Comparison Studies of Several Microphone Robustness Techniques

dc.contributor.authorSonmez, M.K.en_US
dc.contributor.authorKao, Yu-Hungen_US
dc.contributor.authorRajasekaran, P.K.en_US
dc.contributor.authorBaras, John S.en_US
dc.description.abstractWe study the effectiveness of various microphone robustness techniques from the viewpoint of speech recognition, utilizing the ARPA-sponsored Wall Street Journal (WSJ) data base [1]. Two of the techniques considered are being introduced in this paper: two cepstral normalization algorithms utilizing the artificial neural network techniques Self Organizing Map (SOM) and Learning Vector Quantization (LVQ). The algorithms obtained are low- complexity non-parametric counterparts of the parametric approaches Codeword-dependent Cepstral Normalization (CDCN) and Fixed CDCN (FCDCN). The other techniques considered are Cepstral Mean Normalization (CMN), RASTA, SNR-dependent Cepstral Normalization (SDCN), Interpolated SDCN (ISDCN), CDCN, FCDCN; some of these techniques require one or more of the following information: stereo data, SNR estimate, single microphone data for adaptation, and knowledge of the microphone used for the specific data under test. We determine the effectiveness in several ways: (i) scattergram plot of the speech frame parameter vector (usually a cepstral vector), (ii) adjusted deviation ratio, measured from scattergram, and (iii) correctness of classifying a test vector into a vector code book. All these measures have direct correlation with speech recognition performance, which will be measured with experiments to be conducted.en_US
dc.format.extent238638 bytes
dc.relation.ispartofseriesISR; TR 1994-30en_US
dc.subjectneural systemsen_US
dc.subjectrobust information processingen_US
dc.subjectspeech processingen_US
dc.subjectSystems Integrationen_US
dc.titleComparison Studies of Several Microphone Robustness Techniquesen_US
dc.typeTechnical Reporten_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
233.04 KB
Adobe Portable Document Format