Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    COMPLEX SELF-SORTING SYSTEMS

    Thumbnail
    View/Open
    Ghosh_umd_0117E_10120.pdf (12.70Mb)
    No. of downloads: 2554

    Date
    2009
    Author
    Ghosh, Soumyadip
    Advisor
    Isaacs, Lyle
    Metadata
    Show full item record
    Abstract
    Over the past century scientists have taken a reductionist approach towards much of the physical and biological sciences. More recently scientists have become interested in constructing complex systems from their components and thereby controlling their emerging behaviors. As supramolcular chemists we have been pursuing an approach to the creation of complex functional systems - systems chemistry - by preparation of self-sorting systems. Self-sorting system displays ability to efficiently distinguish between self- and non-self even within complex mixture. This dissertation is divided into four chapters that describe increasingly complex self-sorting systems. Chapter 1 describes a literature review on self-sorting. First, we introduced the concept of self-sorting and then described the previously studied self-sorting phenomenon in the Isaacs group followed by a description of the examples of self-sorting systems in the literature. Chapter 2 describes the synthesis and characterization of eleven C-shaped methylene bridged glycoluril dimers (II-1 - II-11) bearing H-bonding groups on their aromatic rings. Compounds II-1, II-2, (±)-II-4a, (±)-II-5, and II-7 form tightly associated homodimers in CDCl3 due to π - π and H-bonding interactions. Compounds II-2, (±)-II-5 and II-7, having disparate spatial distribution of their H-bonding groups show the ability to efficiently distinguish between self and non-self within three component mixtures in CDCl3. The effect of various structural modifications (e.g. chirality, side chain steric bulk, relative orientation, number and pattern of H-bonds) on the strength of self-assembly and the fidelity of self-sorting are presented. Chapter 3 describes the stepwise construction of an 8-component self-sorted system (III-1 - III-8) by the sequential addition of components. This process occurs via a large number of states (28 = 256) and even a larger number of pathways (8! = 40320). A pathway (III-5, III-6, III-7, III-8, III-4, III-3, III-2, then III-1) that is self-sorted at every step along the way. Another pathway (III-1, III-8, III-3, III-5, III-4, III-7, III-2, then III-6) exhibits interesting shuttling of guest molecules among hosts. The majority of pathways - unlike the special ones described above - proceed through several non self-sorted states. We characterized the remainder of the 40320 pathways by simulation using GEPASI and describe the influence of concentration, mean binding constants and standard deviation on the fidelity of the self-sorting pathways. Chapter 4 describes a method to control biological catalysis using synthetic self-sorting systems. We report the synthesis of IV-1 - IV-5 which contain both enzyme inhibitor and cucurbit[n]uril binding domains. The enzyme binding domains of IV-1 - IV-5 bind to the active sites of Bovine Carbonic Anhydrase or Acetylcholinesterase and inhibit their catalytic activities. Addition of CB[7] catalyzes the dissociation of IV-1 and IV-2 from the active site of BCA and thereby regenerates the enzymatic activity. In contrast, addition of CB[7] to AChE*IV-44 and AChE*IV-54 results in the formation of a ternary complex that does not regenerate the enzymatic activity.
    URI
    http://hdl.handle.net/1903/9248
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility