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$0 Introduction

The harmonic analysis problem in symmetric space known as the Pompeiu

problem leads to very classical inverse problems in partial differential

equations ([4]). For the Euclidean case, we have: given a bounded domain Q

n+l

in R with a Lipschitz connected boundary does there exist a non-trival
. © n4+l .
function £ € C (R ) satisfying f f(x)dx = 0 for all rigid motions O of
o(R)
Rn+l? It is known that ([3]) the existence of such a function f would lead to

the existence of an over—determined eigenfunction u solving what we call the

over—determined Neumann problem:

Ay + au =0 in @
(}l) du -
e 0 and u = ¢ on 9f , o > 0.

The overdetermined Neumann problem can be transformed by the linear

substitution v u/ac - 1/a to

Av + av = =1 in Q

v =0, %% =0 on 3% .

For 2 C R? in problem (1) if « = 0, the existence of a positive solution was
shown by Serrin [12] and Weinberger [13] to imply that @ 1is a disk. 1In

case & = AZ the second eigenvalue of the Dirichlet eigenvalue problem in R,
it is a consequence of the isoperimetric inequality of Payne and Weinberger
([11]) that @ is a disk. More recently Aviles ({2]) has shown that if the

problem QVS has a solution with a < A where Xj is the jth eigenvalue of

+1

the Dirichlet eigenvalue problem and 32 has nonnegative mean curvature with



2
respect to the outward normal, then € 1is a ball; in case @ C R, a slightly
weaker assumption namely that a < k7 will suffice.
Analogously we may consider the overdetermined Dirichlet eigenvalue

problem:

In either of the problem QN6 or (), if there is a solution and 32 is
CF+€, the regularity results of Kinderlehrer—-Nirenberg ([9]) show that 3Q 1is
in fact real analytic. In fact, Williams shows in ([14]) that the same
conclusion holds if 9Q 1is only locally Lipschitz.

In case # 1is the ball, the radial eigenfunctions to either the Neumann
or Dirichlet problem satisfy the additional overdetermined condition at 3%,
showing there are infinitely many such eigenfunctions. In [3], it was shown
that for a simply connected plane domain  with a sequence of solutions u,
to either the problems QVS or (J), 9 is necessarily the disk. For @ a
convex domain in the plane, Brown and Kahane {6] gave a quantitative version
of [3], where they consider the width of @ in the direction v (v a unit
vector in Rz) |
w(v) = [max v*x - min v*x], and proved that for

p AV *x€8

m(Q) = inf w(v), M(Q) = sup w(v)
|vl=1 |v]=1

l 3
if m(D) < 7 M(£2), then the problem M has no solution in . However there

are many real analytic @ with m(2) = M(R) which are not disks.



The Berenstein result for R2 given in [3] was extended in {5] to the

Poincare disk with the hyperbolic metric.
1+1
In this paper we extend these results to all dimensions for @ C R" and
+1 2
. {x e R" |” < 1} with the complete metric of

+
as well as for Q@ C TR s Ix

constant negative sectional curvature.

1

Theorem 1 Let & be a bounded Lipchitz domain in Rn+ with connected boundary

with a sequence of over—determined eigenfunctions uj to problem 976 or QD),
then 8 -is a ball.

Theorem 2 Let & be bounded Lipschitz domain in hyperbolic space Hn+l with
connected boundary with a sequence of over-determined eigenfunctions uj to

problem (k6 or (J)), then @ 1is a geodesic ball.

Outline The proof for both of these results depends strongly on the existence

of plane waves in the spaces of constant curvature. For each eigenvalue aj,

we find explicit eigenfunctions fj in Rp+l or Hn+l which are of the form

iA v,
fje 3 , fj’wj real with Aj + ® ag j * =, We then evaluate the right hand

side of the Green's identity:

3% du
0 =£ wiBp) = Gud ¥ = wge -5 Pl

which reduces to integrals of the form

ir v

(0.1) [fe 173,
i



An asymptotic evaluation of the integral via the method of the stationary
phase then yields the following geometric information about & .

I. % 1is a domain of constant breadth. By this we mean 3Q has the
following property. At each x € 92 let n(x) denote the interior unit
normal. The oriented geodesic line through x in the direction n(x) will meet
9Q orthogonally at a constant distance L in a point x* in opposite direction
to n(x*). This property defines an involution * on 3Q.

II., For each such pair of points, let Xl,...,kn and AI,...,X: denote
the principal curvatures of the hypersurfaces, w.r.t. to interior normal the

following identity holds:

a) in case of Euclidean space:

n no,

I Ai =+ A,

i=1 i=1
b) in case of the hyperbolic space:
n n

*
£ 0y -1 = (1 - D)™,

i=l i=]

Geometric considerations show that hypersurfaces possessing properties I

and II satisfy the following simple identities involving the principal
curvatures Ai:
a) In the Euclidean case:

n
(0.2) I (Lki-l) =41
i=1 .

b) In the hyperbolic case



n
(0.3) T (cosh L - sinh L Ai) =+ 1
1

These hypersurfaces have been studied by A.D. Alexandrov ([1]), where he

proved:

Theorem Embedded closed hypersurfaces M of constant curvature spaces (in case

of spheres, M are required to lie in a hemisphere) satisfying an identity of
aF
A,
i
In the case all factors in (0.2) or (0.3) have the same sign (this

the form F(Al,...,ln) = 0 where > 0,i =1,...,n; are geodesic spheres.

amounts to requiring the domain to be convex, i.e. they are intersections of

oF

3Ai > 0 hold, hence

half spaces in the sense of Busemann) then the conditions
Alexandrov's theorem applies.

The general case requires further argument. We choose to proceed Ey
looking at the next term in the asymptotic expansion of (0.1). It turns out
that all principal curvatures Ai can be determined from L alone, and as a
direct consequence, % 1is a ball.

In §1 we recall the asymptotic expansion for oscillatory integrals
developed in Hormander ([8]). In §2, we set up the Euclidean eigenfunctions
¢3 consisting of plane waves and apply the expansion of §l. We then deduce
properties I and II using the highest order terms in the exapnsion and then
verify the inentity (0.2). In §3 we examine the consequences of I and II,
showing that some additional assumptions lead to the conclusion that 2 is a
ball. We also give a general argument using the second highest order terms in

the expansion to conclude that all Ai are constants, thus proving Theorem

1. In §4 we carry out the parallel arguments for the hyperbolic space.



Remark 1. There remains the case where the ambient space is the Euclidean
spheres, there we have more interesting examples. For example in
53 ={xe Ra, |x|2 = 1}, the Clifford torus ) = {x € S3, X X, = x3;4 = 0}
bounds on each side two domains Q+ and _. It is easily checked that the
function u = X1¥X) T %3%Xy is a spherical harmonic of order 2 hence is an
eligenfunction of S3 for the Laplace Beltrami operator on S 3. In addition it
satisfies the identity |Vu[2 =1 - 4u2 making it possible to look for
eigenfunctions v of the form v = fou by solving the ordinary differential
equation Av + av = £"(u)(l - 4u2) + £'(u)(~8u) + af(u) = 0 with the boundary
condition f(%ﬁ =1, f(0) =0 or £'(0) = 0 on the interval [0, 1.2]. The
point u = %-being a regular singular point, there are thus infinitely many
eigenfunctions to both problem (¥#) and ()). Observe also that the
domains Qi are again domains satisfying the geometric properties I and iI.

2., There remains also the open question which embedded hypersurfaces in
addition to the gzodesic spheres satisfy curvature identites ofthe form
0.2) in B or (0.3) in B™VL.

We hope to return to these problem on a later occasion.



§1 Asymptotic expansion for an oscillatory integral.

o0
Let f be a real valued £ function defined in a compact neighborhood K
of the origin in Rn, assume that in K f has only a non—-degenerate critical

point at the origin. After making an orthogonal transformation the Taylor's

expansion for f has the form:

£ = £0) + [ gk x4 [ A xxx + 0(xl ).
i B

where Aijk is symmetric in all three indices. Set

k
Ly + o(|x|").

n
g(x) = £(x) - £(0) - iz=l 5% =1 AR

2

L

i axg
i

o =1

WI'—

Let u € CE(K), then we have (Hormander [8], 7.7)

/

. . n
LD S w0 - Ok om0 + wwm] g

j=1

-0
<cl 2 ) sup IDau| for X > 0,
la]<4

where ¢ stays bounded when f stays in a bounded set in C7(K) and

stays bounded, and

X
£'(x)

0 u(0) + —— B%(gu)(0) + 35
272! 2

|.-_

57 0 @Ol

(3]

L(u) = =i [ %

*

Remark: In applying this expansion for an integral over a compact

hypersurface for a phase function f having only a finite number of



nondegenerate critical points, a suitable partition of unity may be introduced
to reduce the integral to a finite sum of the same type of integrals

considered above. Outside the critical points, the integral decreases faster

than X-N for any N.



§2. Eigenfunctions in Euclidean space.

In Rn+1, fix a pair of mutually orthogonal unit vectors £ and n and

consider

i<x,AE=int> _ t<x,n>  ix<x,5>
e = e e

Yk,t(x) B *

It is easily seen that (using orthogonality) Aji’t(x) + (Az - tz)ya,t(x) = 0,
The phase function x > <x,£> considered as a function on a hypersurface

MC Rn+l has critical points precisely at those points where £ 1is normal to
M. If M is a smooth hypersurface, the Gauss normal map x + n(x) with n(x)
the interior normal to M at x is smooth, thus generically, for an open set of
vectors & in the unit sphere, the critical points of x + <x,£> will be

finite in number, and vary locally smoothly in &. Given a > 0, we will

choose ?A ¢ with
3

(i) AT -t =a

(ii) As a + =, |t| » ® and + 0.

t
log A
The revelant integrals in case of a (2) eigenfunction is

fI - Ie‘fi()\g‘itn,}()
a0 p 193

in case of an (¥) eigenfunction it is

- 3 AL, x> [ <IAE+en 3xy JHIAE-in, x>
on > dn

1
aa ¥ oan 3% o,
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For the asymptotics we use a partition of unity on 32 to cut down the region
of integration to neighborhoods U; of the points p; where tn(Pi) =& such
that 1 is the unique point in Ui with this property. Over such a
neighborhood, it is simplest to use the projection onto the tangent plane at

Py as coordinates, thus W.L.0.G. we may assume

M =U = {xn+1 = y(xl,...,xn)}, p; is the origin and £ =(0,...,0,1).
By making an orthogonal transformation of X)se++,X, Space if necessary, we may

arrange to have

1 2 3
y(xi,...,xn) =) -é--kixi + 0(]x|7).

For a general point X = (x,y(x)), v = (—yl,...,—yn,l)/(l + IVylz)l/2 is a

unit normal, hence the volume element is given by

3X 3X
dv = |det (5;:- seees T

1 n

Iz)l/zdx eeedx .

) | dxje.. dx = (1 + |Vy ! .

The second fundamental form is given by
I1(v,w) = <va,w>

and in terms of the tangent frame e, = (0,=", 0,1,0,°°-O,yi)

9 -yl)"'a-ynsl )
l2)1/2 ?

o (0,+4,0,1,0,...,0,5,>

II(e,,e.,) = £
173 i 1+ |vy

=+ iy DT ) -y
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hence at the origin where (ei) are orthonormal. TInfact,

= - = -k, 4,..
(e ,e4) = -y, i 013
i.e. _ki are the principal curvatures of 9M at O.
Writing the integrands

+tnex iAEex
e e

(2.2) .1,=28 in case of problem (D).

D
(2.3) I, = <+tn + ir§,v> 5e-*'t]'].x<=:1)‘g'x in case of problem (X)),
N .
2.1
where 8§ = (1 + IVyl ) /2.
2
SetD=+E'-l—a—-7.
k., 9x,
i i

We find that for a regular value £ of the Gauss map, there are finite number

of points py,...,py where V(pi) = £, and

(2.4) o=f1D= ¥ rid) “@k,) ‘e +
v(pi)=ﬁ 1 J
-4 _ny IAEep. D+2
I @ 2t molMe Tue™ e +odt .
v(p, )=t J Py
_D. i)\gop m.p
(2.5) 0=f1,= 2( rix) 2 (TIkJ.)-l/ze I peve Ta
v(p, )=
i
n n
. - = —(=+1) _q 7o 1AEep . )
) i) 2a 2 @) V% T LcensE ve™ % (0)]
3 *=p;

v(p i)='ﬁ
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n
> +2

+0(3)

In order for cancellation of the highest order terms to take place, we must

have

-1

iAEep thep
/2 1 e 1. ox ) or

2.4y T @ kj)_l e

iX£°pi tn'pi
e

= 0(\~

(2.5') ] x(n kj)’”2 e ).

If in addition, we consider the following l-parameter of variations for the

eigenfunctions 2\ .0 with
b b

cosb ,E + sinB ,n

{&(8)
n(6)

-sinb ,§ + cosb,£
then we have as before,

d 14 . % iXEex tne
0= (] L9y e ] canme el o

- (42 9
0 = () oh0 5n 3V TA,6,0

| [<ikn—t5,x>2 + lower powers of <iAn=tE,x>]<tn+iAg,v> elli'xetn'x

The leading order asymptotics yield in both cases,

iAE+p, tnep _
1/2, S

¢<ixn-ts,pi>‘(n k)" ).

v(pi)=i5

Regarded as a system of linear equations with «

2
Aiz = <iAn - tE,pi>
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as coefficients, the Van der Monde determinant of the N Xx N system must

vanish, hence we conclude that there is a pair say Py and pj such that

nopi=n-pj.
Applying this argument for each n orthogonal to this fixed £, we conclude
* *
there is a common pair, call it p and p , such that p and p 1lie on the same
* *
line orthogonal to 3@ at p and p , this means that p = p + Lv where L is a

scalar., Differentiation of this equation yields that dL = O, hence L is

constant.

Since 9% 1is real analytic, we may assume that the involution is globally
* )
defined p = p + Lv, v 1is the inward pointing normal, and we must have the
* *
normal at p 1is opposite v : v(p ) + v(p) = 0. For if not, then
p + 2 Lv would be in 32, hence by continuity p + 3Lv would be in 92 and so
on, this would contradict the boundedness of .
We now claim that for an open dense set of £, on the line containing the
' *
pair of points p and p , there are no other points pj with the same normal
vector &, for if not then the above argument still applies and
* —
{p,pi} and {p ,pj} would be constant distance L'apart, since either ppj
_*+ -
or p p has the same direction as normal at p say ppj , then
P+ L'v, p+ 2L'V,... would all lie on the surface, contradicting boundedness
of Q.

The foregoing analysis shows that the points {pl,...,pN} are partitioned

*
into pairs Piy Py given by the involution thus N is even and all pairs are

distance L apart. This verifies property I.
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To verify property II, we compare for a fixed pair £,n the terms in
(2.4'),(2.5") with the largest exponents, <n,p> to conclude that
it kj(P) =+ kj(p*). Again, since this is an analytic relation holding
locally on the analytic surface, it must hold globally on 3Q. This finishes
the proof of II.

We proceed to show I and II impose the curvature identity (0.2).

Lemma For a domain of constant breadth L with the given involution

* ..
P*p =p+ Lv on the boundary the principal curvature directions at p

*
correspond precisely to the principal curvature directions at p , and we have
the identities:

1

1 .
'X——"‘ 7 - L i=1,...,n,
i .
1

>

* *
where {Ki} and {ki} are the primcipal curvatures at p and p in the same

principal curvature directions.

Proof. Consider the commutative diagram:

M ———-— g"
M ——--— s°

where T denotes the antipodal map & + -§. Consider the locally defined

-1
inverse map to the Gauss normal map say x =V (£), we have the equation

* -]
x =Vv () =x - 1§
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hence dx; = dxE - LI. This means that the inverses to the Gauss maps have
commuting differentials, hence simultaneously diagonalizable. This proves the
first assertion. Evaluating this equation on a principal vector and recalling
that the interior normal to M at P* is opposite to that at p, yield the

equation

hence the second assertion.

Proposition: For a domain satisfying the geometric properties I and II we

have the following relation for the principal curvatures:

1 1 1
I T I =0( - IT)
i A, i
i
or
i i;' n - %—)
Xi i
+ = = - =
t . T . T H(Lki 1) + 1.
A, A,
1 1
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§3 Proof of Theorem 1

We begin with the remark that in the case  1s convex, we have

1 1
immediately from the equations y—~ + —p = L that Lki - 1>0 for all i. And
i A,

* *
conversely if for a pair of points p and p all Ai and Ai > 0, then it

follows from the equation that Lki -1 > 0; hence by continuity and the

n
equation II (L)\i - 1) =1 that all Lli - 1> 0 on 92, hence  1is convex.
1
In this case in the curvature relation F(Xl,...,kn) = Tr(L)\i -1)-1=0 we
3
find 3§—-> 0; Thence Alexandrov's theorem implies that @ is a ball.
i

As a further remark, when € is topologically a ball and hence 3R is
topologically Sn, if n is even we must have all Lki - 1> 0. This follows
from the fact that even dimensional spheres do not have non—-trivial subbundles
in their tangent bundle ([8]), while the existence of some Lli - 1< 0 would
force a splitting of the tangent bundle.

The condition I, II allow us to restrict ourselves to values A,t such
that the first term in the asymptoties (2.4) or(2.5)) vanishes.

We now proceed to the evaluation of the second term in the asymptotics

for the integrals f %h,and f %D' We need to evaluate Lu where for %D

el 1 2 1 1 1 3, 2
Lu = —1[§Uu(0) + 3 g " (gu)(0) +Z3-'2","‘§'D (g"u)(0)]
2
o1 3

a-= Z Y37
i 9x,
i

ki 2

g = <x,E> - <X0,E> - z TR

u = etn.xﬁ(x).

1.1 .22, .2 tnex -l ,2 . tnex 1 2
L= = 2T 1= (70" + ke + g (@ge * 8206 (Tg)e

]
i

tn*x
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Note that the latter two terms do not contain powers of t, and hence are

negligible compared with the first,

Fix n = nO’ since the second term of the expansion (2.4) must now be
-—_— -2 .
2

*
O(A ), if we consider the pair p,p of points with the largest value of

nep we obtain

1 2 _¢1 2.
ani'z *ni’
1

P

*
where these curvatures are evaluated at p and p . For the second term

2.1/2
inf I N AV (l+|Vyl ) / (yl’ooo’yn’ —l)

w=<en+rEadet X (1+|vy] )12
and
o _i¢l,.,.272 2.2 oy L2y tnex
L(u) 5 1 k—i(l)\c ny + etk + I - ke

hence the leasing part of the second term in f %V is

- -2 iAE<p
) ri) 2x 2 @ kj)_l/ze fE L ok,

v(p,)=tt ky i1

*
Again the cancellation in the pair p,p with highest exponent n*p require

(recall t = 0(log A))

1 2 1 2
Ligny=1=ny
1 kK,

Since the same identity holds for all n lying in a small neighborhood in Mg »
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we see that

*
ki(D) = ki(D ) for all i

Then bj Lm'ﬁ'murf , We huve

*
ki(p) = ki(p ) for all i,p.

The equation, é-+ i

= L then forces ki = %-, hence B is a ball.,
i

o~

*
i
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$4. Eigenfunctions in the hyperbolic space

+1 +1 2
In the Poincare model H' =~ = {xe R —, |x|® < 1} with
2
d52 = A]dx|2/(1 - 1x] )2, the isometries of Hn+1 are restrictions of
+ + +1
conformal maps of Sn L = Rn ! {»} which preserve the unit sphere ",
' . . * n+l
The hyperbolic distance between x and x € H is given by
* 1/2 * 2
* 1+ * -
d(x,x ) = log A(x,x*)l/z where A(x,x ) = !f bS |2 e Given a
1-A(x,x ) 1-2xex +]x||x |

+1
boundary point b € ag" we have the Busemann function x + <x,b> defined by

<x,b> = lim [d(x,x*) - d(O,x*)].
&b

A short computation shows

2
(4.1) e(x,b) - 1—2x'b+|x]

1-|x|?
and we note that

l-x* b ) 1+e<x,b>
l'lxiz 2

Geometrically the level sets of <*,b> are spheres in H tangent to 3H at b,
called horospheres. The superlevel sets of <*,b> play the same role as half

spaces. The horospheres at b are everywhere orthogonal to the geodesics of H

1

ending at b. As hypersurfaces of Rp+ , the horospheres z are Euclidean

~ 1
spheres, hence have constant principal curvatures ki =X where R is the

Euclidean radius. As hypersurfaces of Hn+1 they have constant principal
curvatures k = 1, This is most easily seen by the following considerations.
Let ;l,...,;n be an Euclidean orthonormal tangent frame field along a

2
be a unit normal to M, then {e, = l:J—J—-e } is a

hypersurface M, let ; i 2 i

n+l
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hyperbolic orthonormal frame field with e ., normal to M. Let Wyseoss® 1y be
~ y) ~
the dual one forms to the frame {ei}, then {wi = ! |2 w.,} form the dual one
1-1x
forms to {ei}. Recall that the connection one forms wij and mij are
uniquely determined by the conditions
dwi =W, A wji [ dwl = wJ A wji
+ = o +~ =
“i5 7 %51 0 Y15 7 %51 °

Hence w,, may be computed from ;..:
ij 1]

+$,)

dw i 51

w,A(e,*xw
J J

thus setting

w Ww,, + e.,°xw, - e,*XW,
J i 1 J

ji ji

satisfies the equations. In particular

-~

= + . - .
“inel T Yn+1 T8 ™o T Cnel’ ™y
= Y50+l T Cnel” ™
Setting wjn+l = hjkwk’ defines the second fundamental form hjk’ which is

symmetric in its indices and its eigenvalues are the principal curvatures

ki' Thus we find
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(4.2) k, = % - e * X,

Since the isometries of H fixing b acts transitively on the set of horospheres
based at b, and the subgroup with Jacobian determinant 1l at b acts
transitively on each such horosphere, it suffices to compute ki for the

horosphere passing through the origin, there K, = 2, and ki =1 follows from

i
(4.2) immediately.
To construct eigenfunctions we shall first compute the Laplacian of the

Busemanm function. Recall the intrinsic definition of the Laplacian A: Take

an orthonormal frame field {ei}, then

£),

Af = Z (eieif - Ve ey

i i

where Ve e, means the covariant derivative of e; in the direction e;. To
i
evaluate Ax<x,b> at a point, we will choose frame fields &5ttt e tangent

to the horosphere passing through p and e 4+] tangent to the geodesic ending at

b; we find

(mod el,...,en), i=1,...,n

ei<x,b> = eiei<x,b> =0
en+l<x,b> = -1

so that
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A<x,b> = n
. and

Aeu(x,b) )eu<x,b>.

= y(u+n

Setting B = - %-+ iA we find

BB 4 (@2 4210

For a hypersurface M = 3dQ in Hn+1, there is a generalized notion of the Gauss
normal map. Given x € M, v(x) the outward unit normal to M at x, let bi(x)
be the unique end point on 3Hn+1 of the geodesic stérting at x in the
direction #v(x). Since the geodesics ending at b are orthogonal to all level
sets of the Busemann function, the function x + <x,b> on the hypersurface M,

has its critical points precisely at those points x with bi(x) = b,

We derive the equations describing the geodesics ending at b:

+
Lemma (4.3) Given b ¢ ) 1 and vectors vy,ess,V, orthonormal (Euclidean)
and orthogonal to b, the geodesics in Hn+l ending at b are given by the

equations:

vi'x

———— =8 1=1,0u.,n.
1-2be x+]| x|

1

+
Proof Consider the half space representation of ) R

RTY S}



2
n+l 2 _ ldy]
H = {ye R 7, Yol > 0}, ds
The geodesics ending at ©® are clearly given by the vertical lines

. yi = ai, i=1,...,n. The upper half space H_ is isometric to H by the

following Cayley transformation:

(4.4) g et y ., = Eoaw)
. . = ) = - .
* 1—2b°x+|x|2 ntl 1—2b-x+|x|2

The assertion is now obvious.

There is a notion of domains of constant breadth: On M = 3R, to each
p € 9M the geodesic beginning at p in the direction —-Y(p) meets M again at a

. ‘
point p orthogonally at a constant distance L from p. We have the following
*
Lemma (4.5) Consider two pieces of local hypersurfaces M and M . Suppose to
*
each Xx € M, the normal v(x) at x defines a geodesic Y meeting M

*
orthogonally at x . We assert that

*
(1) d(x,x ) is a constant L
*
(2) The principal curvature directions correspond under the map x * x .
x
(3) The principal curvatures at x and x satisfy

* sinh L - k cosh L
" cosh L - k sinh L

(4.6) -k

* . L]
where k 1is with respect to Y(L) and k is with respect to Y(0).

®
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Let a(s) be a curve in M with a(0) = x and a'(0) = e. For each a(s)

let Y be the geodesic passing through a(s) and orthogonal to M. Y, meets

* * * *
the hypersurface M in a (s) tracing out a smooth curve in M with a (0) = x
%1 *
and o (0) = e . It is easy to see that the length of the geodesic Ys

: *
between a(s) and @ (s) has the following variational formula.

*
da . da
YS(O)dS - O .

ds

S L) =y (L)

Hence the first assertionm (1).

Now we can parametrize all geodesics Ys(t) = Y(s,t) by arc length over

the same t interval [O,L]. It is well known ([10]) that the variational

vector field J = §§ | is a Jacobi vector field along Y:
s=0
2
DIy r(r,r =0,
2
dt

*
To relate the principal curvature of M and M , choose an orthonormal frame

@ seesse Ly TV = ;(O) at x and then parallel translate along Y to obtain a

parallel orthonormal frame field E; along Y. Write a'(0) = ) a e, and let

) )
T = —% , J = 5%- be an associated Jacobi field to the variation Y. Since
VTJ - VJT = [T,J] = 0, the second fundamental form at x, IIx(e,e') can be

cdmputed as follows: 1let J,J' be the Jacobli vector fields associated to the

variations Y(s,t) corresponding to the direction e and e' respectively.

- 4 =V o'=v e T°
IIX(e,e ) eT e TJ J

1D L (J,J1) =V TeJ' =V J-3" .
X
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Since orthogonality is preserved for Jacobi vector fields, it follows that

principal curvature directions are preserved. Suppose J(0) represents a

principal curvature direction with principal curvature A, then writing

J(t) =) bi(t)Ei we find, using Jacobi's equation,

that b, =b

and

If |J(0)| = 1 we have

2 2

c, +d, =1 e, - d, = ~I1(J,J) = -k
i i i i
c, =d, =20 all j# i
J J
hence
_1-k _ I+k
C1 ) ? d1 )
c. =d, =0
J J

*
It follows that the corresponding curvatures at x is given by (with respect

to the normal given by Y '(L))
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2 2L 2 - -2

2L L
- et L] = +
k V. _JeJ (cie die )(cie die
_sinh L - k cosh L

~ cosh L - k sinh L

..L)

as claimed. -

Assume now there 1s a sequence of eigenfunctions uj satisfying ©) or (X)

+1
in the domain & . For each b € or" we consider the functions ?& with
ny2 2
=)+ A =a,
(3) p 5

n
93 - e( 2 + ikj)<x,b>
which satisfy

ny 2 2
Asaj+((5) ”‘j”"j“)-

Then Green's identity yields as before

du, 3.
0 sz [(Bu) P, = (ubf)] ég (g% - vy 50

The right hand side is

e/ 9. = | I, in case u, solves (J)
aq N J
3,
-c f ggl = £Q %V in case uj solves (/).

To apply the asymptotic expansion formula in §1, we assume b is a regular
value of the Gauss map x * b(x). We coordinatize the hypersurface by going

over to the upper half space H, mapping potl isometrically to H_ by (4.4),

thus sending b to =. The hypersurfaces will be tangent to the horospheres
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Yol - <pj,b> at a finite number of points pl,...,pN; and locally

expressible as a graph Yo+l = h(yl,---,yn). In terms of this representation

the unit upward normal is given by

1/

v = h(l + IVhlz)" 2(—Blh,...,—3nh;1)

and the volume element is

i
Writing the integrands [ I, and / I, in the form ue” f, by (&.1):

n
- = <x,b> .
(7)1, =e ° LA
-1
+iX
-h 2 (1+|Vh|2)1/2e ir log b dy,**+dy_
n
- 5 <x,b>

_ . D, 490 2 ’ ix<x,b>

(4.8) IA/_ ( > + i)) 35 <x,b> e e dv
-1
=@ - )0+ lvn|2)t/2p 2 oFiA log b dy *++dy_ .
2
We express the Hessian 5;—5;— log h in terms of intrinsic geometric
195
quantities. For this, observe that
22 log b = ’h -1 _3n 3n -2
3y .9 3
B dy,dy 9y; ¥y
dh

can be evaluated at p; where 3y = 0. Hence,
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32108 h ~ 32y e
3y 9 = 3y.0 ’
¥48 ¥1%y,

thus in its diagonalized form

2

3 ~ - ~

5;—%§E—E = Gijkih 1 where ki denotes the Euclidean principal curvature with
173

respect to the upward normal. The Euclidean principal curvature ki can be

-~

related to the hyperbolic principal curvatures by a computation similar to

that of (4.2), we omit the details but record the result:

in particular, when v is vertical,

i a1 g 7 M= Gy = D

We can now write down the leading order term in the asymptotic expansion of

f ID and f %Y:
n n n n
- = - n > —-ixlogh(p.) = +1
-~ _1 2
[1_ =1 h 2oy 2 @R (5.0) Y2 (e v o
2 b (b= ] g T 5 2
73
or intrisically,
n n n
-2 - Lo b iA<p,,b> L}
2} -1/2 ~ 2 ’ 1,2
f1p= 1 ) ® (e pp-n) /2, 2 73T Lo

bt(pj)=b

Similarly
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- g— n - %— %- -iXlogh(p.) 1‘%
f1,= 1 +@ - o)) (1 (ki(pj)—l)) h*(p, e T+ 0(5)
bt(pj)=°° i=1 )
or intrinsically,
-2 n —% iA<p,,b> L3
f1,-1 triny) ‘@G- (1 ko) Te T+ 03]
" bylp)e =1~

To draw geometric conclusions, we consider a one parameter variations by

taking |v[ = 1, v orthogonal to b, defining
b(8) = (cos 6)b + (sin 8)v.

Then by differentiating the identities (2.4) and (2.5) with respect to %5-,

we obtain

Note that

2x° v

%5‘<x,b(e)> = - —
1-2x* b+ | x|

(- % +1X)<x, b>

4. - e
d® 2 1-2xe b+| x|
(- 5 +1r)<x,b> .
(%gﬂze 2 e [(%-—ik)——zleL————ﬂl + lower degree terms in (%-—ik)}
1-2x* b+ x|
(- §+ 12 )<x,b>
¢ e
n

a0 p (77 +A)<x,B> g+l 2x 3
(&) 55 e = {-&-0)"T () - 57 <xp>

1—2x'b+|x|2
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+ (g'—ll)zl( 2x* v -1 gv 2x°v .
B 1—2x'b+|x? 1-2xe b+| x|
(- 5 +iX)<x,b>
. (Do, 2
+ lower degree terms in (—-—1X)}e .

2

Going over to the y coordinates and evaluating the leading order asymptotics

we find in both cases:

! n
2p.*v -5 -5 <p.,b> ix<p,,b>
z 2 b b -—
4.9) - 7§ £ ) -1 2,2 70T 2 onlE,
b .)=b 1-2p.*b+|p,
+(Py) Py b+[p,|
Regarded as a system of linear equations with coefficients
2p.°v
Ay = -0 . > - 1<3,2 <N,
1-2p,*b+|p.
Py bt[p,|
the Van der Monde determinant must vanish. Hence by lemma 4.3, there is a
pair of points say P; =P and pj = p* which lie on the same geodesic joining p

to b. Furthermore, the geodesic joining p to p* is orthogonal to 9 at p and
p* hence Lemma 4.5 shows the distance L is comnstant as b, and hence p,
varies locally. By analytic continuation, we conclude that § is a domain of
constant breadth. In addition, for each b and each p with bi(p) = b, there
is exactly one other p* with the same property lying on the geodesic joining p
to b. Otherwise, we will find a pair p,p' with the exterior normals pointing
in the same direction as the geodesic Y from p; to p;, this means that by
analytic continuation there will be infinitely many points on the geodesic Y

spaced evenly apart, contradicting the boundedness of Q. Thus all points P;

*

"",{DN/Z, pN/z}’ SUCh

with b+(pj) = b can be partitioned into pairs {pl,pl}

that no two pairs lie on the same geodesics, and the geodesic from pj to b
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*
enters 9 at P, and leaves &1 at pj (it may meet 9% at other points as well

but not orthogonally). The equation (4.9) can now be written as

) > -2 > D<o b - 2t b
N/2 Doy 1<pj,b 7<P;»b iA<py,b > pj,b

4.10)  § (— NE € + £ = ] = o(3)-
31 1-2p [, | (H(ki(pj)-l))l/z (H(ki(p;)—l))l/z >

The determinant of the system is now non-singular, hence the contribution from

each pair must cancel, thus we have the identity:

Mk -1)
-1  _

+ nL
C T H(kj—l)

(4.11)

Recalling the identity (4.6),

% sinh L — k. cosh L
J

ky = Gsh L = K, sinh L

we conclude that the curvature identity

+

3

=g

(cosh L - kj sinh L) = (—l)n
1

holds.

Proof of Theorem2 It will suffice to show each kj > 1 where now kj is taken

with respect to the interior normal, for then the curvature relation
n
F(ky,---,k )= T (cosh L - k_sinh L) % (- =0
i ]
holds.
Recall that in (4.6) the normal was considered to be tn the exlerior

direction hence (4.6) becomes



-32-

sinh L - kj cosh L
j  cosh L - ky sioh L

1 <k .
Because sinh L - kj cosh L € sinh L - cosh L < 0 we find cosh L - kj sinh L < O
always. Hence all partial derivatives %Ei- have the same sign so that
Alexandrov's theorem applies.

To prove the inequality kj > 1 we will show that for each b there is
exactly a pair of points p and p* such that b+(p) =b = b_(p*) so that <x,b> =
{p,b> is the smallest horosphere to contain £, hence ki(p) > 1. We consider

. d &
the next highest order term in the asymptotic expansion of f (EEJ I and

z -
f (Q—J I : In the isometry of (4.4), —x7 goes over to without
de 2
1-2xe b+| x|
loss of generality one of the coordinates Vo with 1 € a € n. Then the
. . d 2
integrand for the highest order term in f (E§J IO appears as

.1 \X L, -n/2 2,1/2 -iXlogh
(-0)* 2y )T e n| 2y 2T Oy gy

and the integrand for the highest order term in f (%gﬂz%v appears as

)2 -n/ZeiAlogh

L+1
-(=i}) (Zya h dyl,...,dyn.

The next order asymptotic for these integrals give

N2 W) ) logh(p,) Bp) Alogh(p) 4
il e N L.u(p.) + = 177 © J Lju(pj)] =6(1)
’ (e (p3-1))

L 1/2
31 @y o)1)

where

L. -n/2

yoh 2)1/2

(1+|Vh|
u=
yih—n/Z
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2
h“(p.) 2
0.u z ] g )u
j i ki(pj)-l 9y, 2
ki(p )-1 2
and L.u= -if %- T.u + ; D%(g.u) + 31 ']? (g%u)].
J L I 272131 J

We display the computations: (recall that the Pj are critical points of h)

2,1/2 _ ) 2,1/2

; yi n/2(1+|Vh| j(ya)o —n/2 (1+|Vh|2 1/2 yi j( /2 (1+]9n| )™ )
h2(p ) 2
NS 2 i~ ,-n/2 £ . -n/2,_ 1 _
2=y o ;D) B oy n g+ ] G (p)mD))
£  -n/2 L..-n/2 L -n/2
o P 10 Ve
2-2 h”(p, ) -n/2 2, aon ™2
= 20-Dy, W_J)—_lh ty, (-3
a pj
2( & -n/2 2.1/2y 2, % . -n/2 2,1/2
j(gjya (VR 77) = gy B TAHR[D )
4 h, (k,-1)(k,~-1) (k,~1)(k.-1)
I G DG | (e s Iy
1,8 “51\Py 2 Py h * h

h4 hiia £-1 h-n/2

+1 (ki(pj)—l)(ka(pj)—l) h 2y

2 l -n/2 2 L., -n/2
j(gj o ) = j(gjya)h
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e W
. N
[

3,2
.(glu) j(gj)u

4 2
_ 2 h himn n/2 2

(k,~1)(k_-1)(k —l)
n i m n

(p ).

, , L -1 L-
Summing up; by grouping into powers of Yor Yo and Yo 2 we find, setting

n/2

h (pj) +iX logh(p.)

A = e
j _ 1/2
Tk, (p)=1)

equation of the form.

, equation (4.10) yields for each £ an

/ 2
Z [Aj(ya(pj)Aj + y (p )zB + y (p )2 (&- 1)c )
+ A7 (y (P )A + y (p )23 + y (p JL(2-1)C, ] =

*
Since Aj + Aj = 0 by (4.10) this equation can be rewritten as

N/2

/
L * -1 * -2 *
A — -— — — =
jél s PG AD + 5 IAB B + v T (p2(A-1)(C~C )]

We thus have an infinite sequence of identities indexed by £ = 1,2,3,... .
Lemna For distinct real numbers Yy j=1,...,N/2, if there exist a vector

(al"“aN/Z’bl""’bN/Z’Cl""’CN/Z) satisfying

/

% -1 -2

.a., + 2y, b, + 2(L~-1)y, ) =0 for £ =1,2,...
E (yJ y_'] j ( )y_'] CJ) y<&y

Proof Assume g-> 2 then we may without loss of generality assume that

iyll < |y2| < |y3| ees & ]y|N . It is clear by taking J§ -—o0 in the equations
2
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that e = 0. In this inductive manner, we conclude all Cj = (0. Next we see
2
again that bN = 0 and inductively all bj = 0.
2

Applying the lemma to the above sequence of identities, it follows that

N *
unless 7= 1, we will have Aj(Cﬁ-Cﬁ) = 0, which upon examination gives

2 2, *
h (pj) h (pj)

ka(pj)_l k:(pj)-l

However the argument shows this identity works for all a. Taking the product

over indices a = l,*** ,n, eL = 1, which is a contradiction. This finishes

the proof of Theorem 2.
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