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Abstract

We study the effectiveness of various microphone ro-
bustness techniques from the viewpoint of speech
recognition, utilizing the ARPA-sponsored Wall
Street Journal (WSJ) data base[1]. Two of the tech-
niques considered are being introduced in this pa-
per: two cepstral normalization algorithms utilizing
the artificial neural network techniques Self Organiz-
ing Map (SOM) and Learning Vector Quantization
(LVQ). The algorithms obtained are low-complexity
non-parametric counterparts of the parametric ap-
proaches Codeword-dependent Cepstral Normaliza-
tion (CDCN) and Fixed CDCN (FCDCN). The
other techniques considered are Cepstral Mean Nor-
malization (CMN), RASTA, SNR-dependent Cep-
stral Normalization (SDCN), Interpolated SDCN
(ISDCN), CDCN, FCDCN; some of these techniques
require one or more of the following information:
stereo data, SNR estimate, single microphone data
for adaptation, and knowledge of the microphone
used for the specific data under test. We deter-
mine the effectiveness in several ways: (i) scatter-
gram plot of the speech frame parameter vector
(usually a cepstral vector), (ii) adjusted deviation
ratio, measured from scattergram, and (iii) correct-
ness of classifying a test vector into a vector code
book. All these measures have direct correlation
with speech recognition performance, which will be
measured with experiments to be conducted.

1 Introduction

Robustness has proved to be a very important con-
cern for speech recognition systems in recent years
as studies have shown that even the performance of
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speaker independent systems are greatly affected by
the type of microphone or the acoustical environ-
ment they operate in when these are different from
the ones used during training.[2] Many techniques
have emerged to improve the robustness of speech
recognition systems; in this study we limit our at-
tention to techniques that operate in the cepstral
domain. These range from simple cepstral filtering
techniques such as CMN and RASTA to more so-
phisticated and computationally intensive methods
such as CDCN. We introduce two cepstral normal-
ization techniques which make use of data-driven
transformations of vector quantization codebooks.
Specifically, these transformations are realized by
the SOM [3] and the LVQ [3] algorithms in unsuper-
vised and supervised manner, respectively. Our goal
is to compare various cepstral normalization tech-
niques including the artificial neural network tech-
niques which are introduced in this paper on a large
enough database. The metrics that we use, the scat-
tergram, the deviation ratio, are functions of the
statistics of the cepstral vectors and have direct cor-
relation with speech recognition performance. The
comparison obtained this way is recognizer indepen-
dent: however, we plan to conduct recognition ex-
periments as well.

2 Training and Test Corpora

The speech data is a subset of the WSJ database.
It consists of 10 sentences from 30 speakers, half fe-
male half male, recorded with the Sennheiser HMD-
414 (CLSTLK) and the Crown PZM6FS omnidirec-
tional desktop microphone in a stereo manner. The
training data consists of 20 speakers, in stereo form
for algorithms that require stereo data. The testing
data is divided into two, first part consisting of 5
speakers is utilized to adjust algorithm parameters
and to prevent overtraining though it is not seen



during the training. The second part is the evalua-
tion set, unseen till all the development is complete,
on the basis of which the algorithms are compared.
The stereo form of the testing data is utilized to gen-
erate the scattergrams and compute scattergram-
dependent similarity metrics such as the deviation
ratio.

3 Cepstral Normalization

Techniques

The techniques considered are:
1. Cepstral mean normalization
2. RASTA [4]
3. SNR-Dependent Cepstral Normalization [5]
4. Blind SDCN [6]
5. Interpolated SDCN [5, 7]

6. Codeword-dependent Cepstral Normalization

[5)
7. Fixed CDCN [7]
8. Self-Organizing Map
9. SOM and Learning Vector Quantization

In the next section, we describe cepstral normaliza-
tion by SOM and LVQ. Other techniques are de-
scribed adequately in the literature.

4 Self-Organizing Map and
Learning Vector Quantiza-
tion

Self-Organizing Map and Learning Vector Quanti-
zation are adaptive vector quantization algorithms
which offer non-parametric alternative techniques to
parametric codeword-dependent cepstral normaliza-
tion algorithms CDCN and Fixed CDCN, respec-
tively. In CDCN, the existence of a universal acous-
tic space which is the distribution of speech frames
under a normalized clean environment is assumed
and the environmental parameters of the transfor-
mation of vector quantization codebooks from the
universal space to the current environment are es-
timated by maximum likelihood. Due to the esti-
mation involved, the computational complexity of

CDCN is high. In SOM, the transformation is
obtained via a data-driven learning process which
starts from the training codebook and gradually
transforms it into the appropriate codebook for
the current environment using SNR-dependent local
modifications upon which a set of correction vectors
are computed simply as the difference between two
codebooks. The algorithm is computationally very
low-cost but may require a longer adaptation period
than CDCN. The FCDCN algorithm and the LVQ
fine-tune the CDCN and the SOM, respectively with
supervised training data. Due to the dependence on
SNR, our implementation of SOM and LVQ have
siginificant modifications over Kohonen’s algorithms
{3]. Specifically, we use the topology induced by
the Buclidean distance on the cepstral space to de-
fine the neighborhoods for the training codebook.
The learning rate is a decaying function over frames
which is dependent on the frame SNR. We are also
experimenting with product codebooks, for exam-
ple, making the correction on only the first few cep-
stral coeflicients thereby reducing the dimension of
the SOM. The correction of the first few coefficients
have been observed to account for almost all of the
improvement in recognition performance [5].

5 Experiments and Prelimi-
nary Results

The full experiment which is still in progress, will
consist of comparisons of supervised and unsuper-
vised methods listed above and most importantly
shed light on the pros and cons of the parametric
and non-parametric approaches such as adaptation
speed, computational complexity, robustness. So
far, preliminary experiments have been conducted
which compare the SOM and LVQ with cepstral fil-
tering techniques. These experiments have demon-
strated a significant performance improvement over
cepstral filtering. The results are summarized in Fig.
1 and Table 1. Fig. 1 shows the scattergrams of the
third cepstral coeflicient, with various techniques.
Table 1 lists adjusted deviation ratios [8, 9] for the
cepstral coefficients 2 and 3. The adjusted devia-
tion ratio is a quantification of the scattergram, i.e.
the sum of the distances of the points to the line
y = z normalized by their variance. The apparent
improvements should result in a higher recognition
performance. A recognition experiment will be car-
ried out later on. We have received the code for
CDCN from CMU and now are in the process of



setting up the CMU algorithms for the comparison
experiment.

| Technique | DR(c[2]) | DR(<[3]) |
No normalization 1.0 1.0
RASTA 0.92 0.13
CMN 0.99 0.11
SOM 0.86 0.08
AYe) 0.59 0.07

Table 1: Adjusted deviation ratios

6 Conclusion

We have described an experimental effort to com-
pare the performances of cepstral normalization al-
gorithms, two of which are introduced in this work.
The SOM and LVQ based normalization algorithms
are non-parametric counter-parts to the well-known
CDCN and FCDCN algorithms. The experiment
will therefore emphasize the pros and cons of para-
metric and non-parametric approaches as well as the
performance gain obtained by these algorithms over
simple cepstral filtering at some computational cost.
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Figure 1: Scattergrams for the third cepstral coefficient with various normalization techniques



