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Over the past century scientists have taken a reductionist approach towards 

much of the physical and biological sciences.  More recently scientists have become 

interested in constructing complex systems from their components and thereby 

controlling their emerging behaviors.  As supramolcular chemists we have been 

pursuing an approach to the creation of complex functional systems – systems 

chemistry – by preparation of self-sorting systems.  Self-sorting system displays 

ability to efficiently distinguish between self- and non-self even within complex 

mixture.  This dissertation is divided into four chapters that describe increasingly 

complex self-sorting systems.   

Chapter 1 describes a literature review on self-sorting.  First, we introduced 

the concept of self-sorting and then described the previously studied self-sorting 

phenomenon in the Isaacs group followed by a description of the examples of self-

sorting systems in the literature. 



  

Chapter 2 describes the synthesis and characterization of eleven C-shaped 

methylene bridged glycoluril dimers (II-1 – II-11) bearing H-bonding groups on their 

aromatic rings.  Compounds II-1, II-2, (±)-II-4a, (±)-II-5, and II-7 form tightly 

associated homodimers in CDCl3 due to π - π and H-bonding interactions.  

Compounds II-2, (±)-II-5 and II-7, having disparate spatial distribution of their H-

bonding groups show the ability to efficiently distinguish between self and non-self 

within three component mixtures in CDCl3.  The effect of various structural 

modifications (e.g. chirality, side chain steric bulk, relative orientation, number and 

pattern of H-bonds) on the strength of self-assembly and the fidelity of self-sorting 

are presented. 

Chapter 3 describes the stepwise construction of an 8-component self-sorted 

system (III-1 – III-8) by the sequential addition of components.  This process occurs 

via a large number of states (28 = 256) and even a larger number of pathways (8! = 

40320).  A pathway (III-5, III-6, III-7, III-8, III-4, III-3, III-2, then III-1) that is 

self-sorted at every step along the way.  Another pathway (III-1, III-8, III-3, III-5, 

III-4, III-7, III-2, then III-6) exhibits interesting shuttling of guest molecules among 

hosts.  The majority of pathways – unlike the special ones described above – proceed 

through several non self-sorted states.  We characterized the remainder of the 40320 

pathways by simulation using GEPASI and describe the influence of concentration, 

mean binding constants and standard deviation on the fidelity of the self-sorting 

pathways.   

Chapter 4 describes a method to control biological catalysis using synthetic 

self-sorting systems.  We report the synthesis of IV-1 – IV-5 which contain both 



  

enzyme inhibitor and cucurbit[n]uril binding domains.  The enzyme binding domains 

of IV-1 – IV-5 bind to the active sites of Bovine Carbonic Anhydrase or 

Acetylcholinesterase and inhibit their catalytic activities.  Addition of CB[7] 

catalyzes the dissociation of IV-1 and IV-2 from the active site of BCA and thereby 

regenerates the enzymatic activity.  In contrast, addition of CB[7] to AChE•IV-44 and 

AChE•IV-54 results in the formation of a ternary complex that does not regenerate the 

enzymatic activity. 
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I.  Chapter 1:  Literature Review of Complex Self-Sorting 

Systems1 

 

1.2 Introduction. 

Beginning with the pioneering work of Cram, Lehn, and Pederson which 

defined the area of supramolecular chemistry as a contemporary discipline, the 

chemical community has focused significant attention on elucidating the fundamental 

aspects of non-covalent interactions between molecules.2-4  For example, the use of H-

bonds, π−π, and metal-ligand interactions as the driving force for the build up of 

complex structures under thermodynamic control is now relatively well developed.5-9  

Accordingly, in the past decade the emphasis in the supramolecular chemistry has 

shifted toward the development of self-assembled systems whose function derives 

from the precise orientation of the components relative to one another.  For example, 

chemists have developed molecular machines that rely on intra-aggregate movements, 

chemical sensors that function by changes in the UV/Vis or fluorescence output of a 

chromophore upon aggregation, and membrane transporters that shuttle ions and 

molecules across the hydrophobic biological interface.10-13  All of these functional 

systems rely on the design and a priori synthesis of specific molecules (e.g. hosts, 

chromophores, machines, transporters) with specific structural features for specific 

function. 
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1.2. Self-Sorting   

Self-sorting refers to the ability of a molecule to efficiently distinguish 

between self- and non-self even with a complex mixture.  As such the concept of self-

sorting is intimately tied to the concepts of binding affinity, binding selectivity, and 

multi-component mixtures that are so commonly encountered in biological systems.   

 

1.2.3 Early Examples of Self-Sorting. 

In a 1993 report Lehn describes the synthesis of a series of bipyridine 

oligomers (I-1 – I-4) that were individually known to undergo well-defined self-

assembly in the presence of Cu+ by metal-ligand non-covalent interactions to afford 

the double helicates (I-12•Cu+
2 – I-42•Cu+

5).14  Lehn then asked the simple but far-

reaching question of what would happen if all four oligomers where mixed together 

simultaneously.  Would the information encoded within the molecular structure of I-1 

– I-4 under the read-out of Cu+ result in the formation of a simple mixture of double 

helicates (e.g. I-12•Cu+
2 – I-42•Cu+

5) by a self-recognition (self-sorting) process based 

on oligomer length occur or would cross-over aggregation between ligands of 

different length occur?  In the experiment a mixture comprising (I-12•Cu+
2 – I-

42•Cu+
5) was observed (Scheme I-1).  In a related experiment Lehn used the 

coordination number preferences of Cu+ and Ni2+ to direct the self-recognition (self-

sorting) of two different bipyridine trimers I-5 and I-6 (Scheme I-2).14  In this 

manner, Lehn showed that some complex mixtures can undergo surprisingly simple 

behavior by application of metal-ligand non-covalent interactions.   
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The first report that we are aware of in the chemical literature to use the term 

“self-sorting” comes from the group of Sanders.15  In this paper, Sanders reports the 

thermodynamically controlled trans-esterification reaction (KOMe, 18-Crown-6, 

toluene, reflux) of a mixture of pre-disposed building blocks I-7 and I-8 (Scheme I-

3).  Remarkably, rather than a complex mixture of macrocycles comprising both 

building blocks a simple mixture of dimeric macrocycle I-10 derived from I-8 and 

trimeric macrocycle I-9 derived from I-7 was observed.  This paper was very 

significant in that it began to define self-sorting as an area of research and as the first 

example of a self-sorting system based on reversible covalent bond formation under 

thermodynamic control within a mixture.   
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Scheme I-3.  Self-sorting based on thermodynamically controlled trans-esterification 

during macrocyclization of predisposed building blocks.   
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1.2.4 Difference Between Self-Assembly and Self-Sorting. 

Self-assembly is the spontaneous high fidelity synthesis of a (note: singular) 

higher order structure from its components usually under thermodynamic control.  

Self-sorting refers to the spontaneous high fidelity synthesis of a system (note: plural) 

of higher order structures from their components usually under thermodynamic 

control.  The critical distinction between self-assembly and self-sorting, therefore, is 

that self-sorting occurs within complex multi-component mixtures whereas self-

assembly occurs from a single set of components.   

Self-sorting systems are simply superposition of a series of well-defined 

aggregates from the literature.  With proper design and implementation, however, it is 

possible to construct self-sorting systems whose behavior is different from its 

components.16  For example, consider the simple system comprising two hosts (A and 

B) and two guests (M and N), which can form four possible host-guest complexes 

(AM, AN, BM, and BN) (Scheme I-4a).  We fix the total concentrations of hosts A 

and B ([Atot] and [Btot]) at 1 mM and choose the four equilibrium constants such that 

host A (104-fold) and host B (10-fold) both prefer guest M (Scheme I-4b).  The 

various mole fraction definitions (Scheme I-4c) are used to construct a plot (Scheme 

I-4d) of the composition of the mixture as a function of total guest concentration 

([Mtot] = [Ntot]).  When [Atot] = [Btot] ≥ [Mtot] = [Ntot] complexes AM and BN dominate 

because A binds M 100-fold more tightly than B binds M.  The excess free energy 

obtained from forming AM can be used to force B to accept N despite its individual 

preference for M.  The critical realization is that because self-sorting systems 

minimize the overall free energy of the entire system, unusual behavior that differs 
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from the individual components may occur.  The ultimate example of this type of 

behavior is embodied in living systems whose multitude of components undergo well 

defined self-sorting processes that are orchestrated both in time and in space.  No one 

would consider isolated proteins, nucleic acids, or lipids to be alive but few can 

dispute the remarkable emergent behaviors that occur when these components are 

present as part of the cell.  The ongoing goals of our research in the self-sorting area 

is to go beyond those systems that are simply equal to the sum of their parts and to 

move toward systems that exhibit behavior similar to Nature (e.g. metastable energy 

dissipative rather than thermodynamically stable systems, compartmentation, 

catalytic events to alter the free energy landscape of complex mixtures)   

 

Scheme I-4. Stoichiometry induced partner displacement in a four-component 

mixture: (a) equilibria considered, (b) constraints imposed, (c) mole fraction 

definitions, and (d) a plot of mole fraction versus guest concentration ([Mtot] = [Ntot]). 
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1.3 Self-Sorting Behavior of Molecular Clips 

The first report came from our group in 2002 where we used methylene 

bridged glycoluril dimer substructure – the fundamental building block of the 

cucurbit[n]uril family of macrocycles17-19 – to create a self-sorted system.  We 

designed and synthesize (±)-I-11 with the hope that it would form a square-shaped 

aggregate by metal-ligand interactions and the hydrophobic effect (Scheme I-5).  

Experimentally, we found that (±)-I-11 underwent an enantiomeric self-recognition 

process triggered by the addition of I-12 during the formation of the racemic mixture 

(+)-I-112•I-122 and (–)-I-112•I-122.20  The self-recognition of one enantiomer of a 

racemic ligand during self-assembly to form homochiral metal complexes can be 

viewed as a form of self-sorting (e.g. the ability to distinguish between a ligand and 

its enantiomer even within the more complex mixture of the two enantiomers). 
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Scheme I-5.  Enantiomeric self-recognition of (±)-I-11 is triggered by addition of I-

12.   

Based on this result we anticipated that carboxylic acids I-13a and (±)-I-14a 

might form even larger hydrophobically driven aggregates when combined with I-12 

in water.  Unfortunately, no well-defined aggregates were observed by 1H NMR 

spectroscopy.  We discovered that esters I-13e and (±)-I-14e undergo tight 

dimerization (Ka ≥ 106 M-1) in CDCl3 solution to deliver I-13e2 and (+)-I-14e•(–)-I-

14e by a high fidelity heterochiral recognition process (Scheme I-6).21  Naturally, we 

decided to investigate self- versus non-self recognition in the mixture comprising I-

13e and (±)-I-14e in CDCl3.  1H NMR spectroscopy of this mixture was simply the 

superposition of the 1H NMR spectra of its components, which is the spectroscopic 

fingerprint of a self-sorting process. 
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Scheme I-6.  Self-sorting behavior of C-shaped molecular clips I-13e and (±)-I-14e. 

 

1.4 Development of Complex Self-Sorting Systems. 

1.4.1 Self-Sorting: The Exception or the Rule. 

The self-sorting systems described above were all based on the use of sets of 

compounds that possessed very similar structures.  Accordingly, it was viewed by the 

community as quite exceptional behavior that these systems undergo self-sorting 

based on metal-ligand, π-π, and H-bonding interactions.  In fact, despite the wide 

range of remarkably complex and functional systems that had been self-assembled 

over the years there was a perception that synthetic hosts and self-assembled systems 

were inferior to Natural systems in terms of strength and selectivity of binding.  We 

decided, therefore, to create a multi-component system comprising the molecular 

building blocks of a series of well defined aggregates from the literature and asked 

whether those compounds possessed the ability to efficiently distinguish between 
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self- and non-self even within a complex mixture.  Would the system undergo a high 

fidelity self-sorting process or would cross-over heteromeric aggregation occur?  For 

this purpose we selected I-15 and I-16,22-24 calixarene tetraurea capsule I-172,25 I-18 

and I-19 which are the components of Reinhoudt’s double rosette,26 Rebek’s tennis 

ball I-202,27 the components of Meijer’s ureidopyrimidinone dimer I-212,28 two 

molecular clips I-22 and I-23 (Figure I-1). We next measured the 1H NMR spectrum 

of each aggregate separately in CDCl3 solution (Figure I-2a-h) and then measured the 

1H NMR spectrum of the eight component mixture (Figure I-2i).  Remarkably, the 1H 

NMR spectrum of the 9-component mixture is simply equal to the sum of the 1H 

NMR spectra of its component aggregates.  This spectroscopic earmark indicates that 

this 9-component mixture undergoes a high fidelity self-sorting process.  We 

conclude that the precise pattern of H-bond donors and acceptors, the spatial 

distribution of those H-bonding groups, and the presence of closed networks of H-

bonds are factors that favor self-sorting rather than cross-over heteromeric 

aggregation.29  We also studied the influence of several key variables on the self-

sorting process – temperature, concentration, values of Keq, and the presence of H-

bonding competitors – by a combination of simulation and experiment.  Although it is 

clear that many systems do undergo heteromeric aggregation rather than self-sorting, 

this study lead us to conclude that the scope of the systems that are sufficiently 

selective to undergo self-sorting processes is much wider than previously appreciated.   
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Figure I-1.  Chemical structures of compounds used in H-bond directed self-sorting 

in CDCl3.   

 

Figure I-2. Hydrogen bonding region (8.0 – 14.5 ppm) of the 1H NMR spectra (H2O 

sat. CDCl3, 500 MHz, 298 K) recorded for a) I-1510•Ba2+ + 2 Pic-, b) I-

1616•2Ba2+•4Pic-, c) I-172, d) I-183•I-196, e) I-212, f) I-202, g) I-222, h) (+)-I-23•(–)-I-
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23, i) a self-sorted mixture comprising I-1510•Ba2+ + 2 Pic-, I-1616•2Ba2+•4Pic-, I-172, 

I-183•I-196, I-212, I-202, I-222, and (+)-I-23•(–)-I-23.  The representations depict the 

species present in solution.  The resonances are color coded to aid comparison.   

 

1.5 Examples of Self-Sorting Systems in Aqueous Solution. 

1.5.1 Social Self-Sorting in Aqueous Solution. 

Although the 9-component self-sorting system described above increased the 

complexity of designed synthetic self-sorting systems beyond what was possible 

previously it suffered a number of drawbacks.  First, this self-sorting process occurred 

in CDCl3 solution and was driven exclusively by H-bonds; in contrast Nature’s self-

sorting systems occur in aqueous solution driven by myriad non-covalent interactions.  

Second, the above system was constructed using mainly self-association processes – a 

subset of self-sorting processes dubbed narcissistic self-sorting by Anderson in his 

lovely work on oligomeric porphyrin ladders.30  Narcissistic self-sorting systems are 

particularly limited because strong self-association limits the number of different 

partners a molecule may have over its lifetime to one.  In contrast, it is possible to 

imagine a self-sorting system composed of host-guest pairs.  The advantage of such a 

host-guest based self-sorting system is that it is potentially environmentally 

responsive in that the addition of a better binding guest to the mixture would result in 

a change in composition of the self-sorting system.  We refer to a host-guest based 

self-sorting system as a social self-sorting system.  With these considerations in mind 

we selected compounds (±)-I-11, I-12 and I-24 – I-30 as the components of a social 
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self-sorting system in aqueous solution (Figure I-3).  Compound (±)-I-11 is known to 

undergo enantiomeric self-recognition triggered by I-12, molecular clip I-25 

undergoes tight dimerization, and cryptand I-24 binds tightly to K+ ion in water.  The 

molecular containers β-CD (I-29), CB[6], and CB[8] form discrete host-guest 

complexes with adamantane carboxylic acid I-30, hexanediammonium ion I-26, and 

the charge transfer complex comprising dihydroxynaphthalene and methyl viologen 

(I-27•I-28), respectively.  Once again we use 1H NMR as our analytical technique 

and measure the spectra of each of the host-guest pairs separately and then measure 

the spectrum of the 12-component mixture.  The 1H NMR spectrum of the mixture is 

simply the sum of the 1H NMR spectra of its components, which indicates this system 

undergoes a high fidelity social self-sorting process.16  We also studied the influence 

of pH, temperature, equilibrium constant, and host:guest stoichiometry on the fidelity 

of self-sorting by a combination of simulation and experiment.  The significance of 

this study lies in the demonstration that less direction interactions like ion-dipole and 

π-π interactions and the hydrophobic effect can be used to drive self-sorting in water 

in much the same way more directional H-bonds can be used in CDCl3 solution.  In 

addition, the use of host-guest pairs as the basis of a self-sorting system (social self-

sorting) offers the potential for environmental responsiveness in the form of tighter 

binding competitive guests.  We expect this responsiveness will be one of the vehicles 

to achieve biomimetic function. 
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Figure I-3.  Chemical structures of compounds used for social self-sorting in aqueous 

solution driven by ion-dipole, metal-ligand, π-π, and hydrophobic interactions.   

 

1.5.5 The CB[n] Family of Macrocycles are Prime Components for the 

Construction of Self-Sorting Systems. 

In the course of preparing the 12-component social self-sorting system 

described above and in unpublished investigations of the complexation between 

CB[n] hosts and their guests we were surprised that well defined complexes were 

obtained in such high fidelity processes.  This suggested to us that the high binding 

affinity (Ka up to 1012 M-1) and selectivity (up to 107 M-1 for I-31 between CB[7] and 

CB[8]) delineated by the pioneering work of Mock for CB[6] would also be observed 

individually for the larger CB[n] homologues (CB[7] and CB[8]) and also that 

collectively the selectivity of CB[6], CB[7], and CB[8] toward a common guest might 

be large.  Accordingly, we measured the binding affinity of CB[6], CB[7], and CB[8] 

toward a series of guests (I-26, I-31 – I-38) by 1H NMR competition experiments.  A 
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selection of those values of Ka are presented in Table I-1.31  Remarkably, the range of 

values of Ka spans more then 10 orders of magnitude!  Several series of complexes 

deserve comment (Scheme I-7).  For example, consider the CB[7]•I-31 and CB[8]• I-

31 complexes which differ in stability by over seven orders of magnitude.  

Apparently, I-31 is slightly too large for CB[7] but has a good size and shape match 

with the cavity of CB[8].  Similarly, I-37 prefers to bind to CB[7] over CB[6] due to 

size considerations.  There are, however, situations where a guest binds tighter to the 

smaller CB[n] homologue.  For example, I-26 prefers to bind to CB[6] relative to 

CB[7] (5-fold) and I-38 prefers to bind to CB[7] relative to CB[8] (5000-fold); we 

attribute these preferences to a better size match between the guest and the smaller 

CB[n] homologue.  A final intriguing entry in Table I-1 concerns the CB[7]•I-34 and 

CB[8]• I-34 complexes which differ in affinity by over 3000-fold.  In the CB[7]• I-34 

complex only one arm of I-34 can fit inside CB[7]; in contrast CB[8] induces a U-

shaped turn of guest I-34 which better fills the cavity of CB[8].  This result is 

significant because it suggested to us that CB[8] is capable of controlling the folding 

of abiotic oligomers in water (vide infra). 
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Table I-1.  Values of Ka (M-1) measured for the binding between CB[n] hosts and 

guests (D2O, pD 4.74, 25 ˚C).   

 CB[6] CB[7] CB[8] 

I-31 – 2.5 × 104 4.3 × 1011 

I-32 nb 1.5 × 105 – 

I-33 8980 8.4 × 106  

I-34 – 1.8 × 107 5.8 × 1010 

I-35 nb 1.8 × 107 nb 

I-26 4.5 × 108 9.0 × 107 – 

I-36 nb 8.9 × 108 nb 

I-37 550 1.8 × 109 – 

I-38 – 4.2 × 1012 8.2 × 108 

– = not measured; nb = no binding 
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Scheme I-7.  Illustration of the competition between a single guest for different sized 

CB[n].   

 

1.5.6 Kinetic Self-Sorting. 

The sections above describe the preparation of self-sorting systems under 

thermodynamic control.  In the design of such systems the only variables that are 

relevant are the concentrations of the components and the equilibrium constants of the 

various complexes.  Living systems, of course, do not reach equilibrium until they are 

dead and instead use strategies to maintain metastable states and otherwise control the 

approach toward equilibrium.  One of the common strategies employed by Nature is 

the use of molecular species containing multiple binding epitopes each of which 

serves a specific functional role.  To introduce elements of temporal control into our 
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self-sorting systems we decided, therefore, to synthesize and study guests containing 

two distinct binding epitopes (I-39 – I-42) which we refer to as two-faced guests 

(Scheme I-8).  In designing these guests we planned to take advantage of not only the 

well defined thermodynamic preferences of CB[n] toward suitable cationic guests, 

but also the fact that their kinetics of association and dissociation are known to span 

many orders of magnitude.32-35  Experimentally, we found that when a solution of 

CB[6] and CB[7] are mixed with a solution of I-39 and I-43 we observe the initial 

formation of the CB[6]•I-39 and CB[7]•I-43 complexes.  After a period of 56 days 

this kinetic preference is lost and a thermodynamic self-sorting system comprising 

CB[6]•I-43 and CB[7]•I-39 were obtained!36  Experiments involving two-faced 

guests with longer (e.g. I-40 and I-41) alkylammonium tails as CB[6] binding 

epitopes compromise the fidelity of the kinetic self-sorting state.  By a combination of 

experiment and simulation we were able to determine that the major factor controlling 

the high fidelity of kinetic self-sorting is the fact that I-43 associates faster with 

CB[7] than I-39 does despite the fact that the CB[7]•I-39 complex is 

thermodynamically more stable than CB[7]•I-43.  This situation probably arises 

because the ureidyl C=O lined portals of CB[n] are narrower than the cavity which 

they guard which may result in large barriers to association and dissociation for 

guests which optimally fill the CB[n] cavity.  The influences of metal cations 

(identity and concentration) on the fidelity of the kinetic and thermodynamic self-

sorting were also investigated.  One of the most interesting aspects of this 

investigation was the post facto deconstruction of the system which revealed that the 

CB[6]•I-43 complex is governed by remarkably slow kinetics of association (kon = 
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0.0012 M-1 s-1) and dissociation (koff = 8.5 × 10-10 s-1).36  This dissociation rate 

constant – which is approximately 100-fold slower than biotin•avidin – corresponds 

to a half-life of 26 years at room temperature!  Because the outcome of self-sorting 

experiments simultaneously probes the entire matrix of kinetic constants and 

thermodynamic parameters (Scheme I-8) these simple experiments are capable of 

revealing truly anomalous host-guest binding experiments rapidly.  As uncovering 

and understanding such anomalous binding events are one of the key subjects for 

supramolecular chemists we believe that self-sorting systems have much to offer to 

the community. 

 

Scheme I-8.  Kinetic and thermodynamic self-sorting based on guests with two 

binding epitopes.   

 

1.5.7 Self-Sorting Processes Control the Folding, Forced Unfolding, and 

Refolding of an Abiotic Oligomer in Water. 

Based on the high association constants observed for CB[7]•I-34 and CB[8]• 

I-34, the high selectivity observed between these two complexes and the interesting 
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folding induced by CB[8] we wondered whether longer oligomers might be induced 

to exhibit well defined conformational preferences in the presence of the various 

CB[n] (n = 7, 8, 10).  For this purpose, we designed and synthesized a number of 

arylene-triazene oligomers exemplified by compound I-44.  Compound I-44 contains 

four (guanidine-like) triazene-N bonds (highlighted with curved arrows) which may 

adopt two different rotamers (Figure I-4).37  Of the 24 (16) possible conformations, 10 

are unique.  Through a combination of NMR spectroscopy and x-ray crystallography 

we were able to determine that the complexation of I-44 with CB[7], CB[8], or 

CB[10] leads to the formation of well defined CB[7]•(a,s,s,a)- I-44•CB[7], 

CB[8]•(a,a,a,s)- I-44, and CB[10]•(a,a,a,a)- I-44 complexes (Scheme I-9).  Perhaps 

most interesting, however, is how the high affinity and selectivity of CB[n] 

complexes can be used as a thermodynamic driving force to sequentially induce the 

folding, unfolding, and refolding of abiotic oligomer I-44 into four different 

conformations.  We first add CB[8] to a solution of I-44 which populates the full 10-

component conformational ensemble open to I-44 which induces the folding of I-44 

to yield the CB[8]•(a,a,a,s)- I-44 conformation by maximization of ion-dipole and H-

bonding to the ureidyl C=O portals of CB[8] and the hydrophobic effect.  By addition 

of I-31 (1 equiv.) and CB[7] (2 equiv.) it is possible to eject I-44 from the cavity of 

CB[8] under the formation of CB[8]•I-31 and then refold I-44 with the help of CB[7] 

to yield CB[7]•(a,s,s,a)- I-44•CB[7].  In this process the high affinity of I-31 for 

CB[8] (Ka = 4.3 × 1011 M-1) ensures the transformation into a high-fidelity self-sorting 

state.  If this transformation is conducted stepwise by the addition of CB[7] first, it is 

possible to spectroscopically observe the intermediacy of CB[8]•(a,a,s,a)- I-
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44•CB[7].  Remarkably, control experiments show that the binding of CB[7] to the 

tail of guest I-44 catalyzes its dissociation from the cavity of CB[8].  Finally, addition 

of I-38 (2 equiv.) to CB[7]•(a,s,s,a)-I-44•CB[7] results in the formation of CB[7]•I-38 

(Ka = 4.2 × 1012 M-1), ejection of I-44 into free solution where it forms its equilibrium 

mixture of conformers.  Subsequently, I-44 ejects CB[5] from the CB[10]•CB[5] 

complex to yield a self-sorted state comprising CB[10]•(a,a,a,a)- I-44, free CB[5], 

CB[8]•I-31, and CB[7]•I-38.  This study illustrates how it is possible to use high 

affinity and highly selective receptors like CB[n] and their associated large values of 

ΔG of binding to mimic an important biological event – namely the folding, 

unfolding, and refolding of an oligomeric compound in water.   
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Figure I-4.  Chemical structures of four of the ten conformational isomers of I-44.  

Arrows highlight the four two-fold rotors. 
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Scheme I-9.  The sequential addition of various CB[n] and guests to I-44 induces 

folding, forced unfolding, and refolding of I-44 into four different conformations.   

 

1.6 Selected Examples of Self-Sorting Systems from the Literature.   

A number of laboratories have been pursuing the development of self-sorting 

systems either explicitly or implicitly.  In this section we present a selection of those 

systems based on a variety of non-covalent interactions. 

 

1.6.5 Self-sorting Systems Based on Porphyrin Coordination Chemistry. 

The earliest example of a porphyrin derived self-sorting system comes from 

the Anderson group.30  The Anderson group studied the formation of porphyrin 

ladders from butadiyne linked linear porphyrin dimer though hexamer in combination 
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with diazabicyclooctane.  They observed a variety of interesting behaviour including 

positive cooperativity, two-state assembly, large Hill coefficients, and narcissistic 

self-sorting.  More recently, the Osuka group has studied the assembly and self 

sorting of meso-meso linked porphyrin dimers bearing pyridyl substituents.38-40  A 

beautiful example arises from the assembly of meso-cinchomerimide appended 

diporphyrin I-45.  Compound I-45 contains three axes of chirality – the meso-meso 

porphyrin link and the two cinchomerimide-porphyrin linkages – which leads to six 

different atropisomers enumerated in Scheme I-10.  These six atropisomers exist as 

three pairs of enantiomers, namely the in-in, in-out, and out-out atropisomers that 

differ in the angle between the two coordinating N-atoms of the cinchomerimide 

groups.  Remarkably, the atropisomer with the smallest angle I-45in-in leads to a 

triangular trimeric porphyrin box (I-45in-in)3 whereas the atropisomers with larger 

angles I-45in-out and I-45out-out lead to tetrameric and pentameric porphyrin boxes (I-45in-

out)4 and (I-45out-out)5, respectively.  Even more remarkable is that this self-sorting 

assembly process occurs in a homochiral fashion whereby all molecules of I-45 in a 

given assembly are of a single handedness (e.g. (R- I-45in-in)3 and (S- I-45in-in)3).  This 

result nicely demonstrates that subtle conformational and stereochemical information 

can be efficiently translated from simple building blocks to far more complex 

assemblies.   
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Scheme I-10.  Homochiral self-sorting assembly of meso-linked porphyrin I-45. 
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1.6.6 Self-sorting Based on Hydrogen Bonding Interactions. 

The Zimmerman group has studied the self-assembly of H-bonding modules 

derivatized with dendrons of different generations in non-polar solvents by H-

bonding interactions.41,42  For example, Zimmerman and co-workers find that I-46 – 

G1 which contains DAA and DDA H-bonding faces with 60˚ relative orientation 

undergoes self-assembly to yield hexamer (I-46 – G1)6 (Scheme I-11) as evidence by 

size exclusion chromatography (SEC).  Similarly, dimeric compound I-47 – G3 with 

its self-complementary DDAA faces forms an exceptionally stable cyclic hexamer (I-

47 – G3)6 by H-bonding interactions.  Very interestingly, a mixture of I-46 – G1 and 

I-47 – G3 undergoes a high-fidelity self-sorting process to yield the individual 

hexamers (I-46 – G1)6 and (I-47 – G3)6 driven by the different patterns of H-bonds 

and relative orientation of their faces; SEC monitoring of this mixture over the course 

of 53 days does not reveal any evidence of cross-over heteromeric aggregation.  Quite 

interestingly, when a mixture of I-46 – G1 and I-46 – G3  – which contain identical 

H-bonding information, but different sized dendritic wedges on their periphery – is 

prepared a high fidelity social self-sorting process is observed under the the formation 

of the mixed aggregate (I-46 – G1)3•( I-46 – G3)3 wherein small dendritic wedges are 

adjacent to large dendritic wedges and vice versa.  This process proceeds via the 

kinetic intermediacy of a dynamic combinatorial library of the 11 distinct hexameric 

aggregates containing all combinations of one – five equivalents of I-46 – G1 and I-

46 – G3 (Scheme I-12). 
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Scheme I-11.  Hexameric assemblies based on DDA-AAD H-bonding motif. 

 

Scheme I-12.  Mixed aggregates formed from mixing of (I-46 – G1)6 and (I-46 – 

G3)6. 
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1.6.7 Self-Sorting Coiled Coil.   

The assembly of α-helical coiled coils from amphiphilic peptides depends 

subtly on the sequence of the oligomer with a variety of important biologically 

consequences.43  Consequently, the control over the assembly of such (designed 

and/or non-natural) peptides has been the subject of numerous investigations.  Here 

we focus on the work from the laboratories of Kumar and Kennan that involve self-

sorting processes.  In 2001, Kumar’s group reported the synthesis of two amphiphilic 

peptides (H and F) – one containing a hydrophobic face composed of leucine residues 

(H) and one containing hexafluoroleucine residues (F) – terminated in cysteine 

residues.44,45  When the mixture of the fluorophobic and hydrophobic peptides were 

allowed to form disulfides under oxidizing conditions in water only the HH and FF 

peptides were formed (Scheme I-13).  This high fidelity self-sorting process is driven 

by solvophobic effect.  Schnarr and Kennan reported a very interesting system in 

which six different peptides spontaneously assemble into three different 1:1:1 

heterotrimers in a self-sorting process (Scheme I-14).46  To promote the 1:1:1 

heterotrimer specificity Schnarr and Kennan utilized a steric matching approach47 

based on the size of hydrophobic side chains (alanine versus cyclohexylalanine) at 

positions 9, 16, and 23 of the peptide.  Only one cyclohexylalanine may reside at a 

given level of the interface of the 1:1:1 heterotrimer.  As a secondary recognition 

element the charge (e.g. lysine versus glutamic acid) at the residues adjacent 

(positions e and g) to the hydrophobic interface were employed.  Remarkably, a 

2:2:2:1:1:1 mixture of T9K, T16K, T23K, T9E, T16E, and T23E forms a mixture of the 

three heterotrimers T9E•T16K•T23K, T9K•T16K•T23K, and T9K•T16E•T23K in a high 
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fidelity self-sorting process (Scheme I-14).  These same authors have also shown how 

addition of specific peptides to such a mixture can be used to trigger a change in the 

composition48-50 in a way similar to that reported above for the folding of non-natural 

oligomers inside CB[n] molecular containers.   
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Scheme I-13.  Homodimer formation by fluorous and hydrocarbon core peptides. 
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Scheme I-14.  Self-sorting within amphiphilic peptides driven by steric matching and 

electrostatic effects. 

 

1.6.8 Construction, Substitution, and Sorting of Metallo-organic Structures 

via Subcomponent Self-Assembly. 

The group of Jonathan Nitschke has been particularly active recently in the 

development of self-sorting systems based on metal-ligand interactions.  Here we 

describe one recent contribution to the area;51 the reader is referred to a recent review 

for more comprehensive information.52  Sarma and Nitschke report an extremely 

well-defined system comprising anilines I-48 and I-49, aldehydes I-50 – I-52, and 

Cu+ for which they have elucidated the rules that govern the nature and concentration 

of all products formed (Scheme I-15).  In DMSO/MeCN solution an equilibrium is 
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established with the eight possible imines (I-53 – I-60) indicating no innate 

preference exists for a specific imine.  Remarkably, when Cu+ was added to the 

system, a self-sorting process occurred that resulted in the formation of equimolar 

amounts of four discrete products (I-61 – I-64).  This system is so well-defined that 

“more complex mixtures, having arbitrary product ratios are predicted to be readily 

accessible … by simply mixing together subcomponents in the ratio in which they are 

found in the desired collection of product structures.”   
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Scheme I-15.  Formation of a dynamic imine library and Cu+ templated self-sorting. 
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1.7 Application of Self-Sorting in Material Science and Nanotechnology. 

The ability of certain systems to undergo high-fidelity self-sorting processes 

allows the precise positioning of molecules from within a complex mixture.  

Accordingly, there are a number of applications in materials science and 

nanotechnology that are enabled by self-sorting processes.  This section discusses 

several examples of representative applications. 

 

1.8.1 Self-Assembly of Polymers and Nanoparticles on Patterned Surfaces. 

Rotello and co-workers report a very interesting example of self-sorting on a 

patterned surface (Scheme I-16).53  For this purpose, a Si wafer was spin coated with 

a cationic polymer (PVMP) which was then photo-crosslinked.  Patterning was 

performed by spin-coating a layer of Thy-PS followed by treating with UV light 

through a photoresist mask.  The resulting square patterned surface contains two 

recognition regions – one based on PVMP electrostatic interactions and one based on 

the H-bonding ADA pattern of the Thy-PS polymer.  Interestingly, applying 

solutions of either anionic nanoparticles COO-NP or diaminopyridine derived DAD 

H-bonding polymer DAP-PS results in the selective derivatization of the 

complementary region of the surface.  The simultaneous application of both DAP-PS 

and COO-NP results in the derivatization of both regions in a self-sorting process.  

The work provides a step toward the rapid, multicomponent, three-dimensional 

fabrication of complex functional materials.   
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Scheme I-16.  Self-sorting on patterned surfaces. 

 

1.8.2 Geometric Self-Sorting in DNA Self-Assembly.   

DNA is widely recognized for its ability to undergo high-fidelity pairing with 

its cognate strands based on AT and GC base pairing preferences and its use in 

studies of self-assembly.54  Chengde Mao’s group recently examined whether 

geometric features of DNA assemblies could also be used to drive self-sorting 

processes (Scheme I-17).  Accordingly, they designed two related DNA tiles – 

namely a four point star I-65 and a three point star I-66 motif.  The sticky single 
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stranded ends of both DNA tiles are identical and self-complementary; the only 

difference is their relative geometrical relationship (e.g. 90˚ versus 120˚).   The three 

pointed star gives rise to an extended hexagonal lattice structure I-67 as determined 

by AFM whereas the four-pointed star gives rise to extended square lattice structures 

I-68.55  Interestingly, when both tiles are mixed (100:0 to 0:100 mole fraction) a 

single type of assembly is formed.  Below a 30:70 ratio of I-65 to I-66 the hexagonal 

arrays dominate whereas above 30:70 the square arrays are mainly observed.  The 

work demonstrates that rational design of DNA sequences can be used to augment the 

range of self-sorting systems that can be prepared.  The ability to use DNA sequences 

in such systems is significant because it potentially enables replication and 

amplification events.56-59   

 

Scheme 17.  Geometric self-sorting of DNA nanostructures. 
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1.8.3 Self-Sorting in Polymers. 

The group of Marcus Weck took inspiration from the self-sorting ability of 

one of the natural biopolymers – DNA – decided to develop the concept of self-

sorting within synthetic polymers.  Their goal was the creation of a “universal 

polymer backbone” that could be functionalized in a subsequent orthogonal non-

covalent fashion with the hope that such a system would allow the rapid generation of 

polymeric materials for application in materials science, drug delivery, and 

biomimetic chemistry.  For this purpose, Burd and Weck prepared two norbornene 

monomers and polymerized them (random, block, homo-polymers) by ring opening 

metathesis polymerization to yield I-69 with a range of molecular weights (12 – 66 

kD) and mole fractions (Scheme I-18).  A series of 1H NMR titrations of these 

polymers with the complementary H-bonding modules I-70 and I-71 were performed.  

Remarkably, Burd and Weck found that the association constant of I-70 and I-71 for 

their H-bonding partners were comparable regardless of whether those recognition 

units were monomeric, homopolymeric, or within a block or random or block co-

polymer.60  In addition to comparable association constants, the amide region of the 

1H NMR spectra of I-72 under saturating conditions displayed the fingerprint of self-

sorting – that the NMR spectra of the mixture is equal to the sum of its parts.  In 

related work, Weck has employed other non-covalent interactions to derivatize the 

side chains of related polymer backbones and plans to use them in applications such 

as electronic materials, polymer mediated drug delivery, and tissue engineering. 
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Scheme I-18.  Self-sorting non-covalent functionalization of a universal polymer 

backbone. 

 

1.8.4 Self-Sorting Gels. 

The group of David Smith at the University of York decided to investigate the 

possibility of self-sorting during gelation processes.61  For their experiments they 

designed the lysine derived first and third generation dendritic peptides L-I-73, D- I-

73, and L- I-74 with the goal of deciphering the influence of head group size and 

chirality on gelation (Scheme I-19).  The influence of head group size was studied 

with mixtures of L-I-73 and L-I-74.  Very interestingly, the presence of L-I-73 did 

not affect the gelation temperature (Tgel) of the more effective L-I-74 gelator.  Further 

studies with small angle x-ray scattering and circular dichroism as the analytical tools 
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once again indicate that L-I-73 does not influence the gelation of L-I-74  which is 

consistent with an efficient self-sorting process governed by the size of the dendritic 

head group (e.g. first versus third generation).  The influence of molecular chirality 

on gelation mixtures of L-I-73 and D-I-73  were studied by measuring Tgel as a 

function of mole fraction of D-I-73.  Tgel was found to be relatively invariant as a 

function of mole fraction which one again suggests a self-sorting in the gelation 

process.  This conclusion is backed up by the results of CD measurements, which 

show a linear dependence on mole fraction.  These experiments demonstrate that 

subtle molecular recognition pathways can be used to control self-organization on the 

macroscopic scales by efficient self-sorting processes.  The work is expected to 

enable the creation of multifunctional nano-materials. 
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Scheme I-19.  Self-sorting in dendritic peptide gels based on head group size or 

chirality. 
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1.8 Conclusion. 

This chapter focused on the preparation of self-sorting systems.  In this area of 

research much inspiration is drawn from living systems whose complex web of 

recognition events is carefully orchestrated in both time and space and do not exhibit 

undesired cross-talk between different pathways.  The components of natural and 

synthetic self-sorting systems display the ability to efficiently distinguish between 

self- and non-self and form a single set of structures in high-fidelity recognition 

processes.  As such, self-sorting processes can be viewed as residing at the opposite 

end of a thermodynamic continuum from idealized dynamic combinatorial libraries in 

which all building blocks are incorporated without selectivity.  To date, some 

covalent bond forming reactions (transesterification and imine formation) and a 

variety of non-covalent interactions have been shown to drive self-sorting processes 

including H-bonds, π-π interactions, electrostatic interactions, solvophobic effects, 

and metal-ligand coordination.  Such self-sorting processes can be divided into 

several categories including narcissistic versus social self-sorting and thermodynamic 

versus kinetic self-sorting. 

 A number of research groups have been involved in the development of pairs 

or sets of modules that undergo high-fidelity self sorting processes.  Accordingly, a 

number of examples of both narcissistic and social self-sorting processes have been 

reported in which the system behaves as linear combination of its component parts.  

The development of sets of such orthogonal recognition pairs are of great potential 
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utility in a variety of application areas including supramolecular polymer chemistry, 

gelators, DNA nanotechnology, and surface functionalization. 

Most recently, several groups have been pushing self-sorting systems into new 

areas by introducing new concepts derived either from biological systems or desired 

for nanotechnology applications.  For example, the groups of Severin and Nitschke 

have demonstrated a link between DCC and self-sorting processes and how the 

behavior of such combined systems differs from their separate sub-systems.  Our 

group recently demonstrated how the high binding affinity and selectivity inherent in 

CB[n] receptors can be used to drive the folding, forced unfolding, and refolding of a 

non-natural oligomer into four distinct conformations.  This stepwise process 

transforms one well-defined self-sorted state into another by manipulating the overall 

free energy of the system by the addition of new components.  Related concepts have 

been demonstrated by Kennan in coiled-coil systems and Nitschke in the triggered 

interconversion of sets of metal complexes.  The development of systems that can be 

triggered to undergo interconversion between multiple well-defined states would be 

very useful in the preparation and interconnection of molecular machines.  In order to 

endow synthetic self-sorting systems with some of the unique abilities of living 

systems (e.g living far from equilibrium) we recently demonstrated an example of 

kinetic self-sorting.  For this purpose we used guests with multiple binding epitopes.  

Just like living systems – which reach equilibrium only in death – the individual 

binding epitopes of such guests orchestrate the approach toward equilibrium exhibited 

by the system.  Much still remains to be done.  For example, the incorporation of 

catalytic events into self-sorting systems – and the introduction of a non-natural 
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energy source analogous to ATP – would allow manipulation of the overall free 

energy of the system which could be used to drive emergent processes.  Beyond that, 

the physical boundaries of such systems must be defined to allow restricted 

(privileged) interaction with the outside world and must be engineered to remain far 

from equilibrium.  Finally, if such non-natural self-sorting systems can be interfaced 

with natural systems that have the ability to replicate and evolve it might be possible 

to exert control over the corresponding biological system. 
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II.  Chapter 2:  Self-Sorting Molecular Clips.62   

 

2.1 Introduction. 

As supramolecular chemistry has continued to develop following the 

pioneering work of Cram, Lehn, and Pedersen, the focus of much research in the area 

has shifted from an understanding of the fundamental aspects of noncovalent 

interactions, molecular recognition, and self-assembly and toward the use of such 

information to construct systems with function.2-4  For example, supramolecular 

chemistry has provided new approaches toward chemical sensing ensembles, 

discovery via dynamic combinatorial chemistry, drug delivery, membrane transport 

agents, DNA nanotechnology, control of otherwise unfavorable chemical reactions, 

and supramolecular polymers.10,12,54,63-70  In all of these applications, the ready 

availability of robust and easily functionalized modules capable of specific 

noncovalent interactions (e.g., π−π, metal−ligand, and H-bonding modules) with their 

targets in organic or aqueous solution has proved invaluable.8,9,42,71-73  For example, 

quadruple hydrogen-bonding modules with high values of Ka have been used in the 

formation of high-molecular-weight supramolecular polymers.  To date, however, the 

majority of such functional systems have been demonstrated to operate only in 

isolation and not as components of more complex chemical or biological systems.   

In contrast to biologists, computer scientists, and engineers who embrace the 

need to study complex systems and appreciate the insights that may be gained from a 
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systems level approach – chemists have been comparably slow to approach the study 

of complex multicomponent systems.  This difference has begun to subside in recent 

years with the development of powerful new analytical tools that provide approaches 

to previously intractable problems.  These groups of scientists drawn from numerous 

fields are beginning to define an area now known as systems chemistry.51,52,74-76  

Systems chemists study complex multicomponent systems that exhibit emergent 

properties that go beyond those of their components.  Some systems chemists take 

their inspiration from biology and design systems that exhibit properties such as self-

replication,77-83 whereas others add new components to existing biological systems in 

an attempt to control biological function.  Other systems chemists take inspiration 

from technology and aim to integrate individual molecular devices into more complex 

molecular machines.13,72 

We have based our entry into systems chemistry on the realization that all of 

these biological or technological systems depend critically on the availability of 

robust, easily functionalized supramolecular modules (vide supra) that operate not 

only in isolation but also as components of more complex systems.  The network of 

binary and higher order interactions between the constituent molecules controls the 

behaviors of such systems.  Rather than being governed by all possible (e.g., random) 

sets of interactions, such systems tend to organize themselves into a smaller number 

of sets of interacting molecules with interconnections between these sets that respond 

to external stimuli from their environment.  As such, the ability of the constituents of 

such systems to efficiently distinguish between self and nonself is critical.  We 

previously showed that a mixture comprising the components of eight well-known 
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aggregates from the literature is capable of efficiently distinguishing between self and 

nonself even within the mixture on the basis of H-bond pattern and geometrical 

distribution and undergoes a high-fidelity self-sorting process.29  Subsequently, we 

have developed self-sorting systems based on host-guest interactions (social self-

sorting), those that display well-defined kinetic and thermodynamic self-sorted states, 

and shown how such systems can be made to respond to chemical stimuli (e.g., guest 

addition or pH change).16,31,36,37,84  In this chapter we investigate the ability of a series 

of glycoluril-derived molecular clips21,85-93 (II-1 – II-11) several of which undergo 

tight dimerization (Ka ≥ 106 M−1) in CDCl3 solution to act as robust, functionalizable, 

self-sorting supramolecular modules.15,26,30,38-40,44,45,52,53,60,94-104  We envision that such 

supramolecular modules will greatly expand the toolbox available to systems 

chemists for the construction of complex and functional systems.   

 

2.2 Design and Synthesis of Molecular Clips. 

2.2.1 Design of the Chemical Components Used in this Study. 

Chart II-1 shows the chemical structures of the eleven C-shaped methylene 

bridged glycoluril dimers used in this chapter.  The key structural features in the 

design of molecular clips II-1 – II-11 were as follows.  First, all twelve clips possess 

two roughly parallel aromatic walls separated by ≈ 7 Å which define a cleft that 

promotes dimerization in chloroform driven by π – π interactions.  Even though π - π 

interactions have preferred geometries (e.g. edge-to-face or offset face-to-face) we 

thought that dimeric molecular clips driven solely by π - π interactions might exist as 
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an ensemble of conformational isomers that differ in the relative orientation of the 

molecular clips with respect to each other  (Figure II-1).  Second, the rigid geometry 

of the molecular clips and the straightforward functionalization of their o-xylylene 

sidewalls was utilized to display H-bonding functional groups (e.g. amide, urea, 

oxamide) in well defined relative orientations.  We envisioned that interactions 

between these H-bonding arms could be used to drive dimerization in CDCl3 solution 

and also result in the selection of a single well-defined conformation from the 

conformational ensemble (Figure II-1) that satisfied the geometric requirements of 

both the H-bonding and π-π interactions.   
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Chart II-1.  Chemical Structures of Molecular Clips Used in This Chapter. 
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Figure II-1.  Schematic representation of three members of the conformational 

ensemble open to dimeric molecular clips driven solely by π – π interactions:  a) 

perpendicular geometry, b) skewed geometry, and c) in register geometry.   

 

2.2.3 Synthesis of the Molecular Clips Bearing H-bonding Groups on Their 

Aromatic Ring.   

The synthesis of compounds II-1 – II-11 is shown in Scheme II-1.  For the 

preparation of compounds II-1 – II-6, we used the previously reported dinitro 

compounds II-12 and (±)-II-13 as starting materials.17,20  The separate catalytic 

hydrogenation of II-12 and (±)-II-13 to the corresponding air-sensitive diamines 
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proceeded smoothly in dimethylformamide (DMF) as solvent.  The crude diamines 

were transformed into the corresponding amides and ureas by reaction with acid 

chlorides and isocyanates in CH2Cl2 at room temperature to deliver II-1 – II-6 in 43 – 

90% yield.  To prepare compounds II-7 and II-10, which contain amide substituents 

at the 4-position of the o-xylylene sidewalls we needed to prepare (±)-II-16.  For the 

synthesis of (±)-II-16, we first performed the free radical bromination of 4-nitro-o-

xylene using N-bromosuccinimide in 1,2-dichloroethane which gave II-14 in 47% 

yield.105  Alkylation of II-15 with compound II-14 (t-BuOK, DMSO) gave (±)-II-16 

in 22% yield.  Compound (±)-II-16 was dimerized by acid-catalysed condensation 

with paraformaldehyde in the presence of p-toluenesulfonic acid (PTSA) in 

ClCH2CH2Cl to yield II-17 and (±)-II-18 in 23% and 20% yield, respectively.17  

After chromatographic separation, diastereomers II-17 and (±)-II-18 were separately 

reduced and then acylated with benzoyl chloride to give II-7 and (±) II-10 in 73% 

and 76% yield, respectively.   

Compounds II-8, II-9 and (±)-II-11 were synthesized by related procedures.  

Somewhat surprisingly, we found that heating II-19 with PTSA in p-xylene gave II-

20 by extrusion of one of the CH2OCH2 bridges in 36% yield.  Acid catalysed 

condensation of compound II-20 with paraformaldehyde gave dimer II-21 in 78% 

yield.  Compound II-21 was nitrated (TFA, HNO3) to give a mixture of diastereomers 

II-22 and (±)-II-23 in 42% and 38% yield, respectively.  After chromatographic 

separation, diastereomers II-22  and (±)-II-23 were separately reduced and then 

acylated with the appropriate acid chloride to give II-8, II-9 and (±)-II-11 in 65 – 

75% yield.   
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Scheme II-1.  Synthesis of molecular clips II-1 – II-11.  Conditions:  a) Pd/C, H2, 

DMF,  b) PhNCO or R’COCl, Et3N, CH2Cl2,  c) II-14, t-BuOK, DMSO,  d) PTSA, 

(CH2O)n, ClCH2CH2Cl, reflux,  e) p-xylene, reflux,  f) TFA, HNO3. 

 

2.3 Self-assembly of Molecular Clips. 

2.3.1 Molecular Clips Form Homodimers in CDCl3. 

The 1H NMR spectra of II-1, II-2, (±)-II-4a, and (±)-II-5 in DMSO-d6 show a 

single set of resonances due to the presence of two symmetry equivalent halves which 

indicates these molecules are monomeric in DMSO-d6.  In CDCl3, however, we 
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observe a doubling of resonances in their 1H NMR spectra along with significant 

anisotopic effects, which suggests that these molecules exist as dimers (Figure II-2).  

For example, although only two N-H resonances (Ha and Hb) were observed in 

DMSO-d6 for II-2, we observed four resonances in CDCl3 (Ha, Ha’, Hb and Hb’), 

which correspond to the two different N-H⋅⋅⋅O H-bonds in homodimer II-2•II-2.  

Similarly, in the monomeric form the aromatic protons of II-2 (Hc and Hd) give rise 

to single set of resonances due to the presence of a mirror plane in the molecule.  

When II-2 undergoes dimerization to yield II-2•II-2 this mirror plane no longer 

exists.  One set of aromatic rings resides in the interior of the dimer whereas the other 

set is on the exterior.  The chemical shift of the aromatic protons (Hc’, and Hd’) on the 

internal aromatic wall of II-2•II-2 resonate upfield relative to the protons of the 

external aromatic ring (Hc, and Hd) because they are in the shielding region of two 

neighboring aromatic rings.  Similar diagnostic features were observed in the 1H-

NMR of II-1•II-1, (+)-II-4a•(−)-II-4a, and (+)-II-5•(−)-II-5 in CDCl3.   

We performed 1H NMR dilution experiments to determine the self-association 

constant (Ks) for the dimeric aggregation.  Remarkably, the chemical shifts observed 

for dimers II-1•II-1, II-2•II-2, (+)-II-4a•(−)-II-4a, and (+)-II-5•(−)-II-5 do not 

change when the concentration is decreased from 10 mM and 50 µM, indicating their 

high thermodynamic stability (Figure II-3).  If we assume that we could detect 

changes in the chemical shifts due to 10% monomer, then we can place a lower limit 

on the of the value of Ks (Ks > 9 × 105 M-1, ΔG < -8.1 kcal mol-1).  Such a high 

thermodynamic stability was not anticipated given that these dimeric aggregates 

benefit from a mere two H-bonds.  We surmise that the high thermodynamic stability 
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of these aggregates is due to the cumulative effect of π – π interactions and H-bonds.  

The concentration invariance and distinct pattern of anisotropic effects in the 1H 

NMR spectra of dimers II-1•II-1, II-2•II-2, (+)-II-4a•(−)-II-4a, and (+)-II-5•(−)-II-5 

indicate that the combined driving force and geometrical constraints of π – π 

interactions and H-bonds are capable of selecting a single member of the complex 

conformational ensemble open to dimeric molecular clips (Figure II-1).   

 

Figure II-2.  Portion of the 1H NMR (500 MHz, RT) spectrum recorded for: a) II-2 

in DMSO-d6, b) II-2•II-2 in CDCl3, c) (±)-II-5 in DMSO-d6, d) (+)-II-5•(-)-II-5 in 

CDCl3.   
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Figure II-3.  Portion of the variable concentration 1H NMR spectrum recorded for a 

(400 MHz, CDCl3, RT): a) 5 mM of II-2•II-2, b) 50 µM of II-2•II-2, c) 5 mM of (+)-

II-5•(-)-II-5 and d) 50 µM of (+)-II-5•(-)-II-5.  

 

2.3.4 Concept of Geometrical Match and Mismatch. 

As described above, compounds II-1, II-2, (±)-II-4a and (±)-II-5 undergo 

strong homodimerization in CDCl3 driven by π – π interactions and H-bonds.  We 

previously investigated their recognition behavior in binary mixtures of II-1 and (±)-

II-4a or II-2 and (±)-II-5 and observed the phenomenon of self-sorting.21  We 

attribute this high preference for self-sorting – heterodimers ((±)-II-1•II-4a or (±)-II-

2•II-5) were not observed by 1H NMR –  to a geometrical mismatch between the H-

bonding arms II-1 and (±)-II-4a or II-2 and (±)-II-5 in the hypothetical heterodimers 

(Figure II-4).  The hypothetical heterodimer (±)-II-1•II-4a, for example, benefits 
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from π – π interactions and only a single H-bond as opposed to π – π interactions and 

at least two H-bonds in homodimers II-1•II-1 and (+)-II-4a•(−)-II-4a (Figure II-4).  

Conversely, when an equimolar mixture of II-1 and II-2 with common spatial 

distribution of their H-bonding arms was prepared in CDCl3, we observed a roughly 

statistical mixture of homodimers II-1•II-1 and II-2•II-2 and heterodimer (±)-II-1•II-

2 by 1H NMR (Figure II-5).  Similarly, when we analyzed a mixture of (±)-II-4a and 

(±)-II-5 by 1H NMR, a mixture of two heterochiral homodimers ((+)-II-4a•(−)-II-4a 

and (+)-II-5•(−)-II-5) and racemic mixture of heterochiral heterodimers ((+)-II-

4a•(−)-II-5 and (−)-II-4a•(+)-II-5) were observed.  Based on this result we 

hypothesized that subtle differences in the spatial orientation of H-bonding groups on 

the edges of the o-xylylene rings of these molecular clips might endow these 

compounds with the ability to efficiently distinguish between self and non-self within 

binary and higher order mixtures.   
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Figure II-4.  Schematic representation of geometrical match versus geometrical 

mismatch: a) II-1•II-1 and b) (+)-II-4a•(−)-II-4a, c) hypothetical diastereomeric 

aggregate formed by (±)-II-1•II-4a, and d) racemic heterodimer (±)-II-1•II-2.   

 

Figure II-5.  Portion of the 1H NMR (2.5 mM, 500 MHz, CDCl3, RT) spectrum 

recorded for: a) II-1•II-1, b) II-2•II-2, and c) a mixture of II-1•II-1, II-2•II-2, and 

(±)-II-1•II-2.  Resonances for the amide N-H groups are color coded as follows: II-

1•II-1, red; II-2• II-2, green; and (±)-II-1•II-2, blue.   
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2.3.5 X-ray Crystal Structures of II-1, II-2, (±)-II-4b and (±)-II-5.   

Although the 1H NMR experiments mentioned in the previous section clearly 

support the formation of dimeric aggregates, additional evidence of dimer formation 

was obtained from the X-ray crystal structures of II-1, II-2, (±)-II-4b and (±)-II-5.  

Interestingly, all four molecular clips form dimers in solid state.  All four dimers – II-

1•II-1, II-2•II-2, (+)-II-4b•(-)-II-4b, and (+)-II-5•(-)-II-5 – benefit from π – π 

interactions between the substituted o-xylylene walls.  All of them also benefit from 

two H-bonds between the external amide (urea) N-H groups and internal amide (urea) 

C=O groups and secondary electrostatic interactions.  Several other features of the 

geometries of these dimers in the solid state are noteworthy.  For example, the 

pendant benzoyl groups in dimers II-1•II-1 and II-2•II-2 are displayed in a nearly 

collinear orientation on a single face of the dimer (Figure II-6a, II-6b).  An additional 

level of complexity is present for the case of chiral but racemic molecular clips (±)-

II-4b and (±)-II-5 where both homochiral dimerization (e.g. (+)-II-4b•(+)-II-4b and 

(−)-II-4b•(−)-II-4b) or heterochiral dimerization (e.g. (+)-II-4b•(−)-II-4b) are 

conceivable.38,102,106,107  In the crystal we only observe the formation of heterochiral 

dimers (Figure II-6c, II-6d).  We attribute this result to the geometrical mismatch 

between the H-bonding groups in the hypothetical homochiral homodimer.  All these 

observations in the solid state determined by X-ray crystallography are consistent 

with their 1H NMR spectra in CDCl3 and we suggest that II-1, II-2, (±)-II-4a, and 

(±)-II-5 are isostructural in the solid state and in solution.93  The X-ray crystal 

structures of II-1, II-2, (±)-II-4b, and (±)-II-5 also helps us to rationalize the 

behavior of these molecules within binary and higher order mixtures (vide infra).   
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Figure II-6.  Cross-eyed stereoviews of the molecular structures of:  a) II-1•II-1, b) 

II-2•II-2, c) (+)-II-4b•(-)-II-4b, and d) (+)-II-5•(-)-II-5 in the crystal.  Color coding: 

C, gray; H, white; N, blue; O, red; H-bonds, yellow-red striped.   

 

2.4 Three- and Four- Component Self-Sorting Systems of Molecular Clips. 

2.4.1 Design Aspects of New Molecular Clips. 

The high selectivity we observed during the self-recognition of II-2 and (±)-

II-5 in a binary mixture of molecular clips and the lack of self-selectivity for mixtures 

of II-1 and II-2 or (±)-II-4a and (±)-II-5 inspired us to consider situations that fall 

between these two extreme cases guided by a series of questions.  What happens to 

the strength of dimeric aggregation and fidelity of self-sorting when the H-bonding 

groups are moved around the edges of the substituted o-xylylene walls?  Will more 

complex mixtures of molecular clips (e.g. three or four components) constitute self-
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sorting systems if each clip has a distinct spatial arrangement of its H-bonding arms?  

We were also interested to investigate the effect of various structural modifications 

(e.g. substituents, steric bulk, number and pattern of H-bonds) on self-assembly and 

self- versus non-self recognition behavior in a multi-component mixture that would 

impact their use as components for advanced applications (e.g. stimuli responsive 

supramolecular polymers) and the topology of their network interactions101 when 

utilized as parts of more complex (bio)molecular machines.  To address these 

questions we synthesized compounds II-7 – II-11 and studied their self-association 

and self-sorting properties in CDCl3 solution.   

 

2.6.2 Self-Assembly of II-7 in CDCl3 solution and solid state. 

As a first attempt to assess the ability of more subtle geometrical changes to 

direct self-sorting processes we prepared II-7, which as opposed to II-1 – II-6 has 

PhCONH groups on the tips of its o-xylylene sidewalls.  Similar to II-1, II-2, (±)-II-

4a and (±)-II-5, compound II-7 exhibits a single set of resonances in its 1H NMR 

spectrum in DMSO-d6 – indicative of a monomer – but two sets of resonances in 

CDCl3 indicative of dimer formation (Figure II-8).  Dimeric aggregate II-7•II-7 does 

not undergo significant dissociation down to 50 µM (Figure II-9), which establishes a 

high thermodynamic stability (Ka > 106 M-1) for this dimer.  We were fortunate to 

obtain an X-ray crystal structure of II-7•II-7, which shows a number of interesting 

features (Figure II-7).  In the dimeric aggregate II-7•II-7, the clips are skewed 

relative to one another (see Figure II-1b) in such a way that the aggregate benefits 
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from π – π interactions as well as four H-bonds (Figure II-10).  The amide N-H 

groups on the internal aromatic rings form H-bonds with the ureidyl C=O of a 

glycoluril ring on the opposing clip whereas the external amide N-H groups form H-

bonds with the internal amide C=O groups.  Based on the distinct geometries 

observed for II-2•II-2, (+)-II-5•(−)-II-5, and II-7•II-7 we wondered whether a 

mixture of these three molecular clips would undergo high fidelity self-sorting.   

 

Figure II-7.  Cross-eyed stereoviews of the molecular structures of:  II-8•II-8 in the 

crystal.  Color coding: C, gray; H, white; N, blue; O, red; H-bonds, yellow-red 

striped. 

 

Figure II-8.  Portion of the 1H NMR (500 MHz, RT) spectrum recorded for : a) II-7 

in DMSO-d6, b) II-7•II-7 in CDCl3.   
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Figure II-9.  Portion of the 1H NMR spectrum recorded for II-7•II-7 (400 MHz, 

CDCl3, RT): a) 10 mM, and b) 50 µM (x = 13CHCl3).   

 

Figure II-10.  Schematic representation of the shapes of II-7•II-7: a) steric 

interaction in the head-to-head form, and b) a skewed geometry that avoids steric 

interactions. 

 

2.6.3 Three Component Self-Sorting Systems. 

The high level of enantioselectivity exhibited by (+)-II-5•(−)-II-5 and 

skewing observed in the X-ray structure of II-7•II-7 led us to combine these clips 

with II-2• II-2 for the next set of experiments.  Initially we examined the behavior of 

the three binary mixtures (e.g. II-2• II-2 and (+)-II-5•(−)-II-5 or II-2• II-2 and II-

7•II-7 or (+)-II-5•(−)-II-5 and II-7•II-7) and were delighted to observe a simple 
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superimposition of the 1H NMR spectra of the constituent homodimeric aggregates in 

each case.  These results indicate that these three molecular clips possess the ability to 

efficiently distinguish between self and non-self.  Accordingly, we next constructed 

the three component mixture comprising II-2, (±)-II-5, and II-7 (or II-1, (±)-II-5, and 

II-7) and observed an 1H NMR spectrum consistent with the formation of a self-

sorted mixture of the three homodimeric aggregates II-2•II-2, (+)-II-5•(−)-II-5, and 

II-7•II-7 (or II-1•II-1, (+)-II-5•(−)-II-5, and II-7•II-7; Figure II-11 and II-12).  

These results demonstrate that simply by choosing molecular clips that possess 

different geometrical arrangements of their H-bonding arms it is possible to achieve 

high fidelity self-sorting even within a complex mixture.  We expect that such 

mutually orthogonal H-bonding modules have broad potential as triggered 

components of more complex molecular machines.13,72   

 

Figure II-11.  1H NMR spectra (500 MHz, 298 K) for: a) II-2•II-2, b) (+)-II-5•(-)- 

II-5, c) II-7•II-7, and d) a mixture of II-2•II-2, (+)-II-5•(-)-II-5, and II-7•II-7.   
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Figure II-12.  1H NMR spectra (400 MHz, 298 K) for:  a) (+)-II-5•(-)-II-5, b) II-1• 

II-1, c) II-7•II-7, and d) a mixture of II-1•II-1, (+)-II-5•(-)-II-5, and II-7•II-7.   

 

2.6.4 Selective Dissociation of One Member of a Self-Sorted Mixture. 

The heterodimerization of II-1 and II-2 revealed an important property of 

such system when considered from a different viewpoint.  It enables a useful type of 

stimuli responsiveness that will be particularly useful in the engineering of complex 

and functional chemical systems. Consider, for example, a system comprising four 

members (A−D). Of the 10 homodimeric and heterodimeric species (AA, BB, CC, 

DD, AB, AC, AD, BC, BD, CD) that would comprise an unbiased dynamic 

combinatorial library, a high-fidelity self-sorting system is only able to access the 
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four homodimeric states (e.g., AA, BB, CC, DD).  The ability to selectively access 

heterodimeric states (e.g., BD) by suitable chemical stimuli (e.g., addition of 

molecular clip D) would allow fine tuning of the topology of the interaction network 

that characterizes this four-component mixture.101  In this context, we examined the 

addition of a fourth component to pre-existing three-component self-sorting systems. 

As expected, the addition of II-1•II-1 to a self-sorting mixture comprising II-2•II-2, 

(+)-II-5•(−)-II-5, and II-7•II-7 results in the selective heterodimerization of II-2•II-2 

under the formation of II-1•II-2 (Figure II-13). We envision that the ability to 

selectively alter the interaction network of one component (or one subset of 

components) of a complex self-sorting mixture by addition of a new component will 

enable the construction of functional stimuli responsive systems.   

 

Figure II-13.  1H NMR spectra (500 MHz, 298 K) for:  a) a mixture of II-2•II-2, (+)-

II-5•(-)-II-5, and II-7•II-7, and b) selective heterodimerization of II-2•II-2 under the 

formation of II-1•II-2 upon addition of II-1•II-1. 
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2.6.5 Steric Effects Influence the Thermodynamics and Kinetics of 

Dimerization. 

In the next phase of our search for self-sorting systems comprising larger 

numbers of molecular clips, we decided to introduce steric congestion onto the o-

xylylene sidewalls.  We hypothesized that increased steric interactions between two 

molecular clips would destabilize their homodimers more dramatically than their 

heterodimerics.  This hypothesis is supported by simulations reported previously,93 

that show that the system comprising one tight and one weak homodimer it is 

thermodynamically more favorable that the alternative arrangement featuring two 

heterodimers of modest strength.  Therefore we anticipated that a mixture of two 

homodimers – one sterically hindered and one unsubstituted – might constitute a self-

sorting system.  We choose compound II-7 as the base system – because it forms a 

tight dimer and we thought it would be synthetically easier to modify – and gradually 

increased the number of substituents in order to test the influence of steric congestion 

on dimeric aggregation.   

Accordingly, we prepared tetramethyl benzanilide II-8 and tetramethyl 

pivalanilide II-9.  When a 2.5 mM solution of II-8 in CDCl3 was examined by 1H 

NMR spectroscopy at room temperature, we observed two sets of peaks.  After 

warming the same solution gradually to 55 ˚C, we observed a decrease in the intensity 

of one set of peaks concomitant with an increase in the intensity of the other set 

(Figure II-15).  An indistinguishable spectrum was obtained when this solution was 

cooled slowly to room temperature.  A similar change in the system was observed 

when an 11 mM solution of II-8•II-8 was diluted 100-fold to 0.11 mM (Figure II-14).  
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These observations suggest that II-8 exists in equilibrium with II-8•II-8 with slow 

exchange kinetics relative to the chemical shift time scale at room temperature.  

Apparently, steric interactions between the methyl substituents on the aromatic walls 

of II-8•II-8 thermodynamically destabilize the dimer.  Interestingly, however, the 

kinetics of exchange (e.g. koff) remain slow (as observed for II-7•II-7) even as Ka is 

decreased.  Conveniently, the observed slow exchange between monomer and dimer 

on the chemical shift time scale allows us to follow this equilibrium by 1H NMR 

spectroscopy and calculate the association constant by measuring the integrals for 

monomer versus dimer at various concentrations (Ks = 2900 ± 600 mol-1).  We 

incorporated additional steric congestion in II-9 in the form of t-Bu(C=O)NH- H-

bonding arms (Figure II-18a).  In this case, chemical shift of the aromatic as well as 

the amide protons do not change in the dilution experiment which suggests that II-9 

exists as a monomer (Figure II-16).  Interestingly, when we constructed an equimolar 

binary mixture of II-9 and II-9, an NMR spectrum was a superposition of the spectra 

of the components (Figure II-17).  This result indicates that presence of severe steric 

congestion around the cleft of the hypothetical homodimer II-9•II-9 and heterodimer 

(±)-II-8•II-9 dictates that compound II-9 must remain monomeric and form self-

sorting mixture with II-8.  
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Figure II-14.  Portion of the 1H NMR spectra recorded for 9•9 (400 MHz, CDCl3, 

RT) upon dilution: a) 11 mM, b) 1.1 mM, and c) 0.11 mM.  Resonances are color 

coded as follows:  dimeric II-8•II-8, red; and monomeric II-8, blue.   

 

Figure II-15.  Portion of the variable temperature 1H NMR spectrum recorded for II-

8•II-8 (400 MHz, 2.5 mM, CDCl3, RT): a) 18˚C, b) 31˚C, c) 41˚C, and d) 55˚C.  

Resonances are color coded as follows:  dimeric II-8•II-8, red; and monomeric II-8, 

blue.   
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Figure II-16.  Portion of the variable concentration 1H NMR spectrum recorded for 9 

(400 MHz, CDCl3, RT): a) 10 mM, b) 1.0 mM, and c) 0.10 mM.   

 

Figure II-17.  1H NMR spectra (400 MHz, 298 K) for:  a) II-9, b) II-8•II-8 in 

equilibrium with II-8, and c) a mixture of II-8•II-8 in equilibrium with II-8, and II-9.   

 

 

 



 

 65 

2.6.6 The Effect of Antiparallel Orientation of H-bonding Sidearms on 

Dimerization. 

As described earlier, the relative orientation of H-bonding sidearms in Cs- or 

C2-symmetrical molecular (e.g. parallel in II-1 and II-2 versus anti-parallel in (±)-II-

4a and (±)-II-5) endow these molecular clips with efficient self- versus non-self 

dicrimination abilities. Accordingly, we prepared (±)-II-10 and (±)-II-11 which are 

the C2-symmetric diastereomers of Cs-symmetric II-7 and II-8.  Interestingly, 

although not unexpectedly, we did not find any evidence of discrete dimer formation 

in the 1H NMR spectra of (±)-II-10 and (±)-II-11.  In the molecular structures of (±)-

II-10 and (±)-II-11 the H-bonding pendant arms are displayed in divergent directions 

on the tips of the aromatic rings and therefore block the face of the cleft and create 

steric hindrance to dimerization by association with a second  molecular clip.  

Molecular clips (±)-II-10 and (±)-II-11 do not form well-defined discrete dimers like 

those formed by II-7 or II-8.  Rather, we observe broadening and upfield shifting in 

their 1H NMR spectra which indicates that (±)-II-10 and (±)-II-11 form poorly 

structured oligomeric species in solution (Figure II-19).  The solid state behavior is 

similarly affected; unlike II-7 that exists as dimer, compound (±)-II-11 remain 

monomeric in the crystal (Figure II-18b).  These results – which show that both π-π 

and H-bonds required to form discrete dimeric aggregates – further validate the use of 

molecular clips as a platform for the construction complex self-sorting systems.  For 

example, the transition from monomer to discrete dimer to poorly defined oligomeric 

states can be programmed into the system by the identity and spatial orientation of the 

substituents on the o-xylylene sidewalls of the constituent molecular clips.  
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Figure II-18.  Molecular clips that remain monomeric in solution: a) Steric bulk 

prevents dimeric aggregation of II-9, and b) Crystal structure of (±)-II-11 showing 

the display of H-bonding groups in front of the cleft which leads to steric hindrance to 

dimerization.   

 

Figure II-19.  Portion of the variable concentration 1H NMR spectrum recorded for 

(±)-II-11 (400 MHz, CDCl3, RT): a) 10 mM, b) 1.0 mM, and c) 0.10 mM.   

 

 

 



 

 67 

 

2.6.7 Effect of Additional H-bonding Groups on the Ability of Molecular 

Clips to Undergo Self-Assembly and Self-Sorting.   

After exploring the influence of geometry, sterics, and chirality on the ability 

of molecular clips to undergo self-assembly and self-sorting we decided to investigate 

the influence of the number and pattern of H-bonding donors and acceptors in the 

pendant arm on the fidelity of self-sorting.  We synthesized II-3 which contains 

additional NH(CO)CH3 H-bonding groups in the para-position of the pendant 

aromatic rings.  We thought that II-3 might form a very robust aggregate due to an 

increased number of H-bonding interactions upon dimerization.  We further predicted 

that II-3 might undergo self-sorting with II-1 or II-2 based on differences in the 

number of H-bonds in the aggregate (Figure II-20a, II-20b).  When II-3 was 

dissolved in CDCl3 we observed upfield shifting, severe broadening and multiple 

resonances for some protons which indicates the formation of multiple ill defined 

species in   Upon further examination of a CPK model of II-3, we realized that the 

flexibility of the pendant arm of II-3 increases as the arm gets longer.  Interestingly, 

examination of the X-ray crystal structures of II-1 and II-2 show that the two internal 

amide protons remain free in the dimeric aggregate.  Upon careful inspection, we 

could conclude that these amide protons are actually involved in weak electrostatic 

interactions with the ureidyl C=O group and also they are not accessible to any 

external H-bond acceptors because they are buried inside the molecular architecture.  

Due to this lack of rigidity, unsatisfied H-bond donors in the amide group farthest 
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from the clip can interact with unsatisfied H-bond acceptors on other molecules of II-

3 or assemblies of II-3 resulting in uncontrolled higher order aggregation.  

 

Figure II-20.  Schematic representation of the aggregates formed by a) II-1•II-1, b) 

II-3•II-3 and c) (±)-II-6.   

Compounds II-2 and (±)-II-5 contain H-bond donor-acceptor-donor 

arrangement in the ureidyl group.  We hypothesized that a molecular clip with a 

specific donor-acceptor arrangement in the pendant H-bonding arms might undergo 

self-sorting with another clip that possessed a different donor-acceptor arrangement.  

In order to test that hypothesis, we synthesized compound (±)-II-6 containing H-

bonding groups having a donor-acceptor-acceptor pattern.  When dissolved in 

CDCl3, we observed an upfield shift of the proton attached to the o-xylylene sidewall 

of (±)-II-6 indicating that (±)-II-6 forms an aggregate in solution.  Unlike (+)-II-

4a•(−)-II-4a and (+)-II-5•(−)-II-5, we did not observe any doubling of resonances 
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due to aggregation as the molecule undergoes fast exchange on the chemical shift 

time scale.  Interestingly, when a solution of (±)-II-6 was diluted, we observed a 

down field shift of the amide protons (Figure II-21).  Usually the amide protons move 

upfield in dilution experiments as the H-bonds are disrupted with increasing dilution.  

This result indicates the presence of a  two strong intramolecular H-bond in monomer 

(±)-II-6  which are sacrificed to form two weak  intermolecular H-bonds and π-π 

interactions during dimerization.  Accordingly, compound (±)-II-6 form a weak 

dimer (Ks = 17.5 ± 2.2 mol-1) in CDCl3 solution (Figure II-20c).  When we mixed (±)-

II-6 with an equimolar amount of (±)-II-5, we mainly observed the separate co-

existence of (±)-II-6 and (+)-II-5•(−)- II-5 in the solution with very small amount of 

heteromeric assemblies (Figure II-22).  This observation suggests that the tendency of 

molecular clips with common geometrical arrangement of their H-bonding arms 

toward formation of mixtures of homo- and heterodimers can be suppressed with 

concomitant enhancement of self-selectivity can be achieved by incorporating an 

electronic mismatch between their H-bonding arms.   
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Figure II-21.  Portion of the variable concentration 1H NMR spectrum recorded for 

(±)-II-6 (400 MHz, CDCl3, RT): a) 15.51 mM, b) 9.30 mM, and c) 5.58 mM, d) 2.23 

mM, e) 1.11 mM, f) 0.89 mM, g) 0.55 mM, h) 0.35 mM, i) 0.27 mM.   

 

Figure II-22.  1H NMR (2 mM, 500 MHz, CDCl3, RT) spectrum recorded for: a) (+)-

II-5•(−)-II-5, b) (±)-II-6, and c) a mixture of (+)-II-5•(−)- II-5, and (±)-II-6.   
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2.6.8 Four-Component Self-Sorting Systems. 

If we consider that only monomeric and dimeric aggregates can exist in the 

solution then a mixture of four molecular clips (A, B, C, D) can give rise to fourteen 

different species (A, B, C, D, A2, B2, C2, D2, AB, AC, AD, BC, BD, CD) in the 

solution.  In our quest for a four component self-sorting system we screened a large 

number of different combinations guided by the principles discussed above.  Initially, 

we examined an equimolar mixture of II-2, (±)-II-5, and II-8 and observed a self-

sorted mixture by 1H NMR spectroscopy due to the disparate spatial orientation of 

their H-bonding arm.   Based on the fact that II-8 and II-9 constitute a self-sorting 

system (vide supra) we decided to prepare a mixture comprising molecular clips II-2, 

(±)-II-5, II-8, and II-9.  Remarkably, this set of four molecular clips exists  in a self-

sorted state (Figure II-23) comprising five different species – II-2•II-2, (+)-II-5•(-)-

II-5, II-8 in equilibrium with II-8•II-8, and monomeric II-9 – out of fourteen 

possibilities. 
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Figure II-17.  1H NMR spectra (400 MHz, 298 K) for:  a) II-2•II-2, b) (+)-II-5•(-)-

II-5, c) II-8 in equilibrium with II-8•II-8, d) II-9, and e) a mixture of II-2•II-2, (+)-

II-5•(-)-II-5, II-8 in equilibrium with II-8•II-8, and II-9.   

 

2.7 Conclusion. 

In summary, we presented the synthesis of methylene-bridged glycoluril 

dimers II-1 − II-11, which undergo strong dimerization in CDCl3 due to a 

combination of H-bonding and π−π interactions. The structure of these dimeric 

aggregates changes as the position and relative orientation of the two H-bonding 

groups move around the o-xylylene rings. For example, II-1·II-1 and II-2·II-2 form 

homodimers and (+)-II-4a·(−)-II-4a and (+)-II-5·(−)-II-5 undergo heterochiral 

recognition, both with an in register type geometry.  When H-bonding groups were 
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moved to the tips of the aromatic rings (e.g., II-7·II-7 and II-8·II-8), a skewed 

geometry was observed that maximizes H-bonding and π−π interactions.  Steric 

bulkiness around the cleft of these molecular clips (e.g., II-8 and II-9) leads to 

reduced values of Ka, but slow exchange kinetics relative to the 1H NMR time scale 

are maintained. The high levels of self-selectivity of these molecular clips allowed us 

to prepare three-component (II-2, (±)-II-5, and II-7) and even a four-component self-

sorted system (II-2, (±)-II-5, II-8, and II-9). 

The implications of this research go beyond the system-specific 

considerations described above. The availability of a series of robust, easily 

functionalized, and orthogonal H-bonding modules for assembly in nonpolar solvents 

such as CDCl3 can be utilized for numerous applications. For example, the patterning 

of surfaces using two orthogonal recognition units has recently been demonstrated; 

additional levels of patterning could be added along with stimuli control based on 

molecular clips reported herein. Such modules also enable the noncovalent 

derivatization of polymer backbones in solution to optimize their properties for 

specific applications (e.g., light emitting diodes, drug delivery, tissue engineering). 

Although the molecular clips described herein assemble in nonpolar solvents, water-

soluble versions of these compounds also assemble in water. When such water-

soluble molecular clips also exhibit self-sorting, it would be possible to use them as 

tags to promote dimerization of appended (bio)molecules within complex cellular 

environments. 

Perhaps most significantly, the development of dynamic combinatorial 

chemistry and self-sorting systems has helped stimulate the development of systems 
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chemistry.  In unbiased dynamic combinatorial libraries all constituent states are 

equally populated and application of a chemical stimulus leads to enhanced formation 

of one or more members of the library due to favorable non-covalent interactions.  

Similar to natural systems whose non-covalent interaction networks are tightly 

controlled self-sorting systems typically comprise only a small fraction of the 

conceivable non-covalent aggregates.  In this chapter, we demonstrated that the 

addition of a new molecular clip (e.g., II-1) to a self-sorting mixture (e.g., II-2·II-2, 

(+)-II-5·(−)-II-5, and II-7·II-7) results in the selective heterodimerization of only one 

member of the system. By extension, it should be possible to prepare larger systems 

comprising sets of molecular clips with common spatial distribution of their H-

bonding arms (e.g., II-1 − II-3, II-4 − II-6, and II-7 − II-9) that display self-sorting 

between sets but not within sets. The development of stimuli responsive versions of 

such self-sorting systems that result in new connection between sets promises the 

development of complex systems that exhibit behaviors typically reserved for natural 

systems.   

 

2.8 Experimental. 

2.6.4 General Experimental. 

Starting materials were purchased from Alfa-Aesar, Acros, and Aldrich and 

were used without further purification.  Compounds II-1, II-2, (±)-II-4, (±)-II-5, II-

12 – II-15, II-19 and 4-morpholineglyoxyloyl chloride were prepared according to 

the literature procedures.  Melting points were measured on a Meltemp apparatus in 
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open capillary tubes and are uncorrected.  NMR spectra were measured on Bruker 

AM-400, DRX-400, and DMX-500 instruments operating at 400 or 500 MHz for 1H 

and 100 or 125 MHz for 13C.  Mass spectrometry was performed using a VG 7070E 

magnetic sector instrument by electron impact (EI) or by fast atom bombardment 

(FAB) using the indicated matrix.  The matrix “magic bullet” is a 5:1 (w:w) mixture 

of dithiothreitol:dithioerythritol.   

 

2.6.5 Synthetic Procedures and Characterization. 

Compound (±)-II-16:  Compound II-15 (8.86 g, 31.0 mmol) 

was dissolved in anh. DMSO (120 mL) under N2 and t-BuOK 

(7.41 g, 62.0 mmol) was added.  After stirring for 12 min., II-14 

(2.10 g, 6.20 mmol) was added in one portion and stirring was continued for 2 h.  The 

reaction mixture was poured into 0.1 N HCl (1 L) and extracted with EtOAc (3 x 

1000 mL).  The extracts were washed with brine (2 x 500 mL),  dried over anh. 

MgSO4 and concentrated.  Flash chromatography (SiO2, CHCl3/MeOH 25:1) gave 

impure (±)-II-16 as a yellow solid.  The impure solid was washed with EtOAc (1 

mL), centrifuged, the supernatant decanted and the residue dried at high vacuum to 

obtain pure (±)-II-16 as a white solid (650 mg, 1.50 mmol, 22%).  M.p. 125-126 oC.  

TLC (CHCl3/MeOH 25:1) Rf 0.14.  IR (KBr, cm-1): 3422m, 2985w, 1717s, 1527m, 

1463m, 1350m, 1271m.  1H NMR (400 MHz, CDCl3): 8.19 (d, J = 2.2, 1H), 8.05 (dd, 

J = 2.2, J = 8.2,  1H), 7.51 (d, J = 8.2, 1H), 6.30 (s, 1H), 6.11 (s, 1H), 4.93 (d, J = 

16.1, 1H), 4.92 (d, J = 16.1, 1H), 4.47 (d, J = 16.1, 1H), 4.46 (d, J = 16.1, 1H), 4.32 
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(q, J = 7.1, 2H), 4.24 (q, J = 7.1, 2H), 1.32 (t, J = 7.1, 3H), 1.27 (t, J = 7.1, 3H).  13C 

NMR (100 MHz, CDCl3): δ 166.0, 165.7, 157.2, 157.0, 148.0, 143.6, 138.5, 131.2, 

124.8, 123.8, 83.1,74.0, 64.2, 63.9, 44.6, 14.4, 14.2 (only 17 of the 18 expected 

resonances were observed).  MS (FAB, magic bullet): m/z 434 (100, [M + H]+).  HR-

MS (FAB, magic bullet, PEG): m/z 434.1303 ([M + H]+, C18H20N5O8, calcd 

434.1312).   
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Compound II-17 and (±)-II-18:  A mixture of PTSA (3.51g, 18.4 mmol) in 

ClCH2CH2Cl (100 mL) was heated under N2 at reflux for 30 min. under an addition 

funnel filled with molecular sieves (4Å).  Compound (±)-II-16 (2.00 g, 4.6 mmol) 

and paraformaldehyde (414 mg, 13.8 mmol) were added and reflux was continued for 

4 days.  The reaction mixture was diluted with EtOAc (1000 mL), washed with sat. 

aq. Na2CO3, dried over anh. MgSO4, and concentrated.  Flash chromatography (SiO2, 

CHCl3/CH3CN 3:1 and 1:1) gave impure (±)-II-18 (447 mg, 0.502 mmol, 22%) and 

II-17 (566 mg, 0.636 mmol, 28%), which were washed with EtOAc (1 mL), 

centrifuged, the supernatant decanted, and the residue dried under high vacuum, 

yielding product (±)-II-18 (405 mg, 0.455 mmol, 20%) and II-17 (479 mg, 0.538 

mmol, 23%) as white solids.  Compound (±)-II-18:  M.p. >300 ˚C (dec.).  TLC 

(CHCl3/MeOH 25:1) Rf 0.12.  IR (KBr, cm-1): 2984w, 1749s, 1528m, 1453s, 1349m, 
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1254s, 1019m, 911m.  1H NMR (400 MHz, DMSO-d6): 8.15 (s, 2H), 8.02 (d, J = 

8.2,2H), 7.56 (d, J = 8.2,2H), 5.79 (d, J = 16.2, 2H), 4.92 (d, J = 16.2, 2H), 4.83 (d, J 

= 16.2, 2H), 4.66 (d, J = 16.2, 2H), 4.62 (d, J = 16.2, 2H), 4.53 (d, J = 16.2, 2H), 

4.30-4.20 (m, 8H), 1.30-1.15 (m, 12H).  13C NMR (100 MHz, DMSO-d6): δ 164.6, 

163.8, 153.9, 146.9, 143.9, 138.5, 130.9, 123.9, 123.2, 79.8, 78.3, 64.5, 64.0, 47.4, 

44.0, 43.8, 13.6, 13.5 (only 18 of the 19 expected resonances were observed).  MS 

(FAB, magic bullet): m/z 891 (100, [M + H]+).  HR-MS (FAB, magic bullet, CsI): m/z 

1023.1505 ([M + Cs]+, C38H38N10O16Cs, calcd 1023.1522).  Compound II-17:  M.p. 

>280 oC (dec.).  TLC (CHCl3/MeOH 25:1) Rf 0.07.  IR (KBr, cm-1): 2984w, 1748s, 

1528m, 1455s, 1349m, 1255s, 1019m, 912m.  1H NMR (400 MHz, DMSO-d6): 8.16 

(s, 2H), 8.02 (d, J = 8.0, 2H), 7.56 (d, J = 8.0, 2H), 5.79 (d, J = 16.1, 1H), 5.78 (d, J = 

16.1, 1H), 4.92 (d, J = 16.1, 2H), 4.83 (d, J = 16.1, 2H), 4.66 (d, J = 16.1, 2H), 4.62 

(d, J = 16.1, 2H), 4.53 (d, J = 16.1, 1H), 4.52 (d, J = 16.1, 1H), 4.30-4.20 (m, 8H), 

1.30-1.15 (m, 12H).  13C NMR (100 MHz, DMSO-d6): δ 164.6, 163.8, 154.0, 153.8, 

146.9, 143.9, 138.5, 130.7, 124.0, 123.1, 79.8, 78.3, 64.5, 64.0, 47.5, 43.9, 43.8, 13.6, 

13.5 (only 19 of the 20 expected resonances were observed).  MS (FAB, magic 

bullet): m/z 891 (100, [M + H]+).  HR-MS (FAB, magic bullet): m/z 1023.1483 ([M + 

Cs]+, C38H38N10O16Cs, calcd 1023.1522).   

 

Compound II-7:  A mixture of 

compound II-17 (267 mg, 0.30 mmol) 

and 10% Pd/C (200 mg) in anh. DMF (20 

mL) was stirred under H2 (10 psi) at RT for 6 h in a Schlenk apparatus.  The reaction 
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mixture was filtered under Ar and concentrated under high vacuum at RT to obtain a 

highly air and moisture sensitive diamine as a white solid.  The crude solid was 

dissolved in a mixture of anh. degassed CH2Cl2 (10 mL) and distilled NEt3 (1 mL) 

under Ar.  This solution was added to a solution of benzoyl chloride (168 mg, 1.20 

mmol) in anh. degassed CH2Cl2 (5 mL) at -78 oC.  After 15 min., the cooling bath 

was removed and stirring was continued at room temperature for 8 h under Ar.  The 

reaction mixture was diluted with CHCl3 (200 mL), washed with sat. aq. NaHCO3, 

dried over anh. MgSO4, and concentrated. Flash chromatography (SiO2, 

CHCl3/MeOH 20:1) gave impure II-7.  The impure solid was washed with EtOAc (2 

mL), centrifuged, the supernatant decanted and the residue dried at high vacuum to 

obtain pure II-7 as a white solid (227 mg, 0.218 mmol, 73%).  M.p. > 319 oC (dec.).  

TLC (CHCl3/MeOH 10:1) Rf 0.44.  IR (KBr, cm-1): 3435m, 2983w, 1745s, 1659m, 

1596m, 1535m, 1456m, 1426m, 1254s, 1017m, 910m.  1H NMR (400 MHz, DMSO-

d6): 10.19 (s, 2H), 7.88 (d, J = 7.4, 4H), 7.68 (s, 2H), 7.65-7.50 (m, 4H), 7.50-7.40 

(m, 4H), 7.23 (d, J = 8.2, 2H), 5.81 (d, J = 16.1, 1H), 5.80 (d, J = 16.1, 1H), 4.65-4.40 

(m, 10H), 4.30-4.10 (m, 8H), 1.24 (t, J = 7.1, 6H), 1.20 (t, J = 7.1, 6H).  13C NMR 

(100 MHz, DMSO-d6): δ 165.4, 165.1, 164.1, 154.1, 154.0, 138.7, 136.5, 134.7, 

131.5, 131.2, 129.9, 128.3, 127.6, 121.3, 119.3, 80.0, 78.5, 64.3, 63.8, 47.3, 44.9, 

44.2, 13.6, 13.5 (only 24 of the 25 expected resonances were observed).  MS (FAB, 

magic bullet): m/z 1039 (35, [M + H]+), 105 (100).  HR-MS (FAB, magic bullet, CsI): 

m/z 1171.2565 ([M + Cs]+, C52H50N10O14Cs, calcd 1171.2562).   
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Compound (±)-II-10:  A mixture of 

compound (±)-II-18 (138 mg, 0.16 

mmol) and 10% Pd/C (100 mg) in anh. 

DMF (15 mL) was stirred under H2 (10 psi) at RT for 6 h in a Schlenk apparatus.  The 

reaction mixture was filtered under Ar and concentrated under high vacuum at RT to 

obtain a highly air and moisture sensitive diamine as a white solid.  The crude solid 

was dissolved in a mixture of anh. degassed CH2Cl2 (5 mL) and distilled NEt3 (1 mL) 

under Ar.  This solution was added to a solution of benzoyl chloride (46 mg, 0.33 

mmol) in anh. degassed CH2Cl2 (5 mL) at -78 oC.  After 15 min., the cooling bath 

was removed and stirring was continued at room temperature for 8 h under Ar.  The 

reaction mixture was diluted with CHCl3 (200 mL), washed with sat. aq. NaHCO3, 

dried over anh. MgSO4, and concentrated.  Flash chromatography (SiO2, 

CHCl3/MeOH 50:1) gave impure (±)-II-10 (123 mg, 0.118 mmol, 76%).  The impure 

solid was washed with EtOAc/Hexane (2:1) (1 mL), centrifuged, the supernatant 

decanted and the residue dried at high vacuum to obtain pure (±)-II-10 as a white 

solid (98 mg, 0.094 mmol, 60%).  M.p. 212-214 oC.  TLC (CHCl3/MeOH 10:1) Rf 

0.46.  IR (KBr, cm-1): 3429m, 2983w, 2940w, 1744s, 1665m, 1596m, 1535m, 1455m, 

1425m, 1253m, 1017m, 910m.  1H NMR (500 MHz, DMSO-d6): 10.20 (s, 2H), 7.89 

(d, J = 7.5, 4H), 7.68 (s, 2H), 7.61 (d, J = 7.9, 2H), 7.60-7.50 (m, 2H), 7.50-7.40 (m, 

4H), 7.23 (d, J = 8.2, 2H), 5.80 (d, J = 16.2, 2H), 4.65-4.40 (m, 10H), 4.23 (q, J = 6.9, 

4H), 4.20 (q, J = 6.9, 4H), 1.24 (t, J = 6.9, 6H), 1.20 (t, J = 6.9, 6H).  13C NMR (100 

MHz, DMSO-d6): δ 165.4, 165.0, 164.1, 154.1, 154.0, 138.7, 136.5, 134.7, 131.5, 

131.2, 129.9, 128.2, 127.5, 121.3, 119.3, 80.0, 78.5, 64.3, 63.7, 47.3, 44.9, 44.2, 13.6, 
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13.5.  MS (FAB, magic bullet): m/z 1039 (100, [M + H]+).  HR-MS (FAB, magic 

bullet, PEG, Li): m/z 1045.3678 ([M + Li]+, C52H50N10O14Li, calcd 1045.3668).   

 

Compound (±)-II-20:  A mixture of p-xylene (600 mL) and PTSA 

(30.84 g, 162.1 mmol) was refluxed under an addition funnel filled 

with 4Å molecular sieves for 1 h.  Compound II-19 (6.00 g, 16.21 

mmol) was added in one portion and reflux was continued for 4 h.  The reaction 

mixture was cooled to room temperature and p-xylene was distilled off under high 

vacuum.  The residue was dissolved in CHCl3 (1000 mL), washed with sat. aq. 

Na2CO3, dried over anh. MgSO4, and concentrated.  Flash chromatography (SiO2, 

CHCl3/MeOH 50:1) gave impure (±)-II-20 as a yellow solid.  The impure solid was 

washed with EtOAc (10 mL), centrifuged, the supernatant decanted and the residue 

dried at high vacuum to obtain pure (±)-II-20 as a white solid (2.45 g, 5.88 mmol, 

36%).  M.p. 250-251 oC.  TLC (CHCl3/MeOH 25:1) Rf 0.25.  IR (KBr, cm-1): 3432m, 

3221m, 2982w, 2927w, 1755s, 1707s, 1475m, 1448m, 1278m, 1269m, 1150m, 

1044m.  1H NMR (400 MHz, DMSO-d6): 8.43 (s, 2H), 6.98 (s, 2H), 4.87 (d, J = 16.0, 

2H), 4.30-4.20 (m, 4H), 4.15 (q, J = 7.1, 2H), 2.44 (s, 6H), 1.26 (t, J = 7.1, 3H), 1.21 

(t, J = 7.1, 3H).  13C NMR (100 MHz, CDCl3): 166.5, 166.4, 157.8, 135.7, 135.1, 

130.7, 83.1, 74.3, 64.0, 63.6, 40.4, 20.5, 14.4, 14.2.  MS (FAB, PEG): m/z 417 (100, 

[M + H]+).  HR-MS (FAB, PEG): m/z 417.1778 ([M + H]+, C20H25N4O6, calcd 

417.1774).   
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Compound II-21:  A mixture of PTSA (7.30 g, 38.4 

mmol) in ClCH2CH2Cl (400 mL) heated under N2 at 

reflux for 1 h. under an addition funnel filled with 

molecular sieves (4Å).  Compound (±)-II-20 (4.00 g, 9.6 mmol) and 

paraformaldehyde (864 mg, 28.8 mmol) were added in one portion and reflux was 

continued for 48 h.  The reaction mixture was diluted with CHCl3 (1000 mL), washed 

with sat. aq. Na2CO3, dried over anh. MgSO4, and concentrated.  The residue was 

washed with CH3CN (10 mL), centrifuged, the supernatant decanted, and the residue 

was dried under high vacuum to obtain II-21 (3.21 g, 3.73 mmol, 78%) as white 

solid.  M.p. 309-310 oC.  TLC (CHCl3/MeOH 50:1) Rf 0.43.  IR (KBr, cm-1): 2951w, 

1738s, 1455s, 1434m, 1249s, 1016m, 908m.  1H NMR (400 MHz, CDCl3): 6.96 (s, 

4H), 6.01 (d, J = 16.0, 2H), 5.17 (d, J = 16.0, 4H), 4.66 (d, J = 16.0, 2H), 4.25-4.10 

(m, 12H), 2.47 (s, 12H), 1.35-1.20 (m, 12H).  13C NMR (100 MHz, CDCl3): 166.5, 

165.5, 155.2, 135.8, 135.2, 130.9, 80.0, 79.4, 64.1, 63.7, 48.2, 40.9, 20.7, 14.4, 14.3.  

MS (FAB, PEG/CsI): m/z 989 (100, [M + Cs]+).  HR-MS (FAB, PEG CsI): m/z 

989.2440 ([M + Cs]+, C42H48N8O12Cs, calcd 989.2446).   
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Compound II-22 and (±)-II-23:  A mixture of compound II-21 (1.80 g, 2.1 mmol) 

in TFA (35 mL) was cooled to 0˚C using ice-water bath.  To this mixture HNO3 (35 
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mL) was added dropwise while stirring.  The ice bath was removed after 15 min and 

stirring was continued for 4 h.  The reaction was quenched with sat. aq. Na2CO3 and 

extracted with CHCl3 (500 mL). The extracts were washed with brine, dried over anh. 

MgSO4, and concentrated.  Flash chromatography (SiO2, CHCl3) gave compound (±)-

II-23 (750 mg, 0.791 mmol, 38%) and compound II-22 (860 mg, 0.908 mmol, 42%) 

as white solids.  Compound (±)-II-23:  M.p. 288-290 oC.  TLC (CHCl3/MeOH 50:1) 

Rf 0.46.  IR (KBr, cm-1): 2981w, 1740s, 1529m, 1450s, 1364m, 1254s, 1020m, 911m.  

1H NMR (400 MHz, CDCl3): 7.45 (s, 2H), 5.97 (d, J = 16.0, 2H), 5.28 (d, J = 16.4, 

2H), 5.23 (d, J = 16.4, 2H), 4.68 (d, J = 16.0, 2H), 4.30-4.15 (m, 12H), 2.56 (s, 6H), 

2.52 (s, 6H), 1.36 (t, J = 7.1, 6H), 1.30 (t, J = 7.1, 3H).  13C NMR (100 MHz, CDCl3): 

166.1, 165.2, 155.1, 155.0, 150.9, 140.4, 138.9, 136.4, 129.0, 125.7, 79.5, 79.4, 64.3, 

64.1, 48.3, 40.6, 20.6, 15.7, 14.4, 14.3 (only 20 of the 21 expected resonances were 

observed).  MS (FAB, magic bullet, CsI): m/z 1079 (100, [M + Cs]+).  HR-MS (FAB, 

magic bullet, CsI): m/z 1079.2174 ([M + Cs]+, C42H46N10O16Cs, calcd 1079.2148).  

Compound II-22:  M.p. 273-275 oC.  TLC (CHCl3/MeOH 50:1) Rf 0.43.  IR (KBr, 

cm-1): 2984w, 1750s, 1526m, 1449s, 1366m, 1253s, 1020m, 910m.  1H NMR (400 

MHz, CDCl3): 7.40 (s, 2H), 5.99 (d, J = 16.0, 1H), 5.98 (d, J = 16.0, 1H), 5.27 (d, J = 

16.4, 2H), 5.22 (d, J = 16.4, 2H), 4.69 (d, J = 16.0, 2H), 4.30-4.15 (m, 12H), 2.53 (s, 

12H), 1.34 (t, J = 7.1, 6H), 1.29 (t, J = 7.1, 6H).  13C NMR (100 MHz, CDCl3): 166.1, 

165.2, 155.1, 155.1, 150.8, 140.4, 138.9, 136.4, 129.0, 125.7, 79.6, 79.4, 64.3, 64.0, 

48.3, 40.6, 40.6, 20.6, 15.7, 14.4, 14.3 (only 21 of the 22 expected resonances were 

observed).  MS (FAB, CsI): m/z 1079 (100, [M + Cs]+).  HR-MS (FAB, magic bullet, 

CsI): m/z 1079.2177 ([M + Cs]+, C42H46N10O16Cs, calcd 1079.2148).   
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Compound II-9:  A mixture of 

compound II-22 (60 mg, 0.063 mmol) 

and 10% Pd/C (50 mg) in anh. DMF (9 

mL) was stirred under H2 (10 psi) at RT for 6 h in a Schlenk apparatus.  The reaction 

mixture was filtered under Ar and concentrated under high vacuum at RT to obtain a 

highly air and moisture sensitive diamine as a white solid.  The crude solid was 

dissolved in a mixture of anh. degassed CH2Cl2 (8 mL) and distilled NEt3 (0.5 mL) 

under Ar.  This solution was added to a solution of pivaloyl chloride (37 mg, 0.30 

mmol) in anh. degassed CH2Cl2 (5 mL) at -78 oC.  After 15 min., the cooling bath 

was removed and stirring was continued at room temperature for 6 h under Ar.  The 

reaction mixture was diluted with CHCl3 (100 mL), washed with sat. aq. NaHCO3, 

dried over anh. MgSO4, and concentrated.  Radial chromatography (SiO2, 

CHCl3/MeOH 100:1) gave impure II-9.  The impure solid was washed with EtOAc (1 

mL), centrifuged, the supernatant decanted and the residue dried at high vacuum to 

obtain pure II-9 as white solid (50 mg, 0.047 mmol, 75%).  M.p. 214-217 oC.  TLC 

(CHCl3/MeOH 50:1) Rf 0.17.  IR (KBr, cm-1): 3429m, 2966w, 1748s, 1673m, 1511m, 

1446s, 1367m, 1251s, 1015m, 908m.  1H NMR (400 MHz, DMSO-d6): 8.82 (s, 2H), 

6.85 (s, 2H), 5.73 (d, J = 16.0, 2H), 4.87 (d, J = 16.0, 2H), 4.80 (d, J = 16.0, 2H), 4.56 

(d, J = 16.0, 1H), 4.52 (d, J = 16.0, 1H), 4.36 (d, J = 16.0, 2H), 4.33 (d, J = 16.0, 2H), 

4.18 (q, J = 7.1, 2H), 4.12 (q, J = 7.1, 2H), 2.31 (s, 6H), 2.13 (s, 6H), 1.25-1.15 (m, 

30H).  13C NMR (125 MHz, DMSO-d6): 177.5, 166.6, 165.3, 155.6, 155.6, 137.6, 

137.1, 134.8, 133.9, 132.0, 130.2, 80.6, 79.9, 65.6, 65.0, 48.6, 48.5, 39.8, 28.6, 20.7, 
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15.3, 14.9, 14.7 (only 23 of the 25 expected resonances were observed).  MS (FAB, 

magic bullet, CsI): m/z 1187 (100, [M + Cs]+).  HR-MS (FAB, magic bullet, CsI): m/z 

1187.3807 ([M + Cs]+, C52H66N10O14Cs, calcd 1187.3814).   

 

Compound (±)-II-11:  A mixture of 

compound (±)-II-23 (80 mg, 0.084 

mmol) and 10% Pd/C (55 mg) in anh. 

DMF (10 mL) was stirred under H2 (10 psi) at RT for 6 h in a Schlenk apparatus.  The 

reaction mixture was filtered under Ar and concentrated under high vacuum at RT to 

obtain a highly air and moisture sensitive diamine as a white solid.  The crude solid 

was dissolved in a mixture of anh. degassed CH2Cl2 (10 mL) and distilled NEt3 (0.5 

mL) under Ar.  This solution was added to a solution of benzoyl chloride (59 mg, 

0.41 mmol) in anh. degassed CH2Cl2 (5 mL) at -78 oC.  After 15 min., the cooling 

bath was removed and stirring was continued at room temperature for 8 h under Ar.  

The reaction mixture was diluted with CHCl3 (100 mL), washed with sat. aq. 

NaHCO3, dried over anh. MgSO4, and concentrated.  Radial chromatography (SiO2, 

CHCl3/MeOH 100:1) gave impure (±)-II-11.  The impure solid was washed with 

EtOAc (1 mL), centrifuged, the supernatant decanted and the residue dried at high 

vacuum to obtain pure (±)-II-11 as a white solid (67 mg, 0.061 mmol, 73%).  M.p. 

268-270 oC.  TLC (CHCl3/MeOH 50:1) Rf 0.26.  IR (KBr, cm-1): 3427m, 2982w, 

2930w, 1742s, 1656m, 1520m, 1447s, 1366m, 1255s, 1018m, 907m.  1H NMR (400 

MHz, DMSO-d6): 9.89 (s, 2H), 7.95 (d, J = 7.2, 4H), 7.58 (t, J = 7.2, 2H), 7.50 (t, J = 

7.2, 4H), 7.08 (s, 2H), 5.82 (d, J = 16.0, 2H), 4.97 (d, J = 16.0, 2H), 4.89 (d, J = 16.0, 

N N

N N

O

O

RR
NN

NN

O

O

R R

H
N

N
H

O

Ph
O

Ph

(±)-II-11  R = CO2Et



 

 85 

2H), 4.61 (d, J = 16.0, 2H), 4.45 (d, J = 16.0, 2H), 4.42 (d, J = 16.0, 2H), 4.30-4.15 

(m, 8H), 2.40 (s, 6H), 2.28 (s, 6H), 1.27 (t, J = 7.1, 3H), 1.22 (t, J = 7.1, 3H).  13C 

NMR (125 MHz, DMSO-d6): 165.4, 165.2, 164.1, 154.4, 154.3, 136.1, 135.9, 134.3, 

133.7, 133.1, 131.5, 130.7, 128.9, 128.4, 128.3, 127.5, 79.3, 78.7, 64.4, 63.7, 47.3, 

19.6, 14.3, 13.7, 13.5 (only 25 of the 26 expected resonances were observed).  MS 

(FAB, CsI): m/z 1227 (100, [M + Cs]+).  HR-MS (FAB, magic bullet, CsI): m/z 

1227.3158 ([M + Cs]+, C56H58N10O14Cs, calcd. 1227.3188).   

 

Compound II-8:  A mixture of 

compound II-22 (150 mg, 0.158 mmol) 

and 10% Pd/C (85 mg) in anh. DMF (20 

mL) was stirred under H2 (10 psi) at RT for 6 h in a Schlenk apparatus.  The reaction 

mixture was filtered under Ar and concentrated under high vacuum at RT to obtain a 

highly air and moisture sensitive diamine as a white solid.  The crude solid was 

dissolved in a mixture of anh. degassed CH2Cl2 (15 mL) and distilled NEt3 (1.3 mL) 

under Ar.  This solution was added to a solution of benzoyl chloride (89 mg, 0.62 

mmol) in anh. degassed CH2Cl2 (10 mL) at -78 oC.  After 15 min., the cooling bath 

was removed and stirring was continued at room temperature for 10 h under Ar.  The 

reaction mixture was diluted with CHCl3 (200 mL), washed with sat. aq. NaHCO3, 

dried over anh. MgSO4, and concentrated.  Radial chromatography (SiO2, 

CHCl3/MeOH 100:1) gave impure II-8.  The impure solid was washed with EtOAc (1 

mL), centrifuged, the supernatant decanted and the residue dried at high vacuum to 

obtain pure II-8 as a white solid (112 mg, 0.102 mmol, 65%).  M.p. 281-284 oC.  
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TLC (CHCl3/MeOH 50:1) Rf 0.23.  IR (KBr, cm-1): 3429m, 2928w, 1743s, 1650m, 

1519m, 1451s, 1367m, 1254s, 1016m, 909m.  1H NMR (500 MHz, DMSO-d6): 9.88 

(s, 2H), 7.95 (d, J = 7.4, 4H), 7.59 (m, 2H), 7.50 (t, J = 7.6, 4H), 7.09 (s, 2H), 5.82 (d, 

J = 16.2, 2H), 4.96 (d, J = 16.2, 2H), 4.89 (d, J = 16.2, 2H), 4.62 (d, J = 16.2, 1H), 

4.59 (d, J = 16.2, 1H), 4.46 (d, J = 16.2, 2H), 4.42 (d, J = 16.2, 2H), 4.24 (q, J = 7.1, 

2H), 4.18 (q, J = 7.1, 2H), 2.40 (s, 6H), 2.27 (s, 6H), 1.27 (t, J = 7.1, 3H), 1.21 (t, J = 

7.1, 3H).  13C NMR (125 MHz, DMSO-d6): 165.8, 165.8, 164.5, 154.9, 136.5, 136.4, 

134.9, 134.3, 133.5, 132.0, 131.3, 129.4, 128.9, 128.0, 79.8, 79.2, 64.9, 64.2, 47.8, 

47.7, 20.0, 14.8, 14.1, 14.0 (only 24 of the 27 expected resonances were observed).  

MS (FAB, CsI): m/z 1227 (100, [M + Cs]+).  HR-MS (FAB, magic bullet, CsI): m/z 

1227.3192 ([M + Cs]+, C56H58N10O14Cs, calcd 1227.3188).   

 

Compound II-3:  A mixture of compound II-

12 (72 mg, 0.076 mmol) and 10% Pd/C (50 

mg) in anh. DMF (10 mL) was stirred under H2 

(10 psi) at RT for 5 h in a Schlenk apparatus.  

The reaction mixture was filtered under Ar and 

concentrated under high vacuum at RT to obtain a highly air and moisture sensitive 

diamine as a white solid.  The crude solid was dissolved in a mixture of anh. degassed 

CH2Cl2 (10 mL) and distilled NEt3 (4 mL) under Ar.  This solution was added to a 

solution of 4-acetamidobenzoyl chloride (83 mg, 0.41 mmol) in anh. degassed 

CH2Cl2 (5 mL) at -78 oC.  After 15 min., the cooling bath was removed and stirring 

was continued at room temperature for 6 h under Ar.  The reaction mixture was 
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diluted with CHCl3 (200 mL), washed with sat. aq. NaHCO3, dried over anh. MgSO4, 

and concentrated.  Radial chromatography (SiO2, CHCl3/MeOH, 100:4, then 100:6) 

gave II-3 as white solid (50 mg, 0.041 mmol, 53%).  M.p. > 310 ˚C (dec.).  TLC 

(CHCl3/MeOH 100:6) Rf 0.24.  IR (KBr, cm-1): 3324m, 2959w, 2924w, 1744s, 

1600m, 1506m, 1456m, 1436m, 1369s, 1258s, 1081m, 1017m.  1H NMR (400 MHz, 

DMSO-d6): 10.19 (s, 2H), 10.00 (s, 2H), 7.90-7.80 (m, 4H), 7.70-7.60 (m, 4H), 7.15-

7.10 (m, 2H), 7.0-6.95 (m, 2H), 5.75-5.70 (m, 2H), 5.28 (d, J = 16.0, 2H), 4.75 (d, J = 

16.0, 2H), 4.55 (d, J = 15.8, 1H), 4.30 (d, J = 15.8, 1H), 4.25-4.10 (m, 12H), 3.77 (s, 

6H), 2.06 (s, 6H), 1.25-1.10 (m, 12H).  13C NMR (100 MHz, DMSO-d6): 169.2, 

166.0, 165.4, 164.4, 155.0, 154.9, 154.4, 142.8, 134.7, 130.7, 129.0, 128.6, 127.9, 

124.9, 118.7, 118.6, 111.9, 80.4, 79.0, 64.9, 64.3, 56.5, 47.9, 47.7, 36.6, 24.6, 14.1, 

14.0.  MS (FAB, CsI): m/z 1345 (100, [M + Cs]+).  HR-MS (FAB, CsI): m/z 

1345.3243 ([M + Cs]+, C58H60N12O18Cs, calcd 1345.3203).   

 

Compound (±)-II-6:  A mixture of 

compound (±)-II-13 (77 mg, 0.087 mmol) 

and 10% Pd/C (50 mg) in anh. DMF (10 

mL) was stirred under H2 (10 psi) at RT for 

6 h in a Schlenk apparatus.  The reaction 

mixture was filtered under Ar and concentrated under high vacuum at RT to obtain a 

highly air and moisture sensitive diamine as a white solid.  The crude solid was 
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dissolved in a mixture of anh. degassed CH2Cl2 (10 mL) and distilled NEt3 (0.5 mL) 

under Ar.  This solution was added to a solution of 4-morpholineglyoxyloyl chloride 

(34 mg, 0.19 mmol) in anh. degassed CH2Cl2 (5 mL) at -78 oC.  After 15 min., the 

cooling bath was removed and stirring was continued at room temperature for 6 h 

under Ar.  The reaction mixture was diluted with CHCl3 (200 mL), washed with sat. 

aq. NaHCO3, dried over anh. MgSO4, and concentrated.  Radial chromatography 

(SiO2, CHCl3/MeOH 100:3) gave (±)-II-6 as white solid (45 mg, 0.038 mmol, 43%).  

M.p. > 330 ˚C (dec.).  TLC (CHCl3/MeOH 100:4) Rf 0.22.  IR (KBr, cm-1): 3440m, 

2979w, 2925w, 1748s, 1652m, 1455m, 1368w, 1270s, 1115w, 1082w, 1017w.  1H 

NMR (400 MHz, DMSO-d6): 10.44 (s, 2H), 7.16 (d, J = 8.9, 2H), 6.99 (d, J = 8.9, 

2H), 5.77 (d, J = 16.0, 2H), 5.17 (d, J = 16.0, 2H), 4.80 (d, J = 16.0, 2H), 4.47 (d, J = 

16.0, 2H), 4.32 (d, J = 16.0, 2H), 4.30 (d, J = 16.0, 2H), 4.25-4.05 (m, 8H), 3.79 (s, 

6H), 3.70-3.50 (m, 16H), 1.22 (t, J = 7.0, 3H), 1.15 (t, J = 7.0, 3H).  13C NMR (100 

MHz, DMSO-d6): 166.0, 164.9, 163.6, 163.4, 155.7, 155.3, 155.0, 133.9, 128.5, 

127.5, 125.6, 112.7, 80.5, 79.5, 67.3, 66.7, 65.3, 64.6, 57.0, 48.2, 47.1, 42.3, 37.0, 

14.5, 14.4.  MS (FAB, magic bullet): m/z 1174 (100, [M + H]+).  HR-MS (FAB, 

magic bullet, CsI): m/z 1305.3125 ([M + Cs]+, C52H60N12O20Cs, calcd 1305.3101).   

 

2.6.6 NMR Experiments. 

NMR spectra were measured on spectrometers operating at 400 or 500 MHz 

for 
1
H and 100 or 125 MHz for 

13
C. Temperature was maintained (±0.5 K) with a 
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temperature control module that has been calibrated using the separation of the 

resonances of methanol. For the self-association measurements, spectra were 

recorded at a series of concentrations (10−0.05 mM). Spectra for dimeric clips at 

higher than 10 mM concentration were recorded in 12 mm microtubes matched with 

CDCl
3
. Spectra were referenced relative to residual solvent resonances. 
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III.  Chapter 3:  Deconvolution of a Multi-Component 

Interaction Network Using Systems Chemistry.   

 

3.1 Introduction. 

Living organisms operate in a multi-component complex environment where 

various events such as self-regulation, amplification, and hemostasis are regulated 

through complex networks.108-111  Inside the cellular environment, signal transduction 

proceeds through a sequence of steps that transforms the system from one state to a 

completely different state.  In single cell and multi-cellular organisms the metabolic, 

signal transduction pathways are guided by various protein-protein interactions that 

are in turn controlled by genetic regulatory networks.112  A recent study revealed that 

the transcription regulatory networks in yeast Saccharomyces cerevisiae involve 4549 

physical interactions between 3278 yeast proteins where as genetic regulatory 

network is formed by 1289 directed positive or negative direct transcriptional 

regulations within a set of 68 proteins.113,114  Such protein-protein interaction 

networks define pathways for the propagation of various signals such as 

phosphorylation and allosteric regulation of proteins.  Another study on Escherichia 

coli was able to identify 1079 regulatory interactions out of which 741 interactions 

are involved in the network that regulate of amino acid biosynthesis, flagella 

biosynthesis, osmotic stress response, antibiotic resistance, and iron regulation.115 
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Biologists were always inspired to deconvolute these complexities observed in 

Nature and they adopted a systematic approach – called systems biology – that deals 

with these emergent properties originated in highly complex interaction networks.116-

123  Systems biologists integrate all fundamental information known about the system 

from experiments and the literature, formulate mathematical models that describe the 

structure of such systems and solve those models using computational approaches.124  

The goal of this approach is not only to understand how the network of dynamic 

interactions give rise to functional behavior but also to apply the results in drug 

discovery, pharmacology, and the clinic.125-127  Such inherent complexities observed 

in Nature inspired supramolecular chemists to design systems that mimic at least 

some of those complexities.  In the past decade, due to technical difficulties it was 

difficult to analyze complex systems with high level of accuracy.  With the discovery 

of highly sensitive modern analytical techniques, now it is possible to overcome the 

technical obstacles to analyze a multi-component mixture precisely.  Due to these 

technical advancements complex systems are among the growing areas in current 

research in chemistry.63,128-133  We, and others, are involved in the development of 

systems chemistry that deals with mutually interacting multi-component chemical 

systems.134-137   

Our group reported a 12-component mixture that undergoes 

thermodynamically controlled social self-sorting system in water based on directional 

metal-ligand interactions and less directional ion–dipole, electrostatic, charge transfer 

interactions, as well as the hydrophobic effect.16  In contrast to the systems mentioned 

above, Natural and biological systems are driven by kinetically controlled processes.  
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Subsequently, we generated a high fidelity kinetic self-sorting system comprising 

CB[6], CB[7], and guests containing two binding epitopes.  We analyzed the kinetic 

behavior and demonstrated how such systems respond to external stimuli by changing 

their configuration over time from one particular state to another particular state.  In 

the next step, our aim was to mimic another important phenomena that is 

commonplace in Nautre – biological networks.  In the domain of supramolecular 

chemistry, due to extremely high Ka values (up to 1015 M-1) and selectivities (Krel up 

to 107) observed for CB[n] host-guest pairs31 we realized that the presence of a self-

sorted state under thermodynamic control in an n-component mixture does not say 

anything about the composition of the intermediate states comprising 1, 2, 3, …. n-1 

components.  The identities of the host-guest pairs present within smaller mixtures 

can and do in many cases differ dramatically from those present in the n-component 

mixture.  Such intermediate states would be highly responsive to the presence 

(addition, removal, or transformation) of new components, which may lead to 

drastically different state.  As a starting point toward mimicking the complex web of 

recognition events that governs Natural systems we wondered whether an 8-

component self-sorting mixture comprising III-1 – III-8 could be built up in eight 

steps by sequential addition of components in a manner that would result in self-

sorted states at every step along the way.  In this chapter, we have we used four hosts 

III-1 – III-4 and four guests III-5 – III-8 and added them in arbitrary sequences to 

create an artificial complex interaction network that operates under thermodynamic 

control and implemented a systems level approach that allowed us to understand the 

complexities of this system.   
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3.2 Preparation of an 8-Component Self-Sorted Mixture. 

3.2.1 Selection of the Chemical Components Used in this Study. 

To design an 8-component social self-sorting mixture, we selected three 

members of the cucurbit[n]uril family (III-6 – III-8) because it is well-known that 

CB[n] compounds bind cationic guests with high affinity and selectivity in 

water.138,139  We choose β-cyclodextrin (β-CD) III-5 as the fourth host in our study 

because it is commercially available and binds to a wide range of guests with low 

selectivity.140  After some experimentation we selected compounds III-1 – III-4 as 

our guests.  Of critical importance in the selection of III-1 – III-4 were: 1) their host-

guest complexes should undergo slow exchange on the chemical shift time scale and 

2) exhibit distinct changes in chemical shift upon complexation such that the 

composition of the mixture can be conveniently monitored by 1H NMR spectroscopy.   

 

CHART III-1.  Compounds Used in this Study.   
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3.2.3 Self-Sorting System Comprising III-1 – III-8. 

The critical requirement of mimicking the network of cascade interactions in 

biology is to achieve a well-organized configuration of the system at the end of the 

transformation.  The first step of our study was to ensure a self-sorted state of the 

final 8-component mixture.  The 1H NMR spectra of III-6•III-1, III-5•III-2, III-

7•III-3, and III-8•III-4, and a mixture of III-1 – III-8 are shown in Figure III-1.  The 

1H NMR spectrum of the mixture (Figure III-1e) is simply equal to the sum of the 1H 

NMR of its components.16  This spectroscopic earmark confirms that the 8-

component system comprising guests III-1 – III-4 and hosts III-5 – III-8 undergoes 

a high fidelity self-sorting process delivering a mixture of III-6•III-1, III-5•III-2, 

III-7•III-3, and III-8•III-4.   
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Figure III-1.  1H NMR spectra (400 MHz, D2O, pD 7.4, 298 K, 1 mM) recorded for: 

a) III-6•III-1, b) III-5•III-2, c) III-7•III-3, d) III-8•III-4, and e) III-6•III-1, III-

5•III-2, III-7•III-3, and III-8•III-4.  (CD3)3SiCD2CD2CO2D (∆) is used as internal 

standard.   

 

3.3 Stepwise Construction of 8-Component Self-Sorted Mixture.   

We were gratified that a mixture comprising III-1 – III-8 underwent a high 

fidelity self-sorting process and decided to explore the stepwise construction of the 

final 8-component self-sorted state.   
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3.3.9 Molecular Musical Chairs. 

A particularly interesting pathway for the construction of the 8-component 

self-sorting system comprising III-6•III-1, III-5•III-2, III-7•III-3, and III-8•III-4 

involves the stepwise addition of III-1, III-8, III-3, III-5, III-4, III-7, III-2, and then 

III-6.  The 1H NMR spectra recorded after each of the eight steps are shown in Figure 

III-2.  Remarkably, at each of the seven intermediate steps a single well-defined set of 

resonances is observed by 1H NMR and each of the intermediate states is therefore 

self-sorted.  This self-sorted pathway is particularly interesting since it proceeds by 

alternate addition of guest and hosts and resembles the reverse of the game of musical 

chairs.  We whimsically refer to this as a molecular musical chair pathway.141  During 

this molecular musical chair pathway shuttling of guests between hosts is common.  

For example, in the pathway III-1, III-8, III-3, III-5, III-4, III-7, III-2, III-6 the 

addition of III-4 to the mixture of III-8•III-3 and III-5•III-1 triggers the movement 

of III-3 from III-8 to III-5 with a concommitant dissociation III-1 from III-5 (Figure 

III-2e).  Another example of the shuttling is the behavior of compound III-1 which 

initially forms a complex with III-8 at the beginning of the pathway whereas in the 

final mixture it is bound to III-6 and it finds its way to its final destination via III-5 

(Figure III-2f).  Similarly, guest III-3 initially complexes with host III-8, then takes 

up residence inside III-5 and finally complexes with III-7 in the 8-component 

mixture.  Compound III-5 plays an important role in this process because it can bind 

to a wide range of positively charged and neutral guests with modest affinity and low 

selectivity. As such, III-5 serves as a binding depot for guests during the shuttling 

between high affinity binding sites in response to the addition of guests.   
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Figure III-2.  1H NMR spectra (400 MHz, D2O, pD 7.4, 298 K, 1 mM) recorded for 

an equimolar mixture after addition of 1 eq. of: a) III-1, b) III-8, c) III-3, d) III-5, e) 

III-4, f) III-7, g) III-2, h) III-6. (CD3)3SiCD2CD2CO2D (∆) is used as internal 

standard.  Prime indicates that the guest is complexed with host.   
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3.3.10 Statistical Considerations. 

This section presents some of the statistical considerations involved in the 

stepwise build-up of a multi-component mixture.  Figure III-3 depicts the stepwise 

construction of two-, three-, and four- component systems.  For example, a two-

component system can be made by the addition of either one of the two components 

in the first step followed by the addition of the other in the second step (A then B, 

denoted as AB; B then A, denoted as BA).  We refer to these possibilities as 

pathways, which can be represented by a square (Figure III-3a) where the vertices 

represent four states and arrows along the edges indicate the direction of increasing 

number of components.  In this stepwise build-up of the two-component mixture, 22 

states are conceivable (e.g. 0, A, B, and AB) and are connected by 2! pathways.  

Similarly a three-component mixture can be built up in 6 (3!) ways (ABC, ACB, 

BAC, BCA, CAB, and CBA) involving eight (23) states.  For a three component 

mixture the various paths and states can be represented by the edges and vertices of a 

cube (Figure III-3b).  By analogy, a four-component mixture can be built up by way 

of 16 (24) states by adding components by 24 (4!) different pathways.  This process 

can be depicted as a four dimensional hypercube (Figure III-3c).  In general, the 

construction of an n-component mixture in n steps involves 2n states and there are n! 

different pathways to reach the final state.  Such an n-component system can be 

represented as an n dimensional hypercube containing 2n vertices and 2n-1n edges.  As 

the number of components is increased the corresponding hypercube graph reflects 

the enormous complexity of larger systems (Figure III-4).   
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Figure III-3.  Schematic representation of the network in stepwise formation of a 

self-sorted mixture comprising: a) two, b) three, and c) four components.   

 

Figure III-4.  Schematic representation of 2, 3, 4, 6, and 8-dimensional hypercubes.   

 

3.3.11 Computational Approach Towards a Global Understanding of the 

Stepwise Construction of a Four Component System. 

Given that all the experimental systems described in this chapter are at 

thermodynamic equilibrium, a detailed knowledge of all the initial concentrations and 

values of Ka is sufficient for the complete description of the system.  These systems 

are, therefore, quite amenable to computational approaches.  In this section we 

presents the computational characterization of a hypothetical 4-component system 



 

 100 

that sets the stage for deconvolution of the 8-component mixture (III-1 – III-8) 

described above.   

Figure III-5 shows a hypothetical system comprising two hosts (A and B) and 

two guests (M and N) subject to the constraints on concentration and values of K 

given (Figure III-5b and III-5c).  In the simulations, we define a non-self-sorted state 

as one where one or more components or complexes have mole fractions 0.1 ≤ χ ≤ 

0.9.  Conversely, all components and complexes of self-sorted states have mole 

fractions either less than 0.1 or more than 0.9.  This definition corresponds roughly to 

our ability to detect minor species by 1H NMR.   

A plot of ΔG versus number of components for each of the 24 (16) states of 

the system is shown in Figure III-5d.  We have colored self-sorted states with green 

dots and non-self-sorted states with red dots.  Furthermore, pathways that connect two 

self-sorted states have been colored green; paths that connect a non-self-sorted state 

with a self-sorted state or two non-self-sorted states have been colored red.  Of the 16 

states of this system 14 are self-sorted and even more interesting is the fact that of the 

24 pathways for the construction of the four-component mixture, 12 consist entirely 

of self-sorted states.  We refer to them as self-sorted pathways.  Several other features 

of this system deserve comment.  First, although the stepwise formation of a multi-

component complex mixture is a function of path, all paths must by definition lead to 

an identical final state under thermodynamic control.  However changing the 

sequence of addition of components leads to completely different sets of complexes 

along the way.  Second, some pathways may be trivial.  For example, addition of 
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hosts (e.g. A) followed by their most tight binding guests (e.g. M) does lead to 

interesting stimuli responsive changes in composition.  Third, stimuli responsive 

movement of guest is common.  For example, the state of the system comprising A 

and N gives complex AN after the second step despite the fact that BN is formed after 

step 4.  The controlled movement of N from host A to host B – driven by the free 

energy inherent in the 1000-fold difference in equilibrium constant between KAM (109 

M-1) and BM (106 M-1) – signals the presence of guest M.  These observations made 

in the simulation of this four-component system are conceptually related to the 

experimental observations made for the 8-component system comprising III-1 – III-8 

described above.   

 

Figure III-5.  Stepwise construction of a four component self-sorting mixture:  (a) 

equilibria considered, (b) concentrations of the components, (c) association constants 

of the various complexes, and (d) a plot of free energy versus number of components.   
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3.3.12 Experimental Investigation of Other Pathways that Lead to the Eight 

Component Self-Sorted System. 

Given the successful demonstration of a molecular musical chair pathway and 

stimulated by the computational results on the four-component system described 

above, we decided to experimentally investigate some of the pathways that might 

prove instructional.  One such pathway involves addition of the hosts III-5 – III-8 in 

the first four steps followed by the addition of the guests III-1 – III-4 in the next four 

steps is depicted in Figure III-6.  Although this pathway apparently seems 

straightforward, there are a few things about it that are noteworthy.  Although it is not 

important to maintain any particular order of addition of hosts (III-5, III-6, III-7, and 

III-8) in the first four steps since they do not associate with one another, it is critical 

to maintain a specific sequence (III-4, III-3, III-2, and III-1) in the addition of guests 

for the remaining states to be self-sorted.  If compound III-1 was added prior to the 

addition of III-3 that would result in a non-self-sorted mixture as III-6 has only 10 

fold higher affinity for III-1 than III-7.  Although III-3 has 1000 fold higher affinity 

towards III-7 than III-8, a six-component state containing III-2, III-3, and III-5 – 

III-8 results in a non self-sorted mixture.  In the absence of III-4 – which has high 

selectivity toward III-8 (Ka = 1.11  × 1011 M-1) relative to III-7 (Ka = 6.42 × 104 M-1) 

– compound III-3 will be partially complexed with CB[8] (Ka = 2.00 × 109 M-1), 

forcing the formation of III-7•III-2 (Ka = 3.23 × 108 M-1) in the mixture.   
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Figure III-6.  A pathway that proceeds through eight self-sorted states created by 

adding all the hosts (III-5 – III-8) in the first four steps followed by the guests (III-4, 

III-3, III-2, then III-1) in the next four steps.   

 

In contrast to the examples discussed so far, the majority of the pathways are 

non self-sorted.  For example: a pathway involving the alternate addition of host and 

guest – III-1, III-7, III-2, III-8, III-3, III-5, III-4 then III-6 – proceeds through 

several non-self-sorted states (Figure III-7).  For example, addition of III-2 in the 

third step leads to a non self-sorted mixture as both guests have substantial affinities 

towards III-7.  Addition of compound III-8 in the fourth step restores the state of the 

system from non self-sorted to self-sorted by selectively sequestering III-1 to form 

III-8•III-1 and III-7•III-2.  Addition of III-3 in the fifth step lead to a non self-sorted 

mixture and the system retains its non self-sorted state even after the addition of III-5 

in the sixth step.  Addition of III-4 resumes self-sorted state of the system in the 

seventh step.  The comparable affinities of guests towards hosts lead to non self-

sorted mixture in fifth and sixth step driven by the minimization of the overall free 
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energy of the system.  The large free energy release upon formation of III-8•III-4 

drives III-3 to choose III-7, which in turn drives III-2 to choose III-5. 

 

Figure III-7.  A pathway created by the alternate addition of hosts and guests that 

proceeds through some self-sorted states.   

 

3.3.13 Computational Approach Towards Global Understanding of the 

Experimental System Comprising III-1 – III-8. 

Examination of the experimental pathways described above provided insights 

into the formation of multi-component mixtures that were not apparent at the outset 

of our experiments.  Rather than undertaking the unappealing prospect of 

investigating all 40320 (8!) pathways by experiment – we performed simulations of 

the system comprising III-1 – III-8 using the values of Ka shown in Table III-1.  The 

binding constants for III-6•III-1, III-7•III-2, III-7•III-3, III-8•III-3, III-7•III-4, and 
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III-8•III-4 were measured experimentally;31 we estimated the binding constants of 

III-1, III-2, III-3, and III-4 for III-5 based on literature precedents;140 the binding 

constants of III-1 with III-7 and III-8 were estimated by extrapolation of results by 

us and Mock and co-worker.31-33   

Table III-1:  Values of Ka (M-1) of Different Host-Guest Complexes Used In the 

Simulation. 

 β-CD CB[6] CB[7] CB[8] 

III-1 500 1 × 107 1 × 106 1 × 105 

III-2 1 × 105 100 3.23 × 108 100 

III-3 1 × 105 100 1.98 × 1012 2.0 × 109 

III-4 100 100 6.42 × 104 1.11 × 1011 

 

Figure III-8a shows the free energy of all 256 possible states that may arise in 

the stepwise formation of an eight-component mixture.  As we observed 

experimentally by 1H NMR, the final state of the simulation represents a self-sorted 

state.  The simulation also provided mole fraction values for each component in the 

remaining 255 states, which were used to identify whether a particular state was self-

sorted or non-self-sorted.  In Figure III-8a, self-sorted states are colored green and 

non self-sorted states are colored red.  Although the initial and final states are the 

same, the intermediate states have distinct sets of complexes populated.  This 

comprehensive knowledge of the compositions of all 256 states allowed us to predict 

the outcome of all 40320 pathways.  Figure III-8b represents a complete interaction 
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network – all 40320 pathways – that was previously described by an eight 

dimensional hypercube.   

 

Figure III-8.  Stepwise construction of an 8-component self-sorting mixture 

(concentration of each component = 1 M):  a) all 256 possible states (color coding: 

self-sorted states, green; non-self-sorted states, red.), b) plot of all 40320 pathways, c) 

steps that transform a self-sorted state to another self-sorted state, d) steps that 

transform a non self-sorted state to another non self-sorted state, e) steps that 

transform a non self-sorted state to another self-sorted state, and f) steps that 

transform a self-sorted state to another non self-sorted state.   

Inspired by the complete deconvolution of the interaction network involved in 

the stepwise formation of an eight-component self-sorted system, we were interested 

to have further insight to the subset of these pathways.  There are four different kinds 

of transformations possible upon addition of a single component: one self-sorted state 
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to another self-sorted state, one non self-sorted state to another non self-sorted state, 

one non self-sorted state to another self-sorted state, and one self-sorted state to 

another non self-sorted state (Figure III-8 c – f).  Although the transformation from a 

self-sorted state to another self-sorted state is observed throughout the pathway 

(Figure III-8c), transformation from a non self-sorted state to another non self-sorted 

state is spatially segregated (Figure III-8d) to the upper right hand corner.  The 

formation of a highly organized self-sorted state from a disordered non self-sorted 

state upon addition of a compound is associated with substantial amount of downhill 

in free energy (Figure III-8e).  In contrast, some transformations from a self-sorted 

state to another non self-sorted state are associated with a decrease in free energy 

while others are slightly uphill in energy due to statistical (e.g. entropic) consideration 

(Figure III-8f).142 

 

3.3.14 Effect of Number of Components on Self-Sorted States. 

We observed several hidden patterns as well as interesting behaviors in the 

simulation.  First, more non self-sorted states emerge in the intermediate steps due to 

the increase of potentially competing interactions with the increase in the number of 

components (Table III-2).  Only those states that consist of high selectivity and 

affinity host-guest pairs are self-sorted because they are able to provide sufficient free 

energy requirements for self-sorting under thermodynamic control (Figure III-8a).   
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Table III-2:  Total Number of Self-Sorted and Non Self-Sorted States at Different 

Concentration. 

Conc. (1 M) Conc. (1 mM)  Conc. (1 µM)  Number 
of 
Compo-
nents 

Number 
of States 

Self-
sorted 
states 

Non 
self-
sorted 
states 

Self-
sorted 
states 

Non 
self-
sorted 
states 

Self-
sorted 
states 

Non 
self-
sorted 
states 

0 

1 

2 

3 

4 

5 

6 

7 

8 

1 

8 

28 

56 

70 

56 

28 

8 

1 

1 

8 

28 

45 

49 

36 

15 

6 

1 

0 

0 

0 

11 

21 

20 

13 

2 

0 

1 

8 

25 

39 

44 

32 

14 

6 

1 

0 

0 

3 

17 

26 

24 

14 

2 

0 

1 

8 

25 

41 

35 

16 

6 

0 

0 

0 

0 

3 

15 

35 

40 

22 

8 

1 

Total  256 189 67 170 86 132 124 

 

3.3.15 Effect of Concentration of Components on Self-Sorted States and 

Pathways. 

We were interested to quantify how concentration affects the stepwise 

formation of the self-sorted system since Nature uses concentration as the primary 

method to control self-assembly processes.  As the component concentration is 

increased from 0.01 µM from 1 M, we observed an initial decrease in the number of 
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self-sorted states followed by an increase above 1 µM (Figure III-9).  This is due to 

the fact that at 0.01 µM – much below their value of Kd – many complexes are fully 

dissociated, while they are only partially complexed around their Kd (1 µM 

concentration), leading to a decrease to the number of non self-sorted states.  At 

higher concentration of the components those host-guest pairs are forced to complex, 

which result in an increase in the number of self-sorted states.  We also observed a 

substantial effect of concentration on the number of self-sorted pathways.  As such 

completely self-sorted pathways are relatively uncommon.  Only 5858 and 3376 

pathways are completely self-sorted in 1 M and 1 mM concentration, respectively.  

The total number of self-sorted pathways can be calculated from Table III-3.  Total 

number of self-sorted pathways = Total number of pathways × probability of 

achieving a self-sorted state at each step.  When the concentration of the components 

is 1 M, there are total 5858 pathways that are self-sorted. (40320 × 45/56 × 49/70 × 

36/56 × 15/28 × 6/8 = 5858).  Total number of non self-sorted pathways = 40320 – 

5858 = 34462]  Somewhat surprisingly there is no self-sorted pathway at 1 µM 

concentration due to fact that the final state itself becomes non self-sorted at that 

concentration (Table III-3).  These results indicate that by changing the concentration 

– just as Nature does – we can achieve control over an interaction network in a 

complex multi-component system.  The above study indicates that a significant 

proportion of biological processes are probably governed by non self-sorted states 

and pathways due to the involvement of a large number of components in the 

interaction network inside the cell.   
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Table III-3:  Effect of Concentration of Components and Sequence of Addition on 

Pathways. 

Conc. (1 M) Conc. (1 mM)  Conc. (1 µM)  Total 
Number 
of 
pathways Self-

sorted 
pathways 

Non self-
sorted 
pathways 

Self-
sorted 
pathways 

Non self-
sorted 
pathways 

Self-
sorted 
pathways 

Non self-
sorted 
pathways 

5858 34462 3376 36944 0 40320 40320 

14.53 % 85.47 % 8.38 % 91.62 % 0 % 100 % 

 
Sequence 
HHHHGGGGa 

Sequence 
GGGGHHHHa 

Sequence 
GHGHGHGHa 

Sequence 
HGHGHGHGa 

Random 
sequencea 

Self-
sorted 

Non 
self-
sorted 

Self-
sorted 

Non 
self-
sorted 

Self-
sorted 

Non 
self-
sorted 

Self-
sorted 

Non 
self-
sorted 

Self-
sorted 

Non 
self-
sort
ed 

162 414 108 468 68 508 86 490 5434 325
82 

28.1% 71.9% 18.8% 81.2% 11.8% 88.2% 14.9% 85.1% 14.2% 85.8
% 

a  Concentration of each component = 1 M 
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Figure III-9.  A plot showing the change in number of self-sorted states with respect to 

concentration.   

 

3.3.16 Effect of Sequence of Addition of Components on Pathways. 

Realizing the origin of different behaviors in different pathways we decided to 

investigate the effect of the order of addition of components on states and pathways.  

We anticipated that the outcome of the pathways would be very different depending 

on the order of addition of components (addition of all hosts followed by all guests 

versus alternate addition of hosts and guests).  We investigated the following order of 

additions by simulation:  1) 576 pathways (4 × 3 × 2 × 1 × 4 × 3 × 2 × 1) for each of 

the following addition sequence involving addition of all four hosts followed by the 

addition of all four guests (HHHHGGGG) and vice versa (GGGGHHHH).  2) 576 

pathways (4 × 4× 3 × 3 × 2 × 2 × 1 × 1) for each of the two different alternate 

addition sequence of hosts and guests (GHGHGHGH and HGHGHGHG).  

Interestingly, we observed that pathways originated from two different kinds of 
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addition sequences set themselves apart from each other in the free energy landscape 

(Figure III-10 a – d).  In the sequence HHHHGGGG and GGGGHHHH, there is no 

change in the free energy observed in the first four steps followed by sharp decrease 

in free energy observed in every step in next four steps.  Whereas, alternate addition 

sequences (HGHGHGHG or GHGHGHGH) involve a cascade of molecular 

recognition events that trigger a change of the system from one state to another state.   

 

Figure III-10.  All 576 pathways for each of the following order of addition 

(concentration of each component = 1 M):  (a) GGGGHHHH,  (b) HHHHGGGG,  (c) 

GHGHGHGH, and (d) HGHGHGHG. 
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3.4 The Effect of Equilibrium Constants.   

In the previous section we demonstrated that variables like concentration and 

sequence of addition of components alter the outcome of states and pathways in the 

stepwise construction of 8-component mixture.  We were interested to explore 

another key variable – equilibrium constant – that Nature uses to control its assembly 

processes.  We derived mean and standard deviations values interactions over a wide 

range of guests for β-CD, CB[6], CB[7], and CB[8] based on literature precedents 

(Table III-4).  Instead of quantifying individual host-guest interactions by specific 

numbers (e.g. our experimental system) we incorporated mean ± standard deviation 

values and allowed GEPASI to generate a random set of 16 (4 x 4) values and 

performed simulations similar to our experimental system.  When we plotted ΔG with 

respect to number of components we observed similar trend where free energy of the 

system decreases with the concomitant increase in the number of component (Figure 

III-11).  When we compared 67 simulations from randomly generated binding 

constants, we observed only 20 % of the final states and approximately 3% of the 

total pathways under above conditions are self-sorted (Figure III-12).  The mean and 

standard deviations of host-guest interactions values that we assumed for our hosts 

are comparable to various interactions observed in biological systems and hence we 

anticipate our research reflects some of the behaviors observed in biology. 
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Figure III-11.  A histogram showing the distribution of 17152 states derived from 

randomly generated binding constants for 67 systems.   

 

Table III-4:  Range of binding constants of synthetic hosts used in the simulation and 

summary of binding constants for various interactions observed in biology.143,144   

Host type Guest type Mean (log Ka) 

β-cyclodextrin Organic molecule 4 ± 2 

CB[6] Organic molecule 6 ± 2 

CB[7] Organic molecule 8 ± 3 

CB[8] Organic molecule 8 ± 3 

Catalytic Antibody Substrate 3.5 ± 1 

Enzyme Substrate 3.7 ± 1.3 

Albumin Organic molecule 4.6 ± 0.9 

Catalytic antibody Transition state 6.6 ± 2.0 

Receptor drug Drug 7.3 ± 1.5 

Antibody Antigen 8.1 ± 2.0 

Enzyme  Inhibitor 8.6 ± 4.0 
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Figure III-12.  A stack of ten simulations from randomly generated binding constants 

showing that only two cases the final state is self-sorted. (states are color coded as 

follows: self-sorted states, green dots; non self-sorted states, red dots.) 

 

3.5 Conclusion.   

In summary, we presented compound III-1 – III-8 that form an 8-component 

self-sorted mixture consisting of III-6•III-1, III-5•III-2, III-7•III-3, and III-8•III-4.  

We investigated selected pathways by 1H-NMR and the rest by simulations for the 

formation of the 8-component mixture.  We demonstrated that the presence of a 

single set of complexes – a self-sorted state – in that 8-component mixture does not 

have any effect on the intermediate states and the formation of the final state in a 

step-by-step manner is a path function.  Although every path converges to the same 

final state but their properties are function of the sequence of addition of components.  
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The above study demonstrates quite a few aspects that go beyond those of 

their isolated components are reminiscent to several behaviors observed in biology.  

First, similar to the molecular networks operating inside the living cells, our designed 

experimental system is associated with intricate web of molecular recognition events.  

A hypercube model serves as a network map where a large volume of information is 

stored in a concise and systematic manner.  Second, in many biological processes 

such as multi-step biosynthesis of proteins, nucleic acids in complex environment in 

cytoplasm maintaining particular sequences of steps are critical.  Although under 

thermodynamic control – in contrast to Nautre, which operates far from equilibrium 

under kinetic control – our experimental system is capable of differencing 40320 

sequences of addition of components – each of them is characterized as a unique 

pathway.  Third, in the musical chair pathway, the controlled transformation of the 

mixture into another of quite different composition serves as a minimal model of a 

signal transduction pathway.  Signal transduction events are mostly driven by ordered 

sequences of enzymatic reactions inside the cell where as transformations in our 

system are driven by the free energy release upon host-guest complexation.  Fourth, 

just as biological networks, our designed experimental system is also capable of 

responding to variables like concentration and equilibrium constants.  Finally, not 

only were we able to finish each complete investigation of the system in a fraction of 

the time by successful application of systems chemistry, we found several concealed 

trends and pattern in the systems that we did not manifest prior to simulations.  These 

molecules in conjunction with systems chemistry can be used in chemical sensing 
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application in complex mixtures and controlling biological catalysis when enzyme are 

part of the network.   
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IV.  Chapter 4:  Biological Catalysis Controlled by a Synthetic 

Self-Sorting System. 

 

4.1 Introduction. 

In the living organism various regulatory strategies have been employed to 

control the activity of proteins over space and time.  One important strategy that is 

commonly used in biology is the allosteric regulation where the activities of proteins, 

including enzymes, are controlled upon binding of small signal molecules to specific 

sites within the enzymes.145  Such allosteric binding events trigger conformational 

changes that are transmitted to the active site and in turn the activity of the enzyme is 

either enhanced (positive cooperativity) or reduced (negative cooperativity).  For 

example, hemoglobin, an oxygen transfer protein, shows positive coopetativity where 

the binding of the first oxygen molecule to one heme group facilitates the binding of 

oxygen to the other three heme subunits in the same molecule.146  Cytidine 

triphosphate (CTP) acts as an allosteric inhibitor to enzyme aspartate 

transcarbamoylase (ATCase).  Binding of CTP to the regulatory subunit of ATCase 

shifts the equilibrium towards T state and therefore decreases the enzymatic activity 

of ATCase.147-149  The key driving force for allosteric regulation and many other 

events in biology is reversible non-covalent interactions, which inspired others and us 

to create non-natural systems that exhibit similar regulatory behaviors.150-152   
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In this chapter we report a simple strategy to regulate enzymatic activities 

where we combined an enzyme inhibitor and a non-natural guest into one structure to 

create a two-faced guest molecule.  Our hypothesis was that the presence of the 

second binding epitope attached to inhibitor molecule would provide the opportunity 

to regulate biological catalysis upon addition of another receptor, which would 

sequester the two-face guest from the active site of the enzyme.  Although this 

strategy is uncommon in biology because it requires the evolution of another receptor 

protein in vivo just to selectivity sequester the inhibitor from the enzyme, it can be a 

potentially promising for applications in medicinal chemistry.  Recently the concept 

of combination of two drug molecules (hybrid drug) has been used in medicinal 

chemistry and it turned out that the hybrid drugs often more active.  An in vitro assay 

reveals that a combination of antimalarial drug artemisinin and quinine is more 

effective against drug-sensitive and drug-resistant malaria than their respective 

building blocks.153  Drug chloroquine was combined with antidepressant imipramine, 

which counters resistance by inhibiting membrane channel that pumps chloroquine 

drug’s site of action.154  This hybrid drug – known as reverse chloroquines – is 

around 10 times more effective than chloroquine itself.  A recent example of hybrid 

drug combines aspirin with a NO donor.  A high dose of aspirin often cause stomach 

problems.  Because nitric oxide can block that toxicity, combination of aspirine and 

NO donor in one molecule provides the benefit of aspirine without side effects.  

Surprisingly, aspirin-nitric oxide hybrid drug possesses new anticancer properties, 

which is uncommon in both pharmacophores.155 
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These results as well as our previous experience show that the presence of two 

binding epitopes in the same molecule gives rise to emergent properties;36 that is, the 

properties of two-face guests are different from individual guest molecules.  Herein 

we explore the strategy of regulation of kinetic events (e.g. biological catalysis) under 

thermodynamic control using guests IV-1 – IV-5.  In this chapter we explore the 

application of this strategy to control the catalysis of Bovine Carbonic Anhydrase and 

rationalized a case using Acetylcholinesterase where a potential limitation of this 

approach predominates.   

 

4.1.1 Design Aspects of the Chemical Components Used in this Study. 

In medicinal chemistry, it is common to employ reversible inhibitor molecules 

of enzymes that modulate their enzymatic activities.156-160  In some cases it is 

desirable to turn on or turn off the function of such inhibitors in response to an 

outside stimulus to regulate the function of the enzyme.  The critical requirement for 

regeneration of enzymatic activity under thermodynamic control is that the 

association constant (Ka) value for non-natural guest•receptor interaction must exceed 

the enzyme-inhibitor interaction.  To design our molecule we settled on benzene 

sulfonamide, since it is easily functionalizable and a well-studied competitive 

inhibitor of BCA.161-163  Adamantane ammonium ions – as non-natural guest – was 

our natural choice because it binds to CB[7] with very high affinity (Ka = 4 × 1012 M-

1), which is approximately 106 fold higher than the mean Ka of sulfonamides to 

BCA.31  Based on our design we synthesized IV-1 and envisioned that addition of 
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CB[7] to the enzyme•inhibitor complex would result in the sequestration of the 

inhibitor as the CB[7]•inhibitor complex thus releasing free BCA and regenerating 

catalysis (Scheme IV-1).  Of critical importance in the selection of the 

enzyme/inhibitor pairs were: 1) each enzyme should have straightforward and well-

studied assays, 2) the cognate inhibitor should be easily functionalizable, and 3) the 

inhibitor should preserve its function even after derivatization. 

Scheme IV-1.  Thermodynamic Shuttling of IV-1 between BCA and CB[7].   

 

 

4.2 Results and Discussion.   

This results and discussion section is organized as follows.  First, we 

introduce thirteen compounds IV-1 – IV-13 used in this study (Chart IV-1).  Then we 

introduced the assays that we used to monitor the activity of the enzymes. Next, we 

demonstrate how CB[7] can regenerate enzymatic activity of Bovine Carbonic 

Anhydrase (BCA) by sequestering compound IV-1 and IV-2 from its active site.  

Subsequently, we discuss in detail the mechanism of the shuttling of IV-1 and IV-2 
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between CB[7] and BCA based on results from fluorophore displacement assays.  In 

the final section of this chapter we discuss the pitfalls encounter when we attempted 

to use two-faced guest molecules to control the enzymatic behavior of AChE.   

 

Chart IV-1.  Compounds Used in this Study.   
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4.2.1 Synthesis of Guests IV-1 – IV-5. 

Scheme IV-2 shows the synthesis of two-faced guests IV-1 – IV-5.  

Compound IV-16 was synthesized in 83% yield from IV-14 and IV-15.  Compound 
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IV-16 was reacted with the appropriate amine under Finkelstein reaction conditions 

to deliver amines IV-1 – IV-3 in 62 – 73% yield.  The hydrochloric acid salt of IV-1 

– IV-3 was prepared by dissolving the amine in EtOH and passing HCl gas through 

the solution.  Compounds IV-4 and IV-5 were synthesized in two steps from IV-17 in 

a similar manner.  First, the acylation of IV-14 with IV-17 gave compound IV-18 in 

42% yield.  Subsequently, IV-18 was alkylated with adamantane amine or 

H2NCH2SiMe3 to give amines IV-4 and IV-5 in 62 and 67% yield.  The hydrochloric 

acid salt of IV-4 and IV-5 was prepared by dissolving the amine in EtOH and passing 

HCl gas through the solution.   

Cl
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O
SO2NH2
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+

Cl

N
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N
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N

HN O
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N

HN O
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a) b)

c) b)

IV-14 IV-15 IV-16

IV-14 IV-17 IV-18

IV-1  R = 1-Adamantyl
IV-2  R = CH2SiMe3

IV-3  R = (CH2)5CH3

IV-4  R = 1-Adamantyl
IV-5  R = CH2SiMe3

d)

d)

 

Scheme IV-2.  Synthesis of IV-1 – IV-5.  Conditions:  a) K2CO3 or Et3N, THF, 

reflux,  b) RNH2, K2CO3, KI, anh. THF, reflux,  c) 140 ˚C, neat,  d) HCl (g), EtOH.   

 

4.2.2 Chemical Reactions Used to Monitor Enzymatic Activities. 

We used two straightforward colorimetric assays that allowed us to quantify 

the catalytic activity of BCA and AChE.  BCA is an esterase that catalyzes the 

hydrolysis of IV-7 to form yellow-colored IV-19.  Therefore when the inhibitor 
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molecule occupies the active site of the enzyme, formation of IV-19 is not observed.  

Consequently, the rate of hydrolysis can be monitored by measuring the absorbance 

at 400 nm by UV/Vis spectroscopy (Scheme IV-3a).164-166  The enzymatic activity of 

AChE can be measured by the Ellman assay.  The Ellman assay relies on the AChE 

catalyzed hydrolysis of IV-6 to IV-20 and acetate.  Thiolate IV-20 reacts rapidly with 

IV-13 to generate IV-22, which has a yellow color (λmax = 412 nm).  The rate of 

enzyme hydrolysis, therefore can be monitored by measuring absorbance at 412 nm 

using UV/Vis spectroscopy (Scheme IV-3b).167   

 

Scheme IV-3.  Chemical Reactions Used to Monitor Enzymatic Activities.   
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4.2.3 Regulation of Biological Catalysis of Bovine Carbonic Anhydrase. 

As a first test of our design strategy, we monitored the enzymatic hydrolysis 

of IV-7 by BCA before and after the addition of IV-1.  A shut down of the hydrolysis 

of IV-7 was observed, which indicates that IV-1 inhibits the enzymatic activity of 

BCA due to formation of BCA• IV-1 (Step 1 and 2; Figure IV-1b).  In the next step, 

when we monitored the enzymatic hydrolysis of IV-7 after addition of CB[7] to a 

solution of BCA• IV-1.  We observed 44% regeneration of the initial enzymatic 

activity (Step 3; Figure IV-1b).  We expected complete a regeneration under 

thermodynamic control based on our design and only partial regeneration of 

enzymatic activity after addition of CB[7] was somewhat surprising.   

Finally, we expected that addition of IV-8 to the resulting mixture of BCA, 

IV-1 and CB[7] trigger a new self-sorted state where IV-8 form complex with CB[7] 

freeing guest IV-1, which in turn result in the inhibition of the hydrolysis of IV-7.168  

When we performed the experiment, we observed that 42% catalytic activity (Step 4; 

Figure IV-1b).  This result indicates that addition of IV-8 failed to release IV-1 from 

CB[7].  We rationalize this observation based on literature precedent that adamantane 

amine has slow dissociation rate constant (koff = 2.4 × 10-5 s-1) from CB[7].36  

Although IV-8 has higher affinity for CB[7] than IV-1, due to the slow rate of 

dissociation of IV-1 was not released from the cavity of CB[7] and therefore did not 

turn off enzymatic activity.  Under thermodynamic consideration IV-1 is suitable for 

shuttling between BCA and CB[7], experimental implementation of this design was 

not possible as the system operates under kinetic control due to slow koff of IV-1 from 

CB[7].   
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The partial regeneration of enzymatic activity using IV-1 was intuitively 

promising and inspired us to modify our design to improve the performance.  We 

designed new two-faced guest IV-2 bearing (trimethylsilyl)methyl amine instead of 

adamantane amine.  The design of IV-2 was based on our experience and precedent 

from literature that (trimethylsilyl)methyl amine has substantial affinity (Ka = 8.98 × 

108 M-1) toward CB[7], also the complex has a fast dissociation rate constant.  A 

colorimetric assay indicated that IV-2 was capable of inhibiting the enzymatic 

activity of BCA (Step 1 and 2; Figure IV-1a and IV-1b).  When we added CB[7] to a 

solution of BCA• IV-2 we observed maximum 83% regeneration of the initial 

enzymatic activity (Step 3; Figure IV-1a and IV-1b).  Upon addition of IV-8 to the 

resulting mixture of BCA, IV-2 and CB[7], we successfully turned off the hydrolysis 

of IV-7 (Step 4; Figure IV-1a and IV-1b).  Addition of compound IV-8 triggers a new 

self-sorted state under thermodynamic control where IV-8 binds to CB[7] by 

releasing IV-2 which in turn inhibits BCA.  We were able to continue such alternate 

deactivation and regeneration of enzyme activity by adding CB[7] and IV-8 in an 

alternating sequence (Step 5 – 8; Figure IV-1a and IV-1b).  An explanation for the 

steady decrease in the relative activity of BCA over the successive cycles of 

deactivation and regeneration of enzymatic activity (Figure IV-1a) was at first poorly 

understood.  Later, we rationalized this behavior using fluorescence spectroscopy.  

We demonstrated that only partial instead of complete regeneration of the enzymatic 

activity of BCA was observed due to inhibition by CB[7]•IV-1 after CB[7] sequesters 

IV-1 from BCA to form a ternary complex BCA•IV-1•CB[7].  CB[7]•IV-2 has 

weaker inhibition capability that CB[7]•IV-1, hence we observed higher regenerated 
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enzymatic activity.  Formation of BCA•IV-2•CB[7] is responsible for incomplete 

regeneration after addition of CB[7] and steady decrease in the enzymatic activity 

over the successive cycles.   

 

Figure IV-1.  a) A plot of change in absorbance versus time for IV-2: Step 1 (), 

Step 2 (); Step 3 (); Step 4(); Step 5 (); Step 6 (); Step 7 (); and Step 8 

().  b) A plot of relative activity of BCA versus number of steps.   

 

If the swapping of guests from the active site of BCA to CB[7] was driven by 

the fact that IV-1 and IV-2 have a higher affinity towards CB[7] than BCA, we 

proposed that the enzymatic activity will not be regenerated when the non natural 
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guest – receptor interaction is weaker than sulfonamide – BCA interaction.  We used 

β-CD since it is known to have a modest affinity towards adamantanes (Ka = 104 M-

1).140  As predicted, we were unable to regenerate the enzymatic activity by removing 

IV-1 from the active site of BCA•IV-1 using β-CD.  As a second control experiment, 

we designed compound IV-3 where we replaced the higher affinity CB[7] binding 

groups adamantane amine and (trimethylsilyl)methyl amine by a lower affinity CB[7] 

binding group hexylamine.  We did not observe any regeneration of enzymatic 

activity after addition of CB[7] to a solution containing BCA•IV-3.  These control 

experiments strongly suggest that the shuttling of guests operates under 

thermodynamic control based on differences in the value of binding constants of the 

appendages to their cognate receptors.   

The UV/Vis assay described above serves as an indirect evidence of guest 

exchange between receptors.  A direct evidence of guest shuttling can be obtained 

from 1H NMR spectroscopy, which can track the location of the TMS group present 

in IV-2.  Figure IV-2a shows the 1H NMR spectrum of BCA in the region from 0.5 to 

-1 ppm.  The appearance of a new peak at – 0.27 ppm upon addition of IV-2 to BCA 

is indicative of the formation of the BCA•IV-2 complex (Figure IV-2b).  After 

addition of excess CB[7] the resonance for BCA•IV-2 disappeared completely and 

only the resonance for CB[7]•IV-2 was observed (Figure IV-2d).  1H NMR provides 

evidences in support of the swapping of IV-2 between BCA and CB[7] and are 

consistent with result obtained from the colorimetric assay.   
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Figure IV-2.  1H NMR spectra recorded for (400 MHz, 30 mM NaD2PO4 Buffer, pD 

7.3, 298 K):  a) BCA (1 eq.),  b) BCA (1 eq.) and IV-2 (1.76 eq.),  c) BCA (1 eq.), 

IV-2 (1.76 eq.) and CB[7] (0.5 eq.),  d) BCA (1 eq.), IV-2 (1.76 eq.) and CB[7] (2.0 

eq.), and e) IV-2 (2 eq.) and CB[7] (1 eq.).   

 

4.2.4 Measurement of Association Constant. 

As described above, the successful alternate turn on and off sequence of the 

biological catalysis of BCA using IV-2, the results obtained from 1H NMR, and 

control experiments suggest the shuttling of guests operates under thermodynamic 

control.  To provide strong evidence for this interpretation, we decided to measure or 

estimated the value of Ka of the various receptor•guest pairs.   

 

4.2.5 Measurement of the Ka of the Inhibitor to CB[7]. 

The association constant of IV-1 and IV-2 to CB[7] were measured by competition 

with appropriate guests of known values of Ka by using 1H NMR competition 
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experiments.  All binding experiments were performed in 50 mM NaO2CCD3-

buffered D2O (pD 4.75) at 25 ˚C.31  The association constants of IV-1 (Ka = 4.13 ± 

0.935 × 1012 M-1) and IV-2 (Ka = 2.5 × 108 M-1) were measured by competition with 

IV-10 and IV-9 respectively for a limiting quantity of CB[7] (Figure IV-9).169  The 

value of Ka for CB[7]•IV-3 was estimated as 106
 M-1 by extrapolation of results by us 

and Mock and co-workers.32,33,170   

 

4.2.6 Evidence of Shuttling from Fluorescence Spectroscopy.  

We used a competitive fluorescence assay as an alternate method to 

understand the mechanism of guest exchange process.  Unbound IV-12 has a low 

quantum yield in water and increases markedly (at 460 nm) when it forms a 1:1 

complex in the non-polar and hydrophobic environment inside BCA.  Addition of IV-

1 or IV-2 to a solution containing BCA•IV-12 resulted in a decrease in fluorescence 

intensity at 460 nm, which indicates the displacement of IV-12 from the active site of 

BCA by IV-1 or IV-2 (Scheme IV-4).  In this manner fluorogenic probe IV-12 

signals whether the two-faced guests is bound to the enzyme or not.162,171,172  

Interestingly, when CB[7] was added to that solution, we observed an increase in 

fluorescence intensity at 460 nm.  This observation indicates the formation of a new 

self-sorted state consisting of BCA•IV-12 and CB[7]• IV-2 in solution.  Finally, a 

decrease in fluorescence intensity at 460 nm was observed after addition of IV-8, 

indicating another complete reorganization to form a new self-sorted state consisting 

of CB[7]•IV-8 and BCA•IV-2.  The alternate increase and decrease of fluorescence 
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intensity at 460 nm supports our interpretation that the on / off of biological catalysis 

is due to binding and dissociation of IV-2 from the active site of BCA triggered by 

the presence of CB[7].   

Scheme IV-4.  Schematic Representation of the Fluorophore Displacement Assay.   

 

 

4.2.7 Measurement of the Association Constant (Ka) of Inhibitors IV-1 – 

IV-3 to the BCA. 

We directly measured the value of Ka for BCA•IV-12 by monitoring the increase 

in fluorescence intensity at 460 nm of BCA with the concomitant increase of the 

concentration of IV-12 and fitting the data by nonlinear least-squares analysis of a 1:1 

binding model (Figure IV-13 and IV-14).  The binding constant values of BCA•inhibitor 

were measured by a competitive fluorophore displacement assay 173 where we monitored 

the decrease in fluorescence intensity at 460 nm of BCA•IV-12 with the concomitant 

increase of the concentration of IV-1 – IV-3.  The values of Ka of IV-1 – IV-3 were 

calculated by fitting equation IV-1 to decrease in fluorescence intensity. (Figure IV-3 and 

IV-15).173   
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Figure IV-3.  Plot of fluorescence intensity versus [IV-1] in the titration of BCA•IV-

12 with IV-1.  Concentration of BCA (67.5 nM), IV-12 (2µM), and IV-1 (50 nM – 10 

µM).  All measurements were done in 20 mM NaH2PO4 Buffer, pH 7.3, 298 K.   
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Table IV-1.  Thermodynamic and Kinetic Parameters for BCA•Inhibitor Interactions.  

Bovine Carbonic Anhydrase  

Ka (M-1) ΔG (kcal 
mol-1) 

kon (M-1s-1) koff (s-1) t1/2 (s) of 
dissociation 

IV-12 (3.87 ± 0.34) 
× 106

 

– 8.96 4.7 × 105 (1.20 ± 0.10) 
× 10-1  

5.8 

IV-2 (2.73 ± 0.24) 
× 107 

– 10.11 2.8 × 105 (1.40± 0.01)  
× 10-2 

49.5 

IV-1 (1.08 ± 0.10) 
× 108 

– 10.92 5.1 × 105 (4.30 ± 0.01) 
× 10-3 

161.1 

CB[7]•
IV-2 

(2.56 ± 0.21) 
× 105 

– 7.36 6.5 × 104 (2.70 ± 0.13) 
× 10-1 

2.6 

CB[7]• 
IV-1 

(9.14 ± 0.77) 
× 105 

– 8.10 3.1 × 104 (4.81 ± 0.58) 
× 10-2 

14.3 

 

4.2.8 Kinetic Effect in Enzyme Inhibitor Binding. 

While we were carrying out the fluorophore displacement assay, we observed 

interesting dynamic behavior in the enzyme-inhibitor binding event.  For example, 

when CB[7] was added to a solution of BCA•IV-1 and IV-12 (also to a solution of 

BCA•IV-2 and IV-12) we observed an initial increase followed by a decrease in the 

fluorescence intensity (Figure IV-4).  An identical decay pattern was observed 

(Figure IV-27) after adding CB[7]•IV-1 to a solution of BCA•IV-12 indicating that 

CB[7]•IV-1 is also capable of interacting with BCA.  We anticipated that such 
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behavior might influence the yield of regenerated BCA and therefore decided to 

further explore the kinetic aspect of the shuttling process.    

 

Figure IV-4.  Plot of fluorescence intensity versus time after addition of CB[7] (50 

µM) to a mixture of IV-12 (2 µM), IV-1 (20 µM) and BCA (80 nM).  All 

measurements were done in 20 mM NaH2PO4 buffer, pH 7.3, 298 K.   

 

4.2.9 Determination of the Values of kon and koff of the inhibitor from BCA.  

When we attempted to measure the value of dissociation rate constant (koff) of 

IV-12 from BCA, we observed that it initially increases with concomitant increase in 

the concentration of IV-1 and finally reach to a saturation value (Figure IV-23).  The 

dependence of dissociation rate constant of IV-12 from BCA on the concentration of 

IV-1 can be explained by using equation IV-2.  In equation IV-2, k1 and k-1 are the 

association and dissociation rate constants of IV-12 to BCA.  Similarly, k2 and k-2 are 

the association and dissociation rate constants of IV-1 to BCA. 
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k2

k-2

BCA•IV-12 + IV-1

k-1

k1

BCA + IV-12 + IV-1 BCA•IV-1 + IV-12

(IV-2) 

At lower concentration of IV-1, addition of IV-1 to BCA is the rate-

determining step; hence the aparant rate constant (kobs) is a function of both 

concentration of IV-1 and IV-12.  We measured the value dissociation rate constant 

of IV-12 from BCA under a pseudo first-order condition by adding IV-1 in sufficient 

excess to ensure that step 1 is the rate-determining step and fitting the decrease in 

fluorescence intensity at 460 nm to an exponential decay equation (Figure IV-24).  In 

a similar manner, we calculated the value of dissociation rate constant of IV-1 and 

IV-2 from BCA by adding excess IV-12 to BCA•IV-1 or BCA•IV-2 to ensure that 

dissociation of IV-1 and IV-2 is the rate-determining step (Figure IV-18 – IV-22). 

Somewhat surprisingly, when we measured the koff of IV-1 in presence of 

CB[7] we found it is 11 times faster than when measured in absence of CB[7] (Figure 

IV-5a and IV-5b).  Our interpretation is that CB[7] interacted with the adamantane 

amine binding epitope of BCA•IV-1 and catalyzes its dissociation from the active site 

of the enzyme (Scheme IV-5).  In the same manner, addition of CB[7] to a mixture of 

BCA•IV-2 and IV-12  displayed a 19-fold enhancement of koff of IV-2 from BCA 

(Figure IV-25 and IV-26).   
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Figure IV-5.  Plot of fluorescence intensity versus time:  a) Addition of IV-12 to a 

solution of BCA and IV-1.  Final concentration of BCA, IV-12, and IV-1 are 76 nm, 

98 µM and 1.5 µM.  b) Addition of CB[7] to a solution containing BCA, IV-12, and 

IV-1.  Final concentrations of BCA, IV-12, IV-2 and CB[7] are 75 nM, 25 µM, 18 

µM and 50 µM, respectively.  All experiments were done in 20 mM NaH2PO4 Buffer, 

pH 7.3, 298 K.   

 

Scheme IV-5.  Proposed Mechanism of CB[7] Catalyzed Dissociation of IV-1 and 

IV-2 from BCA.   
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4.2.10 Formation of Ternary Complexes BCA• IV-1•CB[7] and BCA• IV-

2•CB[7]. 

We observed a slow decay of fluorescence intensity at 460 nm when we added 

a 1:1 mixture of CB[7]•IV-1 to a mixture of BCA•IV-12 as opposed to a sharp 

decrease fluorescence intensity when same amount of IV-1 was added to a same 

concentration of BCA•IV-12.  We anticipated that such decrease in fluorescence 

intensity is due to formation of ternary complex BCA•IV-1•CB[7] and decided to 

measure the Ka of CB[7]•IV-1 to BCA.  We used the same technique to measure the 

binding constant as before.  Complex CB[7]•IV-1 possesses a slower association rate 

constant and faster dissociation rate constant, therefore weaker inhibition capability 

than IV-1 (Figure IV-16).   

Based on our measurement of the kinetic and thermodynamic parameters in 

the BCA•inhibitor interaction we can explain the pattern of fluorescence intensity 

show in Figure IV-4.  When CB[7] was added to the mixture of BCA, IV-12, and IV-

1 it forms BCA•IV-1•CB[7] which undergo a rapid dissociation resulting in a steep 

rise in fluorescence intensity.  The exponential decay of the fluorescent intensity after 

reaching the maxima can be explained as the slow association of CB[7]•IV-1 to BCA 

to form BCA•IV-1•CB[7].  The association rate constant of CB[7]•IV-2 was 

measured in a similar manner but we could not explain the origin of the difference in 

inhibition capabilities of CB[7]•IV-1 and CB[7]•IV-2 (Figure IV-17).  The results of 

the fluorescence experiments demonstrate that CB[7]•IV-2 has weaker inhibition 

capability than CB[7]•IV-1.  Therefore we observed only 45% regeneration of 

enzymatic activity when CB[7] was added to BCA•IV-1 due to more inhibition by 
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CB[7]•IV-1 where as 83% regeneration was observed when CB[7] was added to 

BCA•IV-2.  Finally Scheme IV-6 represents a complete shuttling of IV-2 between 

BCA and CB[7].  A detail study of the mechanism of the shuttling process has been 

described above. 

Scheme IV-6.  A Complete Shuttling of IV-2 Between BCA and CB[7].   

 

 

4.2.11 Is the Shuttling of the Two-Faced Guest a Common Behavior?   

To address the question of whether all enzymes behave in a similar manner as 

BCA, we used compound IV-4 and IV-5 following the same design strategy where 

we linked a cationic amine group to the AChE inhibitor tacrine.  Based on our 

experience with BCA, we hypothesized a similar behavior under thermodynamic 
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control where the addition of CB[7] would regenerate activity of AChE by 

sequestering IV-4 (or IV-5) from AChE•(IV-4)4 (or AChE•(IV-5)4).   

 

4.2.12 Regulation of Biological Catalysis of Acetylcholinesterase.   

When we measured the rate of hydrolysis of AChE by Ellman’s assay before 

and after the addition of IV-4 or IV-5, we observed a decrease in rate of hydrolysis of 

IV-6 with a concomitant increase in concentration of IV-4 or IV-5.  These results 

demonstrated that the tacrine subunits in IV-4 and IV-5 retained their inhibition 

capabilities even after derivatization.  However, unlike BCA we did not observe any 

increase in the rate of hydrolysis of IV-6 after adding CB[7] to the solution of 

AChE•(IV-4)4 or AChE•(IV-5)4, a result that indicates no regeneration of enzymatic 

activity upon CB[7] addition.  This observation was contrary to our hypothesis based 

on thermodynamics, since the Ka values of tacrine derivatives to AChE that are 

known in the literature are much lower than CB[7]•adamantane ammonium ion 

interaction.31   

 

4.2.13 Measurement of Association Constants. 

To assess the influence of thermodynamic parameters behind the experimental 

results, we determined the Ka values for AChE•inhibitor and CB[7]•guest pairs.  The 

values Ka of two-faced guests to CB[7] and AChE are summarized in Table IV-2.  

We measured the association constant of the inhibitor to AChE using Lineweaver-
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Burk analysis, which demonstrates a mixed inhibition behavior of IV-4 and IV-5 

(Figure IV-6).174-176  A mixed inhibitor can bind to both enzyme and enzyme•inhibitor 

complex at a site distinct from the substrate active site.  The association constant of 

IV-4 and IV-5 with CB[7] were measured by 1H NMR competition experiments.   

 

Figure IV-6.  a) Titration of AChE with IV-4, and b) Lineweaver-Burk plot of AChE 

activity in the presence of IV-4.   
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Table IV-2: Thermodynamic parameters for the interaction of IV-4 and IV-5 with 

BCA and CB[7]. 

AChE CB[7]  

Ka (M-1) Ka (M-1) 

IV-4 (1.92 ± 0.02) 
× 106 a 

(3.30 ± 0.07) 
× 106 a 

(3.67 ± 0.52) 
× 1012 b 

IV-5 (4.19 ± 0.50) 
× 106 a 

(9.00 ± 0.10) 
× 105 a 

5.6 × 108 c 

a Measured by Lineweaver-Burk analysis. 

b  Measured by competition with IV-10 for a limiting quantity of CB[7]. 

c Measured by competition with IV-9 for a limiting quantity of CB[7]. 

 

Based on the values of Ka and results of the colorimetric assays we considered 

two possibilities: First, CB[7] does not interact with AChE•(IV-4)4 or AChE•(IV-5)4 

under the experimental conditions.  Second, CB[7] binds to AChE•(IV-4)4 or 

AChE•(IV-5)4 to form a ternary complex AChE•(IV-4•CB[7])4 or AChE•(IV-

5•CB[7])4 (Scheme IV-7).  In both cases the inhibitor occupies the active site of the 

enzyme in the presence of CB[7] and therefore the regeneration of the biological 

catalysis was not observed.  Additionally, when we added carefully prepared 1:1 
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mixture of CB[7]•IV-4 or CB[7]•IV-5 to AChE, we also observed a decrease in the 

rate of hydrolysis of IV-6.  This result suggests that both CB[7]•IV-4 and CB[7]•IV-5 

are capable of binding to the active site of AChE and therefore inhibit the catalytic 

activity.   

 

4.2.14 Fluorophore Displacement Assay. 

To ascertain the composition of the system after addition of CB[7] to 

AChE•(IV-4)4 or AChE•(IV-4)4 we used a fluorophore displacement assay.  

Compound IV-11 was used as the fluorogenic probe.177,178  Addition of CB[7] to IV-

11 results in the formation of CB[7]•IV-11 with a concomitant blue shift of the 

emission wavelength from 509 nm to 485 nm and 32% increase in fluorescence 

intensity.  When we added AChE•(IV-4)4 to a solution of CB[7]•IV-11 we observed a 

red shift from 485 nm to 509 nm (Figure IV-7).  This result indicates CB[7] 

releasesIV-11 from its cavity and binds with AChE•(IV-4)4 to form the ternary 

complex AChE•(IV-4•CB[7])4. 
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Figure IV-7.  Fluorescence spectrum of a) a solution containing CB[7]•IV-11 and b) 

after addition of a solution containing AChE•(IV-4)4 to CB[7]•IV-11.   

 

Scheme IV-7.  Formation of Ternary Complex Upon Addition of CB[7] to 

AChE•(IV-4)4.   

 

 

4.2.15 Effects of CB[7] in Controlling Enzymatic Activity of AChE. 

While working with two-faced guests IV-4 and IV-5, we observed a weak 

inhibitory effect of CB[7] in the enzymatic activity of AChE in the control 

experiment.  We observed a decrease in the enzymatic activity of AChE with a 

concomitant increase in concentration of CB[7] in Ellman’s assay (Figure IV-8).  
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Subsequently, we tested the binding of substrate IV-6 with CB[7] by 1H-NMR.  The 

upfield chemical shift of the quaternary ammonium group of IV-6 after addition of 

CB[7] indicates the formation of the CB[7]•IV-6 complex.  The role of CB[7] was to 

enhances stability of the substrate IV-6 by reducing the rate of enzyme catalyzed 

degradation via host-guest complexation.179,180 

 

Figure IV-8.  A plot of the rate of hydrolysis of IV-6 by AChE versus concentration 

of CB[7]. 

 

4.2.16 The Origin of the Difference in the Behavior of Two Enzymes. 

We attribute the difference in behavior between two enzymes (Scheme IV-6 

and IV-7) originates form the different nature of the active sites of these enzymes.  

Bovine carbonic anhydrase has ~ 15 Å deep and narrow conical binding site.  

Sulfonamide inhibitors bind to the Zn2+ cofactor, which is located at the bottom of the 

cleft.  The interaction of the binding ligand with the Zn2+ cofactor is highly directional 
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and majority of the BCA•inhibitor interaction energy originated from this binding 

event.162  Therefore, the enzyme reacts sharply to any structural change in the 

inhibitor that leads to hindrance in binding (e.g. increase steric bulk, rigidity151).  On 

the other hand Acetylcholinesterase is not a metalloprotease.  Analysis of the crystal 

structure of AChE form Torpedo California (Due to unavailability of the crystal 

structure of AChE from Electrophorus Electricus, we used the crystal structure of 

AChE form Torpedo California for our analysis.  AChE from both sources have 

substantial similarities in their properties and subunit composition181) shows that the 

active site of the enzyme is present in a ~ 20 Å deep gorge which widens out near the 

base.  At the rim of the gorge, (~ 14 Å from the surface) AChE has an open peripheral 

binding site.182  The peripheral sites are flexible in nature and it can accommodate a 

wide variety of ligands of different shapes and sizes.  Compounds IV-4 and IV-5 

show mixed inhibition behavior, which indicates that they bind to peripheral site and 

reduce the rate of reaction by blocking IV-6 from accessing the active site.183  The 

inhibition capability of CB[7]•IV-4 and CB[7]•IV-5 indicates that peripheral site has 

sufficient space for bulky host•guest complexes to form a ternary complex.  

Formation of ternary protein•guest•CB[n] complexes is not uncommon in literature.  

Nau and coworkers reported formation of ternary complex bovine serum 

albumin•Brilliant Green•CB[7].184  On the other hand, compounds IV-1 and IV-2 

compete with the substrate for the active site of the enzyme.  Compounds IV-1 and 

IV-2 fill up the active site cavity when they form the 1:1 complex with BCA.  Upon 

complexation with CB[7] the steric bulk of the molecule increases by a substantial 
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amount, which in turn disfavors the binding of CB[7]•IV-1 and CB[7]•IV-2 to the 

active site in the narrow cavity leading to a regeneration enzymatic activity.   

 

4.3 Conclusion. 

In the summary, we have described two-faced guest molecules that contain 

both enzyme inhibitor and cucurbit[n]uril binding domains.  The activity of BCA can 

be regenerated by sequestering IV-1 and IV-2 from the active site of the enzyme 

using CB[7].  Compound IV-2 was successfully used to turn-on and turn-off the 

enzymatic activity for eight steps.  The incomplete regeneration of enzymatic activity 

upon addition of CB[7] to BCA•IV-1 and BCA•IV-2 due to inhibition by CB[7]•IV-1 

and CB[7]•IV-2.  Finally we demonstrated a limitation of this idea where addition of 

CB[7] to AChE•IV-44 and AChE•IV-54 results in the formation of a ternary complex 

that does not regenerate the enzymatic activity. 

Apart from system observation described above, this study demonstrates a 

number of principles of broad applicability.  Molecular recognition is fundamentally 

important in both biology and supramolecular chemistry, hence designed 

supramolecular systems can be useful in biology over time and space.  Suitably 

designed synthetic modules can interact with their complementary target to control 

various phenomena such as folding, ion-transport through membrane, catalysis, 

replication, delivery have been demonstrated in the literature.  The future direction of 

this research will involve the development of such systems in complex mixtures so 

that they are suitable for applications in vivo.  Molecules containing multiple 
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epitopes, each having some unique function can be very useful in this regard.  Simply 

by picking examples from literature and connecting them by appropriate linker we 

can generate emergent properties in the molecules, which avoid time and difficulty of 

modeling and synthesizing entirely new molecule for achieving similar result.  As our 

next challenge, we would like to move one step close to biology by replacing the non-

natural guest by another inhibitor and create similar systems using multiple enzymes 

for temporal control for the activity of the biological receptors. 

 

4.4      Experimental. 

4.4.1 General Experimental. 

Starting materials were purchased from Alfa-Aesar, Acros, and Aldrich and 

were used without further purification.  Bovine Carbonic Anhydrase (Sigma C3934), 

Acetylcholinesterase (Sigma C3389), compounds IV-6, IV-7, and IV-9 – IV-13 were 

obtained from commercial sources.  Melting points were measured on a Meltemp 

apparatus in open capillary tubes and are uncorrected.  NMR spectra were measured 

on Bruker AM-400 and DRX-400 at 400 MHz for 1H and 100 MHz for 13C.  Mass 

spectrometry was performed using a VG 7070E magnetic sector instrument by 

electron impact (EI) or by fast atom bombardment (FAB) using the indicated matrix.  

The matrix “magic bullet” is a 5:1 (w:w) mixture of dithiothreitol:dithioerythritol.   
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4.4.2 Synthetic Procedures and Characterization.   

Compound IV-1:  Compound IV-16 (838 mg, 

3.36 mmol) and adamantane amine (510 mg, 

3.36 mmol) were dissolved in anh. THF (50 

mL) under N2. To that mixture, K2CO3 (1.39 g, 10.08 mmol) and KI (390 mg, 2.35 

mmol) were added and reflux was continued for 15 h.  The reaction mixture was 

concentrated using rotary evaporator and was washed was washed with distilled water 

(2 × 5 mL), centrifuged, the supernatant decanted and the residue dried at high 

vacuum to get impure amine IV-1.  The impure solid was washed with CHCl3 (1 

mL), centrifuged, the supernatant decanted and the residue dried at high vacuum to 

obtain pure amine IV-1 as a white solid (887 mg, 2.44 mmol, 73%).  Hydrochloric 

acid salt of IV-1 was prepared by adding HCl gas to a solution of pure amine IV-1 in 

EtOH.  M.p. > 310 oC.  IR (KBr, cm-1): 3250w, 2918m, 2950w, 1702s, 1599m, 

1539s, 1402m, 1323s, 1166s.  1H NMR (400 MHz, DMSO-d6): 11.10 (s, 1H), 8.94 (s, 

2H), 7.82 (d, J = 8.9, 2H), 7.78 (d, J = 8.9, 2H), 7.32 (s, 2H), 3.98 (s, 2H), 2.14 (s, 

3H), 1.87 (s, 6H), 1.68 (d, J = 12.2, 3H), 1.58 (d, J = 12.2, 3H).  13C NMR (100 MHz, 

CDCl3): δ 165.0, 141.1, 139.1, 126.9, 118.8, 56.6, 41.4, 37.5, 35.2, 28.4.  MS (FAB, 

glycerol/DMSO): m/z 364 (4.5, [M – Cl]+), 89 (100).  HR-MS (FAB, PEG): m/z 

364.1695 ([M – Cl]+, C18H26N3O3S, calcd 364.1688).   

 

Compound IV-2: Compound IV-16 (600 mg, 

2.41 mmol) was dissolved in CH3CN (30 mL) 

N
H O

H
N

SO2NH2•HCl

Me3Si N
H O

H
N

SO2NH2•HCl
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under N2 and compound (trimethylsilyl)methyl amine (248 mg, 2.41 mmol) was 

added in one portion.  To that mixture, K2CO3 (997 mg, 7.22 mmol) and KI (280 mg, 

1.68 mmol) were added and reflux was continued for 15 h.  The reaction mixture was 

concentrated using rotary evaporator and was washed was washed with acetone (2 × 

30 mL), centrifuged, the supernatant was concentrated to get impure amine IV-2.  

Flash chromatography (SiO2, CHCl3/MeOH/NH4OH 100:5:1) gave pure amine IV-2 

as a white solid (470 mg, 1.49 mmol, 62%).  Hydrochloric acid salt of IV-2 was 

prepared by adding HCl gas to a solution of pure amine IV-2 in EtOH.  M.p. 224-227 

oC.  IR (KBr, cm-1): 3380w, 2962w, 1697m, 1544m, 1322m, 1156s.  1H NMR (400 

MHz, D2O): 7.93 (d, J = 8.8, 2H), 7.72 (d, J = 8.8, 2H), 4.08 (s, 2H), 2.65 (s, 2H), 

0.22 (s, 9H).  13C NMR (100 MHz, CDCl3): δ 164.5, 141.1, 139.0, 126.8, 118.9, 51.8, 

37.3, –2.0.  MS (FAB, glycerol/DMSO): m/z 316 (100, [M – Cl]+).  HR-MS (FAB, 

PEG): m/z 316.1151 ([M – Cl]+, C12H22N3O3SSi, calcd 316.1158).   

 

Compound IV-3:  Compound IV-16 

(388 mg, 1.56 mmol) and hexylamine 

(237 mg, 2.34 mmol) were dissolved in anh. THF (15 mL) under N2.  To that mixture, 

K2CO3 (646 mg, 4.68 mmol) and KI (181 mg, 1.09 mmol) were added and reflux was 

continued for 17 h.  The reaction mixture was concentrated using rotary evaporator 

and was washed was washed with acetone (2 × 20 mL), centrifuged, the supernatant 

was concentrated to get impure amine IV-3.  Flash chromatography (SiO2, 

CHCl3/MeOH/NH4OH 100:5:1) gave pure amine IV-3 as a white solid (333 mg, 1.06 

mmol, 68%).  M.p. 172-175 oC.  TLC (CHCl3/MeOH 1:1) Rf 0.2.  IR (KBr, cm-1): 

N
H O

H
N

SO2NH2
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3257w, 2927w, 1687m, 1594m, 1514m, 1323m, 1151s.  1H NMR (400 MHz, DMSO-

d6): 10.30 (br. s, 1H), 7.79 (d, J = 9.0, 2H), 7.75 (d, J = 9.0, 2H), 7.25 (s, 2H), 3.30 (s, 

2H), 2.52 (t, J = 7.1, 2H), 1.45-1.40 (m, 2H), 1.35-1.25 (m, 6H), 0.86 (t, J = 7.1, 3H).  

13C NMR (100 MHz, CDCl3): δ 171.1, 141.6, 138.4, 126.7, 118.7, 52.9, 49.1, 31.2, 

29.4, 26.4, 22.1, 14.0.  MS (FAB, glycerol/DMSO): m/z 314 (100, [M + H]+).  HR-

MS (FAB, magic bullet, PEG): m/z 314.1538 ([M + H]+, C14H24N3O3S, calcd 

314.1531).   

 

Compound IV-4:  Compound IV-18 (107 mg, 0.39 mmol) 

and adamantane amine (107 mg, 0.7 mmol) were dissolved 

in CH3CN (8 mL) under N2. To that mixture, K2CO3 (164 

mg, 4.68 mmol) and KI (47 mg, 1.09 mmol) were added and 

reflux was continued for 14 h.  The reaction mixture was concentrated using rotary 

evaporator and was washed was washed with acetone (2 × 10 mL), centrifuged, the 

supernatant was concentrated to get impure residue.  Pure amine IV-4 was obtained 

after recrystallization from EtOH as a white solid (92 mg, 0.24 mmol, 62%).  

Hydrochloric acid salt of IV-4 was prepared by adding HCl gas to a solution of pure 

amine IV-4 in EtOH.  M.p. > 250 oC (dec.).  IR (KBr, cm-1): 3412w, 2911m, 2681s, 

1703s, 1641m, 1464m, 1388s.  1H NMR (400 MHz, D2O): 8.11 (d, J = 8.8, 2H), 8.05 

(t, J = 7.8, 1H), 7.87 (t, J = 7.8, 1H), 4.40 (s, 2H), 3.36 (t, J = 6.3, 2H), 2.89 (t, J = 

6.3, 2H), 2.25 (s, 3H), 2.05-1.85 (m, 10H), 1.79 (d, J = 12.5, 3H), 1.70 (d, J = 12.5, 

3H).  13C NMR (100 MHz, CDCl3): δ 165.4, 158.3, 133.0, 128.3, 127.9, 125.4, 123.4, 

N

HN O

H
N

HCl
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56.7, 41.2, 37.6, 35.2, 28.5, 28.3, 24.8, 20.8, 20.6 (only 16 of the 19 expected 

resonances were observed).   

 

Compound IV-5: Compound IV-18 (50 mg, 0.18 mmol) 

was dissolved in CH3CN (8 mL) under N2 and compound 

(trimethylsilyl)methyl amine (62 mg, 0.59 mmol) was 

added in one portion.  To that mixture, K2CO3 (75 mg, 0.54 

mmol) and KI (21 mg, 0.12 mmol) were added and reflux was continued for 18 h.  

The reaction mixture was concentrated using rotary evaporator and was washed was 

washed with acetone (2 × 15 mL), centrifuged, the supernatant was concentrated to 

get impure IV-5.  Flash chromatography (SiO2, CHCl3/MeOH/NH4OH 100:5:1) gave 

pure IV-5 as a white solid (40 mg, 0.12 mmol, 67%).  M.p. 128-130 oC.  IR (KBr, cm-

1): 3341w, 2935w, 2730w, 2605w, 1703m, 1583m, 1512m, 1250s.  1H NMR (400 

MHz, D2O): 8.11 (t, J = 7.4, 2H), 8.05 (t, J = 7.4, 1H), 7.87 (t, J = 7.4, 1H), 4.40 (s, 

2H), 3.36 (t, J = 6.3, 2H), 2.90 (t, J = 6.3, 2H), 2.71 (s, 2H), 2.05-2.00 (m, 2H), 1.95-

1.90 (m, 2H), -0.22 (s, 9H).  13C NMR (100 MHz, DMSO-d6): δ 164.9, 158.1, 146.8, 

137.3, 133.3, 128.4, 128.2, 125.5, 123.4, 120.1, 51.7, 37.4, 28.8, 24.9, 20.7, 20.4, -

1.9.   
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H
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4.4.3 1H NMR Competition Experiments.   

1H NMR competition experiments were performed on a 400 MHz NMR 

spectrometer.  The temperature was maintained at 298 ± 0.5 K with a temperature 

control module that had been calibrated using the separation of the resonances of 

methanol.  Each sample contained CB[7] and an excess of the two competitive guests.  

1H NMR spectra were acquired with a delay time 10 s.  All spectra were referenced to 

D2O at 4.79 ppm.   

Equations: 

CB[n] + G1 
KG1

CB[n]•G1       (IV.3) 

CB[n] + G2 
KG2

CB[n]•G2        (IV.4) 

CB[n]•G1 + G2 
Krel

CB[n]•G2 + G1     (IV.5) 

Krel = ([CB[n]•G2][G1]) / ([CB[n]•G1][G2])     (IV.6) 

KG2 = (KG1)(Krel)        (IV.7) 
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4.4.3.1 Sample Determination of Ka of two-faced guest with CB[7]:   

 

Figure IV-9:  Sample Determination of the binding constant of IV-1 

Sequence of addition: Addition of IV-1 followed by the addition of IV-10: 

[CB[7]]Total = 1.44 mM;  [IV-1]Total = 2.01 mM;  [IV-10]Total = 2.01 mM 

Sample Determination of Krel:  

From 1H-NMR we determined [IV-1]Free = 1.08 mM and [CB[7]•IV-1] = 0.93 mM 

[CB[7]•IV-10] = [CB[7]]Total – [CB[7]•IV-1] = 0.51 mM 

[IV-10]Free = [IV-10]Total – [CB[7]•IV-10] = 1.50 mM 

Krel = (0.51 × 1.08) / (0.93 × 1.5) = 0.39 

Ka = 1.98 × 108 / 0.39 M-1 = 5.07 × 1012 M-1 
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Addition of IV-10 followed by the addition of IV-1. 

[CB[7]]Total = 1.44 mM;  [IV-10]Total = 2.01 mM;  [IV-1]Total = 2.41 mM 

From 1H-NMR we determined [IV-1]Free = 1.51 mM and [CB[7]•IV-1] = 0.90 mM 

Krel = 1.62;  Ka = 3.20 × 1012 M-1;  Mean Ka = 4.13 × 1012 M-1 

 

4.4.4 UV/Vis Experiments.   

UV/Vis spectra were recorded on a Cary 100-Bio UV-Visible 

spectrophotometer using 1 cm pathlength cells.  The temperature was held constant at 

25 ˚C using RTE bath / circulator containing a microprocessor controller.  The kinetic 

assays were performed using literature procedures in the stated buffer.164-166  The 

relative rates of reaction were determined from initial slope of plots of ΔA vs time.   

 

4.4.4.1 Determination of Enzymatic Activity of Acetylcholinesterase. 

a)  Preparation of Solutions: 

Substrate:  113 mg of IV-6 was dissolve in 5 mL K-Phosphate buffer (Concentration:  

78.15 mM).  The stock solution was stored at 4 ˚C. 

Reagent:  42 mg of IV-13 was dissolved in 10 mL K-Phosphate buffer (pH 7.0) and 

17 mg of NaHCO3 was added to that solution (Concentration: 10.59 mM). 
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Enzyme:  1.17 mg enzyme was purchased as Lyophilized powder containing Tris 

buffer salts and was dissolved in 1 mL K-Phosphate buffer.  The stock solution was 

stored at -20 ˚C.  The final solution used in the assay contained 5.35 unit protein /mL.  

By definition one unit hydrolyzes 1.0 µmole of acetylcholine to choline and acetate 

per min at pH 8.0 at 37 °C.   

Buffer:  20 mM K-Phosphate Buffer, pH 8.0;  Temperature:  25 ˚C 

 

b)  Determination of Michalis Constant for Acetylcholinesterase.   

The substrate (IV-6) concentration was gradually increased keeping the AChE 

concentration fixed until the reaction velocity reached its maximum saturation value. 

The concentration of substrate was varied from 6.51 µM to 325 µM.  The KM value 

was measured by fitting Equation IV.8 to a plot of rate of enzyme hydrolysis versus 

concentration of substrate.  The final solution used in the assay contained 5.35 unit 

protein /mL. 

The blank was measured with 50 µL Enzyme, 100 µL IV-13 and 2850 µL 

buffer.  In a typical run 50 µL Enzyme, 100 µL IV-13 and 2840 µL buffer were 

incubated at 25 ˚C for 15 mins.  To that solution 10 µL IV-6 was added and the 

change of absorbance was monitored at 412 nm using by UV/Vis spectroscopy.  The 

rate of the reaction was measured from the slope of the initial linear portion of the 

curve.   
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E + S ES EP E + P

k1

k-1

kcat

 

v = (vmax [S])/(KM + [S])       (IV.8) 

 

 

Figure IV-10.  Plot of rate of hydrolysis versus concentration of acetylthiocholine. 

The value of KM and VMax calculated from Figure IV-10 are (33.21 ± 1.93) µM and 

(42.52 ± 0.64) µM min-1 g-1, respectively. 

 

c)  A Sample Determination of Dissociation Constant of IV-4 with AChE. 

Preparation Solutions: 

Preparation of a solution of IV-4:  0.0057 mg IV-4 was dissolved in 10 mL deionized 

water (Concentration 1.34 mM). 
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Preparation of a solution of IV-5:  0.0038 mg IV-5 was dissolved in 10 mL deionized 

water (Concentration 1.01 mM). 

Same stock solutions for IV-6, IV-13 and enzymes reported previously were used. 

Buffer:  20 mM K-Phosphate Buffer, pH 8.0;  Temperature:  25 ˚C 

Two sets of experiments were carried out to determine the nature of inhibition 

with the enzyme concentration held constant in each set.  In the first set, inhibitor 

held constant and the effect of the concentration substrate (6.51 – 325 µM) on the 

initial rate of hydrolysis was determined.  In the next set of experiments, the effect of 

variable inhibitor concentration (1.15 µM, 4.46 µM, 8.92 µM, and 17.84 µM) was 

measured over the fixed range of concentration of substrate (6.51 – 325 µM).   

The blank was measured with 50 µL Enzyme, 100 µL IV-13 and 2850 µL 

buffer.  In a typical run, enzyme (50 µL), IV-13 (100 µL) in buffer, inhibitor IV-4 (10 

µL) was added in 2830 µL buffer and the solution was incubated at 25 ˚C for 15 

mins.  To that mixture 10 µL IV-6 was added and the rate of the reaction was 

monitored by measuring the change of absorbance at 412 nm using by UV/Vis 

spectroscopy.  The dissociation constant of the inhibitor was measured using 

Lineweaver-Burk analysis (Equation IV.9 – IV.11).   

Equation Representing a Mixed Inhibition: 

E + S + I ES + I

EI + S ESI

KI KI
'

E + P
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v = (vmax [S])/(αKM + α’[S]) 

 (1 / V0) = (αKm / Vmax) (1 / [S]) + (α’ / Vmax)    (IV.9) 

where,  α = 1 + ([I] / KI)       (IV.10) 

and α’  = 1 + ([I] / KI
’)       (IV.11) 

The values of α and α’ were calculated from the known values of Km and Vmax using 

equation 4.7.  The values of KI and KI
’ were calculated form the reciprocal of the 

slopes when α and α’ were plotted with respect to [I] (Figure IV-11a and IV-11b).   

 

Figure IV-11.  a) Plot of α versus [IV-4]; and b) Plot of α’ versus [IV-4].   
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The values of α and α’ calculated from Figure IV-11 are 1.87 µM and 3.29 µM 

respectively. 

 

Figure IV-12.  Lineweaver-Burk plot of AChE activity in the presence of IV-5. 

 

4.4.5 Fluorescence Spectroscopy.   

Solutions for fluorescence titrations were prepared in 20 mM NaH2PO4 

Buffer, pH 7.3.  All spectra were measured on a Hitachi F-4500 fluorescence 

spectrophotometer with excitation and emission band passes set at 5 nm. The 

temperature was held constant at 25.0 ˚C using Neslab RTE-111 bath / circulator.  An 

excitation wavelength of 290 nm was used to excite BCA.  The change of 

fluorescence was measured by integrating the area (from 450 to 480 nm) under each 

spectrum.  
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4.4.5.1 Measurement of the Binding Constant of the Inhibitor to BCA 

using Fluorescence Spectroscopy.   

 

Figure IV-13.  Plot of fluorescence intensity versus wavelength in the titration of a 

solution of BCA by IV-12 (20 mM NaH2PO4 Buffer, pH 7.3, 298 K).   

 

Figure IV-14.  Determination of the Ka value of IV-12 by nonlinear least-squares 

analysis fitting to a 1:1 binding model.   
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Figure IV-15.  Plot of fluorescence intensity versus [IV-2] in the titration of 

BCA•IV-12 with IV-2.  Concentration of BCA (67.5 nM), IV-12 (2µM), and IV-2 

(50 nM – 10 µM).  All measurements were done in 20 mM NaH2PO4 Buffer, pH 7.3, 

298 K.  The value of Ka is (2.73 ± 0.24) × 107 M-1. 

 

Figure IV-16.  Plot of fluorescence intensity versus [CB[7]•IV-1] in the titration of 

BCA•IV-12 with CB[7]•IV-1.  Concentration of BCA (86 nM), IV-12 (2µM), and 

CB[7]•IV-1 (2.5 nM – 120 µM).  All measurements were done in 20 mM NaH2PO4 

Buffer, pH 7.3, 298 K.  The value of Ka is (9.14 ± 0.77) × 105 M-1. 
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Figure IV-17.  Plot of fluorescence intensity versus [CB[7]•IV-2] in the titration of 

BCA•IV-12 with CB[7]•IV-2.  Concentration of BCA (86 nM), IV-12 (2µM), and 

CB[7]•IV-2 (6.5 nM – 400 µM).  All measurements were done in 20 mM NaH2PO4 

Buffer, pH 7.3, 298 K.  The value of Ka is (2.56 ± 0.21) × 105 M-1. 
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4.4.5.2 Measurement of the Dissociation Constant of Different 

Sulfonamides from BCA: 

 

Figure IV-18. Plot of fluorescence intensity at 460 nm versus time after addition of 

IV-12 (1.5 µM – 98 µM) to a solution containing BCA (80 nM) and IV-1 (2 µM) (20 

mM NaH2PO4 Buffer, pH 7.3, 298 K).   

 

Figure IV-19.  Plot of kobs for the dissociation of IV-1 from BCA versus 

concentration of IV-12. (20 mM NaH2PO4 Buffer, pH 7.3, 298 K).   
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Figure IV-20. Plot of fluorescence intensity at 460 nm versus time after addition of 

IV-12 (98 µM) to a solution containing BCA (80 nM) and IV-1 (2 µM) (20 mM 

NaH2PO4 Buffer, pH 7.3, 298 K).   

 

 

Figure IV-21.  Plot of kobs for the dissociation of IV-2 from BCA versus 

concentration of IV-12. (20 mM NaH2PO4 Buffer, pH 7.3, 298 K).   
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Figure IV-22. Plot of fluorescence intensity at 460 nm versus time after addition of 

IV-12 (98 µM) to a solution containing BCA (80 nM) and IV-2 (2 µM) (20 mM 

NaH2PO4 Buffer, pH 7.3, 298 K). 

 

 

Figure IV-23.  Plot of kobs for the dissociation of IV-12 from BCA versus 

concentration of 1. (20 mM NaH2PO4 Buffer, pH 7.3, 298 K).   
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Figure IV-24. Plot of fluorescence intensity at 460 nm versus time after addition of 

IV-1 (75 µM) to a solution containing BCA (80 nM) and IV-12 (2 µM) (20 mM 

NaH2PO4 Buffer, pH 7.3, 298 K). 

 

Figure IV-25.  a) Plot of fluorescence intensity versus time after addition of CB[7] to 

a mixture of IV-12, IV-1 and BCA. Final concentrations of BCA, IV-12, IV-1 and 

CB[7] are 75 nM, 25 µM, 18 µM, and 50 µM respectively; All measurements were 

done in 20 mM NaH2PO4 Buffer, pH 7.3, 298 K. 
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Figure IV-26.  a) Plot of fluorescence intensity versus time after addition of CB[7] to 

a mixture of IV-12, IV-2 and BCA. Final concentrations of BCA, IV-12, IV-2 and 

CB[7] are 73 nM, 25 µM, 18 µM, and 50 µM respectively; All measurements were 

done in 20 mM NaH2PO4 Buffer, pH 7.3, 298 K. 

 

Figure IV-27.  A comparison of decrease in fluorescence intensity of a solution 

containing IV-12 (2 µM) and BCA (80 nM) in presence of IV-1 (20 µM) and CB[7]• 

IV-1 (20 µM).  All measurements were done in 20 mM NaH2PO4 Buffer, pH 7.3, 298 

K.   
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Figure IV-28.  a) Plot of fluorescence intensity versus time after addition of CB[7] to 

a mixture of IV-12, IV-2 and BCA. Final concentrations of BCA, IV-12, IV-2 and 

CB[7] are 80 nM, 2 µM, 20 µM, and 50 µM respectively;  and b) A comparison of 

decrease in fluorescence intensity of a solution containing IV-12 (2 µM) and BCA 

(80 nM) in presence of IV-2 (20 µM) and CB[7]•IV-2 (20 µM).  All measurements 

were done in 20 mM NaH2PO4 Buffer, pH 7.3, 298 K. 
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V.  Chapter 5:  Summary and Future Work.   

 

5.1 Summary. 

Analysis of complex systems is becoming an important area of research in 

chemistry to understand various fundamental problems concerning life such as how 

does a collection of molecules give rise to a specific behavior inside cell and 

organism.  In this work, we demonstrated our approach to create functional and 

emergent behavior in a complex mixture using self-sorting.  In chapter 2, we 

discussed how to control self- versus non-self- assembly of molecular clips in organic 

solution.  In the contrary, Nature’s self-sorting systems perform in aqueous solution.  

In chapter 3, we created a complex network by using host-guest self-assembly in 

water.  We demonstrated several interesting features involved in that process using 

NMR spectroscopy and deconvoluted the large interaction network by using 

computational methods.  In chapter 4, we demonstrated a use of the stimuli 

responsive nature of host-guest self-assembly process to control biological catalysis.   

 

5.2 Future Work. 

The research described in this work has broad applicability.  Molecular clips 

have ester functional groups attached to the convex face of the cleft.  These molecules 

can the attached to polymeric backbones to create new class of self-sorting polymers 

(Scheme V-1).  There are various parameters that can affect the self-sorting process: 
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rigidity of the polymeric backbone, number of molecular clips per oligomeric strand, 

sequence of molecular clips attached to single strand. 

Scheme V-1.  Self-sorting of polymer bound molecular clips. 

 

The complex interaction network described in chapter 3 is purely operational 

under thermodynamic control.  To mimic the networks in biology more closely in 

future we are planning to incorporate biological receptors (e.g. proteins, enzymes), 

kinetically controlled steps, feedback loops, compartmentation in our design.  The 

environmental responsiveness of host-guest self-assembly can be used to control the 

outcome of a multi-component mixture.  For example, the activity of a particular 

enzyme in a mixture of multiple enzymes can be regulated by using the high binding 

affinity and selectivity of CB[n] molecules (Scheme V-2).   

 

 

 

 



 

 171 

Scheme V-2.  Selective regulation of the activity of an enzyme in a mixture. 

 

Finally, a biological receptor can be used in place of cucurbit[n]uril in scheme 

IV-1 where the CB[n] binding epitope is replaced by biologically relevant guest 

molecule (e.g. inhibitor, biotin).  The resulting two-faced guest can still regulate the 

activity of the receptors under thermodynamic control.  The resulting system would 

be more compatible to biology and potentially promising for further in vivo 

applications. 
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