.1,24.3 38’.1:15’.1,24’.3,24’.1 f(38.1) : f(15.1),

f(24.1), f(24.3)

38.2:15.1,24.2,24.4 38’.2:15’.1,24’.4,24’.2 f(38.2) : f(15.1),

f(24.2), f(24.4)

39.1:16.1,24.1,24.4 39’.2:16’.1,24’.3,24’.2 f(39.1) : f(16.1),

f(24.1), f(24.4)

39.2 : 16.1, 24.2, 24.3 39′.1 : 16′ .1, 24′ .4, 24′.1 f(39.2) : f(16.1),

f(24.2), f(24.3)

49.1 : 28.1, 35.1, 35.2, 38.1, 49′.1 : 28′.1, 35′ .1, 35′.2, 38′.1 f(49.1) : f(28.1), f(35.2), f(35.1),

38.2, 39.1, 39.2 38′ .2, 39′.1, 39′.2 f(38.1), f(38.2),

f(39.2), f(39.1)

After composing this table, we inspect it line-by-line to see that

{i1.j1, . . . , iqk.l
.jqk.l

} = {m1.n1, . . . , mqk.l
.nqk.l

} (∗∗′)

holds for each k.l listed in the table. Again, i1.j1, . . . , iqk.l
.jqk.l

are the maximal sub-

groups of k.l and f(m1.n1), . . . , f(mqk.l
.nqk.l

) are the maximal subgroups of f(k.l).

Then (∗∗′) easily implies (∗∗) for k.l ∈ S. For, i.j is a maximal subgroup of k.l
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implies that i.j ∈ {i1.j1, . . . , iqk.l
.jqk.l

}. Then, (∗∗′) implies that i.j = mt.nt ∈

{m1.n1, . . . , mqk.l
.nqk.l

}. Hence, f(i.j) = f(mt.nt) ∈ {f(m1.n1), . . . , f(mqk.l
.nqk.l

)},

the set of maximal subgroups of f(k.l). That is, f(i.j) is a maximal subgroup

of f(k.l). Conversely, if f(i.j) is a maximal subgroup of f(k.l), then f(i.j) ∈

{f(m1.n1), . . . , f(mqk.l
.nqk.l

)}, and so f(i.j) = f(mt.nt) for some mt.nt in the set

{m1.n1, . . . , mqk.l
.nqk.l

}. Since f is injective, i.j = mt.nt. By (∗∗′), i.j = mt.nt ∈

{i1.j1, . . . , iqk.l
.jqk.l

}, the set of maximal subgroups of k.l. That is, i.j is a maximal

subgroup of k.l. Thus, (∗∗) holds for k.l ∈ S, and so (1) holds for k.l ∈ S.

We now start the fourth part, which is to show that (1) holds for k.l /∈ S.

Suppose that k.l /∈ S. Then, f(k.l) = k′.l by definition of S. Suppose i.j is a

maximal subgroup of k.l. By definition, S contains all subgroups m.n such that

either f(m.n) 6= m′.n or m.n is a minimal overgroup of some a.b such that f(a.b) 6=

a′.b. If f(i.j) 6= i′.j, then k.l ∈ S since k.l is a minimal overgroup of i.j. This

contradicts the assumption; therefore, f(i.j) = i′.j. We saw when we tested if h̃

was an order isomorphism that i.j ≤ k.l if and only if i′.j ≤ k′.l, except for if both

i = 3, i′ = 3′ and k = 12, k′ = 12′. Since k.l /∈ S, we have that k 6= 12. Hence,

f(i.j) = i′.j is a maximal subgroup of f(k.l) = k′.l. Conversely, suppose that f(i.j)

is a maximal subgroup of f(k.l). Again, k.l /∈ S implies that f(k.l) = k′.l by

definition of S. If f(i.j) 6= i′.j, then by definition of f , i′ = 12′, 24′, 35′, or 39′ (these

are the only subgroup classes of P2 containing subgroups on which h̃ was changed).

Since f(i.j) is a maximal subgroup of k′.l, we have k′ = 24′, 35′, 38′, 39′, or 49′ (these

are the subgroup classes of which i′ = 12′, 24′, 35′, or 39′ are maximal subclasses).

But then, k = 24, 35, 38, 39,49∈ S, which is a contradiction. Thus, f(i.j) = i′.j. We

55



saw above that the condition k /∈ S implies that if i′.j ≤ k′.l, then i.j ≤ k.l. Since

f(i.j) = i′.j and f(k.l) = k′.l, we have i.j ≤ k.l. This covers the two possible cases.

Hence (1) holds. Then, (1) implies (2), so that f is an order-isomorphism.

Propositionr̃eforderiso gives us that f is a lattice isomorphism.

5.3 Comparing Examples Two and Three

In a few places so far, we have noted parallels and contrasts among the re-

sults obtained for Examples Two and Three. We divide these patterns into three

types. The first type of similarity pertains to group cohomology. The D4-actions

on each abelian subgroup of greatest order are similar. The resulting second coho-

mology groups have the same structure, and the extension groups have the same

Frattini-quotient ranks. A contrast can be observed in the groups’ subgroup lattices.

While the subgroup posets of C2,1 and C2,2 are not isomorphic, their cardinalities

differ only by two. In Example Three, the candidates’ posets of conjugacy classes

of subgroups are order-isomorphic, and the candidates’ subgroup lattices are lattice

isomorphic. A second comparison can be made in the generation of the 4 candidates

with the p-group generation algorithm: all groups are the same through the second

step of their generation. In other words, it is not until the third iteration of the

p-group generation algorithm that we can detect a difference between the four can-

didates. Let C denote one of the the four groups C2,1, C2,2, C3,1, C3,2. We observe

that C/P2(C) has order 16 and has standard presentation

< x1, x2, x3, x4|x2
1 = x4, [x2, x1] = x2x3 > .
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Starting at the third iteration, the four pair off and the elements of each pair of can-

didates are indistinguishable until the fourth (and final) iteration of the algorithm.

The picture is given in Figure 5.1.

1

2

3 4

5 6

7 8 9 10

Figure 5.1: The generation of the candidates in Examples Two and Three is given above. Vertex

1 is the maximal exponent-2 class 1 quotient of each candidate, vertex 2 is the maximal exponent-2

class 2 quotient of each candidate, etc. Verticies 7 and 8 represent C2,1 and C2,2; verticies 9 and

10 represent C3,1 and C3,2.

These parallels warrant a more thorough study of the extension groups giving

rise to the D4-actions from Examples Two and Three. Interestingly, we find that

they are members of an infinite class of group extensions. The groups among this

class share properties that the groups in examples two and three have in common.

5.4 A Class of Group Extensions

We begin by considering the D4-action in each example. Let D4 be defined by

the presentation

< r, s|r4 = 1, s2 = 1, rsrs−1 = 1 > .
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Fix n ≥ 3. Let an,1, an,2, an,3 ∈ C2 ×C2 ×C2n be of orders 2, 2, and 2n, respectively,

such that

C2 × C2 × C2n ∼=< an,1 > × < an,2 > × < an,3 > .

Let D4 act on C2 × C2 × C2n with action ◦n given by:

r ◦n an,1 = an,1 + an,2 + 2n−1an,3

r ◦n an,2 = an,2 + 2n−1an,3

r ◦n an,3 = an,1 + an,2 + an,3

s ◦n an,1 = an,1 + 2n−1an,3

s ◦n an,2 = an,2 + 2n−1an,3

s ◦n an,3 = an,1 + an,2 + an,3

Taking n = 3 yields the D4-action on C2 ×C2 ×C8 in Example Two. Taking n = 4

yields the D4-action on C2 × C2 × C16 in Example Three. This action gives rise

to H2(D4, C2 × C2 × C2n). Let En denote the corresponding extension groups. For

example, E3 contains C2,1 and C2,2. The set E4 contains C3,1 and C3,2.

Do the trends apparent in E3 and E4 continue to hold for n ≥ 5? Fix n ≥ 5.

We ask three questions:

1. Is H2(D4, C2 × C2 × C2n) ∼= C2 × C2 × C2? Is the cardinality of En equal to

eight? Do the extension groups share the same properties of Frattini rank as

the extension groups in E3 and E4?

2. Are there pairs of extension groups that have isomorphic subgroup lattices

with corresponding proper subgroups and quotients isomorphic?
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3. In the p-group generation algorithm, are the extension groups identical up to a

certain point in their generation? At what point can you begin to distinguish

them?

To investigate these questions, we look at the groups in En when n = 3, 4, 5, 6, 7, 8.

For what follows, we fix n ∈ {3, 4, . . . , 8}.

We start by addressing the questions in group cohomology. We found that the

patterns present in E3 and E4 continue to hold in En. Specifically,

H2(D4, C2 × C2 × C2n) ∼= C2 × C2 × C2.

By comparing standard presentations of the extension groups, we find that En con-

tains eight groups distinct up to isomorphism. Four groups have Frattini-quotient

rank two, and four have Frattini-quotient rank three, and these latter four include

the semi-direct product.

To answer 2., we use Example Three as a prototype when attempting to con-

struct a subgroup lattice isomorphism among a pair of groups in En. We note that

in order for there to exist a lattice isomorphism between the subgroup lattices of

the groups in the pair, the two groups must have the same Frattini-quotient rank.

For, the Frattini-quotient rank determines the number of maximal subgroups, and

these are easily identified in the lattice.

Recall that in Example Three, we began by constructing an order-isomorphism

between subgroup posets of the pair of candidates before constructing a lattice

isomorphism. Hence, among the groups having the same Frattini-quotient rank, we

compute cardinalities of each group’s poset of conjugacy classes of subgroups. If
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one group’s poset has the same cardinality as the other’s, we pair them together.

We notice that Frattini-quotient-rank-two groups tend to have considerably fewer

conjugacy classes of subgroups. Also, the groups in Bush’s examples have Frattini-

quotient rank two, so we restrict ourselves to Frattini-quotient rank two.

From here, we examine subgroup posets of each group in a pair. Let the

notation for subgroup classes be as above. It turns out that given any pair of Frattini-

quotient-rank-two groups in En whose subgroup posets have the same cardinality,

the map

i 7→ i′

is an order-isomorphism. We then use the order-isomorphism to construct a lattice

isomorphism that preserves the isomorphism classes of proper subgroups and proper

quotients. By using a similar procedure to that applied in Example Three, we obtain

lattice isomorphisms for each pair of groups in E4, E5, . . . , E8 having subgroup posets

with the same cardinality. The maps are given at the end of the chapter.

Question 3 examines how the groups compare in their generation in the p-

group generation algorithm. We revisit in more detail the observations made with

the generations of C2,1, C2,2, C3,1, and C3,2. Recall that:

C2,1/P1(C2,1) ∼= C2,2/P1(C2,2) ∼= C3,1/P1(C3,1) ∼= C3,2/P1(C3,2)

and C2,1/P2(C2,1) ∼= C2,2/P2(C2,2) ∼= C3,1/P2(C3,1) ∼= C3,2/P2(C3,2).
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But the same is not true for P3 and beyond:

C2,1/P3(C2,1) � C3,1/P3(C3,1),

C2,1/P4(C2,1) � C3,1/P4(C3,1),

C2,1/P5(C2,1) � C3,1/P5(C3,1).

Fix n ∈ {3, 4, 5, 6, 7, 8}. Let En,1, E ′
n,1 denote a pair of groups in En having

isomorphic subgroup lattices. Let En,2 and E ′
n,2 be the other pair. We compute the

2-central series of each of En,1, E ′
n,1, En,2, and E ′

n,2 and form quotients. This gives the

groups appearing at each step in the p-group generation algorithm. Four types of

patterns are present.

The first pattern pertains to the number of descendants of the extensions. We

first find that for n ≥ 4, the 2-class of each of En,1, E ′
n,1, En,2, and E ′

n,2 is n + 1. For

example, we saw that C3,1, and C3,2 each has 2-class five. Note that this is not the

case with n = 3 since C2,1 and C2,2 each has 2-class 5. Recall that a finite p-group

is terminal if it has no immediate descendants. Evidently, for 3 ≤ n ≤ 8, the four

Frattini-quotient rank two groups are terminal.

The second trend pertains to the exponent-2 class two quotients. By compar-

ing the Standard Presentations, we find that the all groups have the same maximal

exponent-2 class 2 quotient. This group E has order 16 and standard presentation

< x1, x2, x3, x4|x2
1 = x4, [x2, x1] = x3 > .

We saw that

C2,j/P2(C2,j) ∼= C3,j/P2(C3,j) ∼= E
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for j = 1, 2, and similarly for C3,1 and C3,2.

The third pattern pertains to the generation of a pair of groups having iso-

morphic subgroup lattices. Fix n ≥ 4 and consider En,1 and E ′
n,1. These groups are

indistinguishable through p-class n. The same is true for En,2 and E ′
n,2:

En,1/Pn(En,1) ∼= E ′
n,1/Pn(E ′

n,1) and En,2/Pn(En,2) ∼= E ′
n,2/Pn(E ′

n,2)

but

En,1/Pn+1(En,1) � E ′
n,1/Pn+1(E ′

n,1) and En,2/Pn+1(En,2) � E ′
n,2/Pn+1(E ′

n,2).

We saw this for C2,1, C2,2, C3,1, and C3,2. Note that

En,1/Pj(En,1) � En,2/Pj(En,2)

for j ≥ 3. For example,

C3,1/P4(C3,1) ∼= C3,2/P4(C3,2)butC3,1/P5(C3,1) � C3,2/P5(C3,2)

as noted above. Also, C3,1/P3(C3,1) � E4,2/P3(E4,2), so that it must also be

C3,2/P3(C3,2) � E ′
4,2/P3(E

′
4,2) by the above remarks.

Lastly, we look at similarities between Em and En, where m 6= n. We see that

for 4 ≤ n ≤ 8:

En,1/Pn−1(En,1) ∼= En+1,1/Pn−1(En+1,1),

E ′
n,1/Pn−1(E

′
n,1)

∼= E ′
n+1,1/Pn−1(E

′
n+1,1),

En,2/Pn−1(En,2) ∼= En+1,2/Pn−1(En+1,2),

E ′
n,2/Pn−1(E

′
n,2)

∼= E ′
n+1,2/Pn−1(E

′
n+1,2).

However,

En,1/Pn(En,1) � En+1,1/Pn(En+1,1), etc.
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For example, take n = 4:

C3,1/P3(C3,1) ∼= E5,1/P3(E5,1), butC3,1/P4(C3,1) � E5,1/P4(E5,1).

In other words, C3,1 and E5,1 are identical through the third iteration of the p-

group generation algorithm, but differ after the fourth iteration. The picture for

the pairs En,1 and E ′
n,1, n = 3, 4, . . . , 7 is given in Figure 5.2. The pairs En,2 and

E ′
n,2, n = 3, 4 . . . , 7 have a similar picture.

4

5 6 7

8 9 10 11 12
13

14 15
16 17

19
20 21

22 23

24 25

18

1

2

3

Figure 5.2: The generation of E3,1, E
′

3,1
, E3,2, E

′

3,2
, etc.

Verticies 8 and 9 represent C2,1 and C2,2; verticies 10 and 11 represent C3,1

and C3,2; verticies 14 and 15 represent E5,1 and E ′
5,1, etc. Verticies on the same level

have the same exponent-2 class. For example, C2,1, C2,2, C3,1, and C3,2 have 2-class

5. Verticies 25 and 26 represent E8,1 and E8,2, which have 2-class 9. Note that all

extensions are descendants of E (Vertex 2). Also, the picture shows that E7,1 and

E8,1 have the same maximal 2-class 6 quotients (Vertex 17), and similarly for other
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groups branching off from the same node.

We conjecture that all the above patterns hold for all n ≥ 3.

Conjecture 1. Let the action by D4 on C2 × C2 × C2n be as above. For n ≥ 3,

H2(D4, C2 ×C2 ×C2n) ∼= C2 ×C2 ×C2. Four of the corresponding group extensions

have Frattini-quotient rank two and four have Frattini-quotient rank three, including

the semi-direct product. For n ≥ 4, the Frattini-quotient-rank-two groups form two

pairs such that the groups in each pair have isomorphic posets of conjugacy classes

of subgroups and isomorphic subgroup lattices.

Conjecture 2. Let the notation be as in Conjecture 1. Given n ≥ 3 and a pair of

Frattini-quotient rank 2 groups or a Frattini-quotient rank 3 group in H 2(D4, C2 ×

C2 × C2n), the steps of the p-group generation algorithm of each follow the specific

pattern described above.

Lastly, we conjecture presentations for the 3 index 2 subgroups of a Frattini-

quotient-rank-two group in En. Let n ≥ 4 and consider a pair of Frattini-quotient

rank 2 groups in En having isomorphic subgroup lattices. Let Mn,1,1,Mn,1,2, and

Mn,1,3 denote the three maximal subgroups of En,1. Recall that the maximal sub-

groups of En,1 and E ′
n,1 are the same by the nature of the subgroup lattice isomor-

phism above. We find that the Frattini-quotient ranks of Mn,1,1 and Mn,1,2 are two,

and the Frattini-quotient rank of Mn,1,3 is three.

Using MAGMA to compute standard presentations of subgroups of En,1 and

E ′
n,1, we find that Mn,1,1 is a quotient of the free group F (n+4) on n+4 generators

for 4 ≤ n ≤ 8. Specifically, Mn,1,1 is defined by Fn+4/Rn,1,1, where Rn,1,1 is the
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normal subgroup generated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2x

−1
5 , [x3, x1]x

−1
5

x2
4x

−1
6 , [x3, x2]x

−1
n+4

x2
6x

−1
7 , [x4, x2]x5

x2
7x

−1
8 , [x4, x3]xn+4

... [x5, x1]x
−1
n+4

xn+3x
−1
n+4.

The second maximal subgroup Mn,1,2 of En,1 and E ′
n,1 is defined by Fn+4/Rn,1,2

where Rn,1,2 is the normal subgroup generated by the words

x2
1x

−1
4 , [x2, x1]x

−1
3

x2
2x

−1
5 , [x3, x1]x

−1
5

x2
3x

−1
n+4, [x3, x2]x

−1
n+4

x2
4x

−1
6 , [x4, x2](x5xn+4)

−1

x2
6x

−1
7 ,

x2
7x

−1
8

...

xn+3x
−1
n+4.

The Frattini-rank-3 maximal subgroup is defined by Fn+4/Rn,1,3 where Rn,1,3
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is the normal subgroup generated by the words

x2
1x

−1
6 , [x2, x1]x

−1
4

x2
2x

−1
4 , [x3, x1]x

−1
5

x2
3x

−1
5 , [x3, x2]x

−1
n+3

x2
6x

−1
7 , [x4, x3]x

−1
n+4

x2
7x

−1
8 , [x5, x2]x

−1
n+4

...

xn+3x
−1
n+4.

Note that the maximal subgroups of C2,1 and C2,2 do not follow this pattern.

As with the first pair, En,2 and E ′
n,2, n ≥ 4, each has two Frattini-quotient-

rank-2 subgroups and a Frattini-quotient-rank-3 subgroup. Let Mn,2,1,Mn,2,2,Mn,2,3

denote these subgroups, respectively. By using MAGMA to compare standard pre-

sentations, we see that

Mn,1,1
∼= Mn,2,1 and Mn,1,2

∼= Mn,2,2.

However, the Frattini-rank-3 groups are not isomorphic. There is one relation in

the standard presentation of Mn,1,3 that is different from Mn,2,3. This relation is in

boldface below. Specifically, Mn,2,3 is defined by F (n+ 4)/Rn,2,3 where Rn,2,3 is the
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normal subgroup generated by the words

x2
1x

−1
6 , [x2, x1]x

−1
4

x2

2
(x4x6)

−1, [x3, x1]x
−1
5

x2
3x

−1
5 , [x3, x2]x

−1
n+3

x2
6x

−1
7 , [x4, x3]x

−1
n+4

x2
7x

−1
8 , [x5, x2]x

−1
n+4

...

xn+3x
−1
n+4.

Again, the maximal subgroups in the second pair of groups, E3,2 and E ′
3,2, do not

follow this pattern.

Conjecture 3. Given n ≥ 4, the maximal subgroups of En,1, E
′
n,1, En,2, and E ′

n,2

have the standard presentations given above.

5.5 Subgroup Lattice Isomorphisms for E4,2, E
′
4,2, . . . , E8,2, E

′
8,2

The rest of this chapter gives the subgroup lattice isomorphisms for the groups

in En for 4 ≤ n ≤ 8. Recall that the map for C3,1 and C3,2 (i.e. E4,1 → E4,2) was

given in Section 5.2.
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For n = 4, the map, f4,2 : E4,2 → E ′
4,2 is given by

f4,2(i.j) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
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>

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

i.j if i /∈ {16, 30, 42, 43}

16′.4 if i.j = 16.1,

16′.7 if i.j = 16.2,

16′.8 if i.j = 16.3,

16′.1 if i.j = 16.4,

16′.6 if i.j = 16.5,

16′.5 if i.j = 16.6,

16′.2 if i.j = 16.7,

16′.3 if i.j = 16.8,

30′.3 if i.j = 30.1,

30′.4 if i.j = 30.2,

30′.1 if i.j = 30.3,

30′.2 if i.j = 30.4,

42′.2 if i.j = 42.1,

42′.1 if i.j = 42.2,

43′.2 if i.j = 43.1,

43′.1 if i.j = 43.2.

For n = 5, the first map f5,1 : E5,1 → E ′
5,1 is given by

f5,1(i.j) =

8

>
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>

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

i′.j if i /∈ {4, 11, 14, 15, 16, 26, 44, 46}

4′.3 if i.j = 4.1,

4′.2 if i.j = 4.2,

4′.1 if i.j = 4.3,

4′.1 if i.j = 4.4,

11′ .3 if i.j = 11.1,

11′ .4 if i.j = 11.2,

11′ .1 if i.j = 11.3,

11′ .2 if i.j = 11.4,

14′ .4 if i.j = 14.1,

14′ .7 if i.j = 14.2,

14′ .8 if i.j = 14.3,

14′ .1 if i.j = 14.4,

14′ . if i.j = 14.5,

14′ .5 if i.j = 14.6,

14′ .2 if i.j = 14.7,

14′ .3 if i.j = 14.8,

16′ .j if i.j = 15.j,

15′ .j if i.j = 16.j,

26′ .3 if i.j = 26.1,

26′ .4 if i.j = 26.2,

26′ .1 if i.j = 26.3,

26′ .2 if i.j = 26.4,

44′ .2 if i.j = 44.1,

44′ .1 if i.j = 44.2,

46′ .2 if i.j = 46.1,

46′ .1 if i.j = 46.2.
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For n = 5, the second map f5,2 : E5,2 → E ′
5,2 is given by

f5,2(i.j) =

8

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

i.j if i /∈ {12, 26, 40, 43}

12′.4 if i.j = 12.1,

12′.7 if i.j = 12.2,

12′.8 if i.j = 12.3,

12′.1 if i.j = 12.4,

12′.6 if i.j = 12.5,

12′.5 if i.j = 12.6,

12′.2 if i.j = 12.7,

12′.3 if i.j = 12.8,

26′.3 if i.j = 26.1,

26′.4 if i.j = 26.2,

26′.1 if i.j = 26.3,

26′.2 if i.j = 26.4,

40′.2 if i.j = 40.1,

40′.1 if i.j = 40.2,

43′.2 if i.j = 43.1,

43′.1 if i.j = 43.2.

For n = 6, the first map f6,1 : E6,1 → E ′
6,1 is given by

f6,1(i.j) =

8

>
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>

>

>

>

>

>

:

i′.j if i /∈ {4, 11, 13, 14, 16, 29, 48, 51}

4′.3 if i.j = 4.1,

4′.2 if i.j = 4.2,

4′.1 if i.j = 4.3,

4′.1 if i.j = 4.4,

11′ .3 if i.j = 11.1,

11′ .4 if i.j = 11.2,

11′ .1 if i.j = 11.3,

11′ .2 if i.j = 11.4,

16′ .4 if i.j = 16.1,

16′ .7 if i.j = 16.2,

16′ .8 if i.j = 16.3,

16′ .1 if i.j = 16.4,

16′ .6 if i.j = 16.5,

16′ .5 if i.j = 16.6,

16′ .2 if i.j = 16.7,

16′ .3 if i.j = 16.8,

14′ .j if i.j = 13.j,

13′ .j if i.j = 14.j,

29′ .3 if i.j = 29.1,

29′ .4 if i.j = 29.2,

29′ .1 if i.j = 29.3,

29′ .2 if i.j = 29.4,

48′ .2 if i.j = 48.1,

48′ .1 if i.j = 48.2,

51′ .2 if i.j = 51.1,

51′ .1 if i.j = 51.2.
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For n = 6, the second map f6,2 : E6,2 → E ′
6,2 is given by

f6,2(i.j) =

8

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

:

i.j if i /∈ {12, 25, 34, 43}

12′ .4 if i.j = 12.1,

12′ .7 if i.j = 12.2,

12′ .8 if i.j = 12.3,

12′ .1 if i.j = 12.4,

12′ .6 if i.j = 12.5,

12′ .5 if i.j = 12.6,

12′ .2 if i.j = 12.7,

12′ .3 if i.j = 12.8,

25′ .3 if i.j = 25.1,

25′ .4 if i.j = 25.2,

25′ .1 if i.j = 25.3,

25′ .2 if i.j = 25.4,

34′ .2 if i.j = 34.1,

34′ .1 if i.j = 34.2,

43′ .2 if i.j = 43.1,

43′ .1 if i.j = 43.2.

.

For n = 7, the first map f7,1 : E7,1 → E ′
7,1 is given by

f7,1(i.j) =

8

>
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>

>

>

>

:

i′.j if i /∈ {4, 11, 13, 14, 16, 29, 48, 51}

4′.3 if i.j = 4.1,

4′.2 if i.j = 4.2,

4′.1 if i.j = 4.3,

4′.1 if i.j = 4.4,

11′ .3 if i.j = 11.1,

11′ .4 if i.j = 11.2,

11′ .1 if i.j = 11.3,

11′ .2 if i.j = 11.4,

16′ .4 if i.j = 16.1,

16′ .7 if i.j = 16.2,

16′ .8 if i.j = 16.3,

16′ .1 if i.j = 16.4,

16′ .6 if i.j = 16.5,

16′ .5 if i.j = 16.6,

16′ .2 if i.j = 16.7,

16′ .3 if i.j = 16.8,

14′.j if i.j = 13.j,

13′.j if i.j = 14.j,

29′.3 if i.j = 29.1,

29′.4 if i.j = 29.2,

29′.1 if i.j = 29.3,

29′.2 if i.j = 29.4,

48′.2 if i.j = 48.1,

48′.1 if i.j = 48.2,

51′.2 if i.j = 51.1,

51′.1 if i.j = 51.2.

.
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For n = 7, the second map f7,2 : E7,2 → E ′
7,2 is given by

f7,2(i.j) =

8
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>

:

i.j if i /∈ {12, 25, 38, 43}

12′ .4 if i.j = 12.1,

12′ .7 if i.j = 12.2,

12′ .8 if i.j = 12.3,

12′ .1 if i.j = 12.4,

12′ .6 if i.j = 12.5,

12′ .5 if i.j = 12.6,

12′ .2 if i.j = 12.7,

12′ .3 if i.j = 12.8,

25′ .3 if i.j = 25.1,

25′ .4 if i.j = 25.2,

25′ .1 if i.j = 25.3,

25′ .2 if i.j = 25.4,

38′ .2 if i.j = 38.1,

38′ .1 if i.j = 38.2,

43′ .2 if i.j = 43.1,

43′ .1 if i.j = 43.2.

.

For n = 8, the first map f8,1 : E8,1 → E ′
8,1 is given by

f8,1(i.j) =

8
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>

:

i′.j if i /∈ {4, 11, 13, 14, 16, 29, 48, 51}

4′.3 if i.j = 4.1,

4′.2 if i.j = 4.2,

4′.1 if i.j = 4.3,

4′.1 if i.j = 4.4,

11′ .3 if i.j = 11.1,

11′ .4 if i.j = 11.2,

11′ .1 if i.j = 11.3,

11′ .2 if i.j = 11.4,

16′ .4 if i.j = 16.1,

16′ .7 if i.j = 16.2,

16′ .8 if i.j = 16.3,

16′ .1 if i.j = 16.4,

16′ .6 if i.j = 16.5,

16′ .5 if i.j = 16.6,

16′ .2 if i.j = 16.7,

16′ .3 if i.j = 16.8,

14′.j if i.j = 13.j,

13′.j if i.j = 14.j,

29′.3 if i.j = 29.1,

29′.4 if i.j = 29.2,

29′.1 if i.j = 29.3,

29′.2 if i.j = 29.4,

48′.2 if i.j = 48.1,

48′.1 if i.j = 48.2,

51′.2 if i.j = 51.1,

51′.1 if i.j = 51.2.

.

We have yet to investigate why the numbering is the same for E6,1, E7,1, and

E8,1. Note that MAGMA shows that the numbering of the minimal overgroups is

not the same. Also, the cardinality of subgroup lattices of each are different. For
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n = 8, the second map f8,2 : E8,2 → E ′
8,2 is given by

f8,2(i.j) =

8
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>

:

i.j if i /∈ {12, 25, 36, 38}

12′.4 if i.j = 12.1,

12′.7 if i.j = 12.2,

12′.8 if i.j = 12.3,

12′.1 if i.j = 12.4,

12′.6 if i.j = 12.5,

12′.5 if i.j = 12.6,

12′.2 if i.j = 12.7,

12′.3 if i.j = 12.8,

25′.3 if i.j = 25.1,

25′.4 if i.j = 25.2,

25′.1 if i.j = 25.3,

25′.2 if i.j = 25.4,

36′.2 if i.j = 36.1,

36′.1 if i.j = 36.2,

38′.2 if i.j = 38.1,

38′.1 if i.j = 38.2.
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Appendix A

MAGMA code

We present the MAGMA code and PARI code used to carry out the compu-

tations for the results in Chapters 3, 4, and 5. We use MAGMA [3] version 2.11-9

and PARI [1] version 2.1.4.

A.1 Example One

Recall that in Chapter 3 we discussed a method that reduces the number of

candidates for G = Gal(knr,2/k) from 8 to 4. Whenever we demonstrate computa-

tions performed on a possibility for G, we use the candidate C1,000 from Chapter 3.

The computations for the other 7 candidates for G are similar.

The first step in the method was to show that G is an extension of D4 by

C2 ×C8 × C16. We first need to show that G contains the subgroup C2 × C8 ×C16.

The following loop accomplishes this:

for i := 1 to 272 do
H:=Group(S 000!i);

if (Index(C 000,H) le 8 and Length(Group(S 000!i)) eq 1 and IsAbelian(H)) then
print ”K ”, i, “has abelianization”, AbelianQuotientInvariants(H);

end if;
end for;.

The output is :

K 235 has abelianization [ 2, 8, 16].

Since MAGMA does not permit the use of commas in identifiers, “C000” throughout
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refers to C1,000, and similarly for C1,100, C1,010, . . ., etc. Note that S000 denotes the

poset of conjugacy classes of subgroups of C1,000. The output indicates that C1,000

contains the subgroup C2 × C8 × C16, and it is in the 235th subgroup class. In

Chapter 3, we referred to this subgroup as K235.

The next function gives the standard presentation of C1,000/K235:

StandardPresentation(C 000/Group(S 000!235));.

MAGMA outputs:

GrpPC of order 8
PC-Relations:
[x2, x1] = x2 ∗ x3.

Recall that the standard presentation of a finite p-group is unique. We saw in

Section 2.1 that this is the standard presentation of D4, so that C000/K235
∼= D4.

Similar results occur with the 7 other candidates. Therefore, G is an extension of

D4 by C2 × C8 × C16.

Let H ≤ G denote the subgroup C2 × C8 × C16. The next step is to compute

a generating polynomial for the fixed field FH of H. Recall from Chapter 3 that

J denotes the subgroup fixing E = Q(
√
−3,

√
13,

√
61), and that J is the unique

normal subgroup of index 4 that has abelianization C4 × C4 × C8. First, we show

that H is a maximal subgroup of J by identifying in each candidate the subgroup

that fixes E.

for i:=1 to 272 do
J:=Group(S 000!i);

if (IsNormal(C 000,J) and Index(C 000,J) eq 4 and
AbelianQuotientInvariants(J ) eq [4,4,8]) then

print ”J is in subgroup class”, i;
end if;

end for;.
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The output is:

J is in subgroup class 260.

Let J260 ≤ C1,000 denote this subgroup. Next, we check if K235 ≤ J260:

S 000!235 le S 000!260;.

MAGMA outputs the Boolean:

true.

The next step is to compute a generating polynomial for FH . Recall that we

do this by computing the generating polynomials over Q of all quadratic subfields

of E(2)/E (equivalently, all fields fixed by an index 2 subgroup of Cl
(2)
E ). First, we

compute the 2-class group of E, denoted below by g:

Q:=RationalField();
P<x>:=PolynomialRing(Q);
E:=NumberField([x2 + 3, x2 − 13, x2 − 61]);
E:=AbsoluteField(E);
g,m:=ClassGroup(E);
g;.

The output is:

Abelian Group isomorphic to Z/4 + Z/4 + Z/8
Defined on 3 generators
Relations:
4*g.1 = 0
4*g.2 = 0
8*g.3 = 0.

This tells us that ClE ∼= C4×C4 ×C8 and is generated by g.1, g.2, g.3, of orders 4,4,

and 8, respectively. Note that ClE = Cl
(2)
E .

Next, we compute the generating polynomial over Q of the fields fixed by an

index 2 subgroup of Cl
(2)
E . For example, consider the subgroup < g.1, g.2, 2 ∗ g.3 >
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and let F denote its fixed field:

aE:=AbelianExtension(m);
q,mq:=quo<g|g.1,g.2,2*g.3>;
m2:=Inverse(mq)*m;
F:=AbelianpExtension(m2,2);
F:=NumberField(F);
F:=AbsoluteField(F);.

We apply this to each of the 7 index 2 subgroups of ClE.

Next, we compute the class groups of the fixed fields computed above. Recall

from Chapter 3 that the field with 2-class group C2 ×C8 ×C16 is FH . The sequence

of commands in PARI that computes a generating polynomial for F2, for example,

is:

p 2=yˆ16 + 338yˆ14 + 105445yˆ12 + 2973386yˆ10 + 77308156yˆ8
+ 2973386yˆ6 + 105445yˆ4 + 338yˆ2 + 1;
f=bnfinit(p 2);
f.clgp.

Recall that p2 actually generates FH .

Next, we compute the action of Gal(FH/k) on Cl
(2)

FH . We begin by com-

puting in PARI the automorphisms of FH (not necessarily fixing k). Recall that

Gal(FH/Q) has order 16. The command ”nfgaloisconj(f);” outputs the 16 automor-

phisms as a sequence of the Galois conjugates of a root α of p2. The first step is to

identify generators for Gal(FH/k). First, we check that an automorphism fixes k.

The computation for the first automorphism is:

k=nfroots(f,xˆ2+2379);
a1:=nfgaloisconj[1];
nfgaloisapply(f,a1,k[1]).

We perform this for all 16 automorphisms.
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Recall from Chapter 3 that the next step is to find σ, τ ∈ Gal(FH/Q) of orders

4 and 2, respectively, such that σ2 6= τ . For example, to see if a1 above is σ, we can

check if a12 is the identity on the 3rd element ”f.nf.zk[3]” of the integral basis:

a1=nfgaloisconj[1];
nfgaloisapply(f, a1, nfgaloisapply(f,a1,f.nf.zk[3])).

Once we identify the 2 automorphisms of order 2, we only need to check that σ2 6= τ .

This is verified similarly to the above.

The last computation in PARI is to compute the action ofGal(FH/k) on ClFH .

Let a1 as above, and let a4 denote the fourth automorphism, “nfgaloisconj[4]”. To

compute the image under a1 of the ideal class g1 of order 2, we use the sequence of

commands:

g1=bnf.clgp.gen[1];
a1g1=nfgaloisapply(f,a1,g1);
bnfisprincipal(f,a1g1,0).

The next step is to compute the extensions resulting from the Galois action

on ClFH . The following program computes the extensions of D4 by C2 × C8 × C16

giving rise to the action δ in Example One.

D4 := PermutationGroup< 4|(1,2,3,4),(2,4)>;
M := [2,8,16];
T1 := Matrix(Integers(),3,3,[1,4,0,0,3,4,0,6,7]);
T2 := Matrix(Integers(),3,3,[1,4,8,0,3,4,0,0,1]);
CMP := CohomologyModule(D4,M,[T1,T2]);
H2 := CohomologyGroup(CMP,2);
print ”H2=”, H2;
dext:=DistinctExtensions(CM);
print ”# of Distinct Extensions=”, #dext;
end for;.

The output is:
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H2=
Full Quotient RSpace of degree 3 over Integer Ring
Column moduli:
[ 2, 2, 2 ]
# of Distinct Extensions= 8.

Next, we identify which of the extension groups are candidates. To do so, we

form the standard presentation of the ith extension, and compare it to each of the

candidates.

for i:=1 to #dext do
E:=pQuotient(dext[i],2,0);
st:=StandardPresentation(E);

if IsIdenticalPresentation(C 000,st) then
print i, ”is C 000”;

end if;
if IsIdenticalPresentation(C 100,st) then

print i, ”is C 100”;
end if;
if IsIdenticalPresentation(C 010,st) then

print i, ”is C 010”;
end if;
if IsIdenticalPresentation(C 001,st) then

print i, ”is C 001”;
end if;
if IsIdenticalPresentation(C 110,st) then

print i, ”is C 110”;
end if;
if IsIdenticalPresentation(C 101,st) then

print i, ”is C 101”;
end if;
if IsIdenticalPresentation(C 011,st) then

print i, ”is C 011”;
end if;
if IsIdenticalPresentation(C 111,st) then

print i, ”is C 111”;
end if;

end for;

The output in MAGMA is:

2 is C 111
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3 is C 011
6 is C 000
7 is C 100.

This tells us that extension 2 is C1,111, extension 3 is C1,011 etc. Therefore, the four

candidates in E0 are C1,000, C1,100, C1,011, and C1,111.

To show that G is an extension of a group of order 32 by C8 ×C16, we proceed

as we did with D4 and C2 × C8 × C16. We find in all candidates that C8 × C16

is in subgroup class 201. Let K201 ≤ C1,000 denote this subgroup and Q denote

C1,000/K201. We compute the action of Q on K201:

g:=AbelianGroup(GrpPC,[8,16]);
flag,phi:=IsIsomorphic(g,K 201);
A:=sub<g—g.1,g.4>; Q,q :=quo<C 000—K 201>;
for i:= 1 to 2 do

print ”The action of Q.1 on a ”, i, ”is”,
X!((((Q.1@@q)*(phi(a.i))*(Q.1@@q)ˆ(-1)))@@phi);

end for;
for i:=1 to 2 do

print ”The action of Q.2 on X.”, i, ”is”,
X!((((Q.2@@q)*(phi(a.i))*(Q.2@@q)ˆ(-1)))@@phi);

end for;.

To compute the resulting set of extension groups, we proceed as we did above with

the action of Gal(FH/k) on Cl
(2)

FH .

A.2 Example Two

Recall that C2,1 and C2,2 denote the two possibilities for G = Gal(knr,2/k).

In the computations below, we denote these by “C 21” and “C 22”. We proceed

as we did in Example One to show that Gal(knr,2/k) is an extension of D4 by

C2 × C2 × C8. Fix i = 1, 2. Recall that Ai denotes the subgroup of C1,i isomorphic
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to C2 ×C2 ×C8, and that Qi = C1,i/Ai ∼= D4 for i = 1, 2. To compute the action of

D4 on Ai, we apply to C2,i the sequence of commands used with C8 ×C16 and Q in

Section A.1. The loop used in Example One also computes H2(D4, C2 × C2 × C8)

and corresponding extension groups. Recall that the set extension groups E1 and E2

are the same.

Recall that Chapter 4 also discusses differences between the subgroup posets

and the number of elements of order 8 of C2,1 and C2,2. Computing the posets P1

and P2 of C2,1 and C2,2 requires the function ”SubgroupLattice”, which actually

computes the poset of conjugacy classes of subgroups:

P 1:=SubgroupLattice(C 21);
P 2:=SubgroupLattice(C 22);.

The command “#P i” indicates the number of elements in the poset of conjugacy

classes of subgroups of Pi for i = 1, 2.

MAGMA represents the poset of conjugacy classes as a table, where the ith row

of the table represents the ith conjugacy class. For example, recall from Chapter 4

that C2,1 has 85 subgroup classes. Subgroup classes 82 through 84 contain the 3

maximal subgroups of C2,1 (which each have order 128). Hence, for example, row

82 represents the 82nd conjugacy class. MAGMA further represents subgroup class

82 in the following way:

[82] Order 128 Length 1 Maximal Subgroups: 76 78

The portion “Length 1” indicates that there is a single subgroup in subgroup class

82. Recall from Chapter 5 that 82.1 is our notation for this subgroup. Hence, 82.1

is one of the 3 maximal subgroups of C2,1 referred to above, and the 2 are 83.1 and
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84.1. The portion “Maximal Subgroups: 76 78” indicates that the subgroups in

classes 76 and 78 are the maximal subgroups of 82.1.

To find the the number of elements of order 8 in C2,1, we use the loop:

S:=[];
for x in C 21 do

if Order(x) eq 8 then
Append( S,x);

end if;
end for;
print #S;.

We apply this loop to C2,2 to see that the 2 groups have different numbers of elements

of order 8.

A.3 Example Three

Recall that C3,1 and C3,2 denote the candidates for G = Gal(knr,2/k). To

show that G is an extension of D4 by C2 × C2 × C16, we use the loops presented in

Section A.1. To compute the resulting second cohomology group and sets E1 and E2

of extension groups, we also use the loops given in Section A.1.

Next, we test if the subgroup posets P1 and P2 of C3,1 and C3,2 are order-

isomorphic. First, we easily check that #P1 = #P2 (recall that computing each of

these numbers were explained in Section A.2). Next, we verify that P1 and P2 are

order-isomorphic:for i:= 1 to P 1 do
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for j:= 1 to P 1 do
if (P 1!i le P 1!j) ne (P 2!i le P 2!j) then

print i,j, ”fails”;
end if;

end for;
end for;.

When we run this loop, there is no output. Therefore, i ≤ j in P1 if and only if

i′ ≤ j ′ in P2. Recall from Chapter 5 that this shows that the map h̃ : P1 → P2 given

by i 7→ i′ is an order-isomorphism.

The next 4 loops enable us to construct a lattice isomorphism f : L1 → L2,

where Li denote the subgroup lattice of C3,i for i = 1, 2. Recall from Section 5.2

that #P1 = #P2 = 95. Also recall that for all 1 ≤ i ≤ 94, subgroup class i in P1

contains the same number of subgroups as class i′ in L2 and that the subgroups in

class i are of the same isomorphism type as those in class i′. The first loop compares

the lengths of conjugacy classes:

for i:= 1 to #P 1 do
if Length(P 1!i) ne Length(P 2!i) then

print i, ”fails”;
end if;

end for;.

Recall that f is such that corresponding proper subgroups and quotients are

isomorphic. The loop that tests if subgroups in corresponding conjugacy classes are

isomorphic is given by:

for i:= 2 to #P 1 do
stpr1:=StandardPresentation(Group(P 1!i));
stpr2:=StandardPresentation(Group(P 2!i));

if IsIdenticalPresentation(stpr1,stpr2) eq false then
print i, ”fails”;

end if;
end for;.
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The loop that tests if corresponding quotients are isomorphic is given by:

for i:= 2 to #P 1 do
if Length(P 1!i) eq 1 then

stpr1:=StandardPresentation(C 21/Group(P 1!i));
stpr2:=StandardPresentation(C 22/Group(P 2!i));

if IsIdenticalPresentation(stpr1,stpr2) eq false then
print i, ”fails”;

end if;
end if;

end for;.

When either one of the above 3 loops is run, there is no output thereby indicating

that f has the properties we claim.

The last of the 4 loops is as followed. Recall that i.j represents the jth

subgroup in the ith conjugacy class of C3,1 and i′.j represents the jth subgroup in

the ith conjugacy class of C3,2. We test whether or not

h̃ : i.j 7→ i′.j

is an order-isomorphism:

for i:=1 to #P 1 do
for j:=1 to #P 2 do

if P 1!i le P 1!j then
C:=SetToIndexedSet(Class(C 21,Group(P 1!i)));
D:=SetToIndexedSet(Class(C 22,Group(P 2!i)));
E:=SetToIndexedSet(Class(C 21,Group(P 1!j)));
F:=SetToIndexedSet(Class(C 22,Group(P 2!j)));

for k:=1 to #C do
for l:=1 to #E do
if (C[k] subset E[l]) ne (D[k] subset F[l]) then

print i,k,j,l, ”fails”;
end if;
end for;

end for;
end if;

end for;
end for;.
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Recall from Section 5.2 that h̃ fails to be an order-isomorphism only on sub-

group classes 3, 3′, 12, and 12′. Also recall that class 3 contains 2 subgroups and

class 12 contains 8 subgroups. The output indicates the failure of h̃ on these classes:

3 1 12 1 fails
3 1 12 2 fails
3 1 12 3 fails
3 1 12 4 fails
3 1 12 5 fails
3 1 12 6 fails
3 1 12 7 fails
3 1 12 8 fails
3 2 12 1 fails
3 2 12 2 fails
3 2 12 3 fails
3 2 12 4 fails
3 2 12 5 fails
3 2 12 6 fails
3 2 12 7 fails
3 2 12 8 fails

The first line, for example, indicates that either 3.1 ≤ 12.1 in C3,1 and 3′.1 � 12′.1

in C3,2 or vice versa. The actual containments for the subgroups in classes 3, 12 and

3′, 12′ are given in Section 5.2.

From there, we construct the lattice isomorphism f . Recall that we utilized

maximal subgroup information in order to do so. To compute maximal subclasses

of subgroup class i, we type “MaximalSubgroups(i)”; to compute the subgroup

classes containing the minimal overgroups of i, we type “MinimalOvergroups(i)”.

To determine specific containment among the subgroups in class i and j, we use the

loop below. For example, in E7,2 we find that class 12 is a maximal subclass of 25.

Let P72 denote the subgroup poset of E7,2. The loop determining containment for

subgroup classes 12, 25 is given by:
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S:={12, 25};
for i in S do
C:=SetToIndexedSet(Class(E 72,Group(P 72!i)));

for j in [1..#P72] do
if P 72!j in MaximalSubgroups(P 72!i) then

D:=SetToIndexedSet(Class(E 72,Group(P 72!j)));
for k in [1..#C] do

for l in [1..#D] do
if D[l] subset C[k] then

print j “.” l, “is maxl subg of”, i,”.” k, ”;
end if;

end for;
end for;

end if;
end for;

end for;

The output is:

12.1 is maxl subg of 25.1
12.5 is maxl subg of 25.1
12.2 is maxl subg of 25.2
12.3 is maxl subg of 25.2
12.4 is maxl subg of 25.3
12.6 is maxl subg of 25.3
12.7 is maxl subg of 25.4
12.8 is maxl subg of 25.4.

This indicates the following containment in E7,2:

12.1, 12.5 ≤ 25.1, 12.2, 12.3 ≤ 25.2, 12.4, 12.6 ≤ 25.3, 12.7, 12.8 ≤ 25.4.

Recall in Sections 5.3 and 5.4 that we investigate various properties of the set

En of extension groups giving rise to the action ◦n. We compute group cohomology

and extension groups as we did in Section A.1. To show that a pair of groups have

isomorphic subgroup lattices such that corresponding proper subgroups and proper

quotients are isomorphic, we use the same sequence of loops used above for C3,1 and

C3,2.
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For the results pertaining to the generation of the extension groups, we com-

pute the exponent-2 central series of the Frattini-quotient rank 2 groups. For ex-

ample, to show that E6,1 and E7,1 are identical through the fourth iteration of the

p-group generation algorithm we use:

pcs61:=pCentralSeries(E 61,2);
pcs71:=pCentralSeries(E 71,2);

for i:=1 to #pcs61 do
g:=StandardPresentation(E 61/pcs61[i]);
h:=StandardPresentation(E 71/pcs71[i]);

if IsIdentical(g,h) eq false then
print i;

end if;
end for;.

The other results relating to the generation of the extensions are obtained similarly.

At the end of Chapter 5, we predict the presentations of the index 2 subgroups

of a Frattini-quotient-rank-2 group. For this, we use the sequence of commands

located below. Consider E5,1, for example. Let P5,1 denote the poset of conjugacy

classes of subgroups of E5,1. We find that the maximal subgroups of E5,1 are the

groups in subgroup classes 92,93, and 94. We compute the standard presentations

of each to reveal the patterns described in Chapter 5:

M511:=StandardPresentation(Group(P 51!92));
M512:=StandardPresentation(Group(P 51!93));
M513:=StandardPresentation(Group(P 51!94));.
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