An Inverse Neumann Problem.

dc.contributor.authorBerenstein, Carlos A.en_US
dc.contributor.authorYans, P.C.en_US
dc.contributor.departmentISRen_US
dc.date.accessioned2007-05-23T09:34:57Z
dc.date.available2007-05-23T09:34:57Z
dc.date.issued1986en_US
dc.description.abstractWe consider the problem of deciding whether the over-determined Neumann eigenvalue boundary value problem: *DELTA*u + ALPHA*u = 0 in D; u = 1, SOME GREEK SYMBOL*u/SOME GREEK SYMBOL*n = 0 on SOME GREEK SYMBOL*D has a solution. This problem arises in thermodynamics and in harmonic analysis. We show that the existence of infinitely many solutions is equivalent to D being a ball.en_US
dc.format.extent737584 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/4439
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1986-13en_US
dc.titleAn Inverse Neumann Problem.en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_86-13.pdf
Size:
720.3 KB
Format:
Adobe Portable Document Format