BESOV WE11-POSEDNESS FOR HIGH DIMENSIONAL NON-LINEAR WAVE EQUATIONS

dc.contributor.advisorMachedon, Matei
dc.contributor.authorSterbenz, Jacob
dc.contributor.departmentMathematics
dc.contributor.publisherDigital Repository at the University of Maryland
dc.contributor.publisherUniversity of Maryland (College Park, Md)
dc.date.accessioned2019-09-25T16:49:43Z
dc.date.available2019-09-25T16:49:43Z
dc.date.issued2003
dc.description.abstractFollowing work of Tataru, [13] and [11], we solve the division problem for wave equations with generic quadratic non-linearities in high dimensions. Specifically, we show that non-linear wave equations which can be written as systems involving equations of the form Φ = Φ∇Φ and Φ = |∇Φ|^2 are well-posed with scattering in (6+1) and higher dimensions if the Cauchy data are small in the scale invariant ℓ^1 Besov space B^sc,1.en_US
dc.identifierhttps://doi.org/10.13016/ky8p-tfuz
dc.identifier.urihttp://hdl.handle.net/1903/24912
dc.language.isoen_USen_US
dc.titleBESOV WE11-POSEDNESS FOR HIGH DIMENSIONAL NON-LINEAR WAVE EQUATIONSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sterbenz, J..pdf
Size:
241.46 KB
Format:
Adobe Portable Document Format
Description: