An Inverse Neumann Problem.
dc.contributor.author | Berenstein, Carlos A. | en_US |
dc.contributor.author | Yans, P.C. | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:34:57Z | |
dc.date.available | 2007-05-23T09:34:57Z | |
dc.date.issued | 1986 | en_US |
dc.description.abstract | We consider the problem of deciding whether the over-determined Neumann eigenvalue boundary value problem: *DELTA*u + ALPHA*u = 0 in D; u = 1, SOME GREEK SYMBOL*u/SOME GREEK SYMBOL*n = 0 on SOME GREEK SYMBOL*D has a solution. This problem arises in thermodynamics and in harmonic analysis. We show that the existence of infinitely many solutions is equivalent to D being a ball. | en_US |
dc.format.extent | 737584 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/4439 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1986-13 | en_US |
dc.title | An Inverse Neumann Problem. | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1