High-Rate Crystal/Polycrystal Dislocation Dynamics
Files
Publication or External Link
Date
Authors
Advisor
Citation
Abstract
The present report builds upon work recently published on crystal and polycrystal dislocation mechanics behaviors assessed, in part, in split-Hopkinson pressure bar (SHPB) and shock loading investigations. A connection between the flow stress dependencies on strain rate in the different tests had been established in the previous report, whereas additional results are assessed here for (1) relationship of the measurements to a nano-scale prismatic dislocation structure proposed to be generated at a propagating shock front and (2) further relationships between the modeled structure and corresponding thermal stress and strain rate sensitivity computations, including new evaluations of the engineering rate sensitivity parameter, m = [∆lnσ/∆ln(dε/dt)]T. A comparison is made of m values approaching 1.0 for simulated dislocation mechanics results computed for tantalum crystals. Other (lower) m value comparisons involve recently determined higher shock stress measurements made on copper material at higher temperatures.