Integrating a Dual-Vth Design Flow Using Mixed Vth Cell Libraries in EDA Tool
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Leakage power has become one of the most important components of power dissipation in sub-micron designs. It is critical to include leakage mitigation methods in the low power design flow. Dual-Vth assignment, an effective leakage reduction technique, has been adopted by industrial EDA tools in gate-level design. This thesis presents a dual-Vth based low leakage design flow using a mixed Vth standard cell library, in which transistors within a cell have different Vth values. A mixed threshold standard cell design methodology is implemented and the cells are characterized using HSPICE with 130nm model. We integrated the design flow in a state-of-the-art industrial CAD tool and ran experiments on eleven ISCAS benchmarks and three industrial designs. On an average, our method can achieve 40% leakage saving over designs with nominal threshold voltage cells and 9% saving over the cell-based dual-Vth assignment technique, without any delay penalty.