Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecularly Imprinted Polymers for the Selective Recognition of Proteins

    Thumbnail
    View/Open
    Janiak_umd_0117E_10253.pdf (1.346Mb)
    No. of downloads: 1451

    Date
    2009
    Author
    Janiak, Daniel S.
    Advisor
    Kofinas, Peter
    Metadata
    Show full item record
    Abstract
    Molecular imprinting is a technique used to synthesize polymers that display selective recognition for a given template molecule of interest. In this study, the role of hydrogel electrostatic charge density on the recognition properties of protein-imprinted hydrogels was explored. Using 3-methacrylamidopropyl trimethylammonium chloride (MAPTAC) as a positively charged monomer and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as a negatively charged monomer, a number of acrylamide-based polyelectrolyte hydrogels with varying positive and negative charge densities were prepared. The imprinted hydrogels were synthesized in the presence of the target molecule bovine hemoglobin (Bhb). The ability of the hydrogels to selectively recognize Bhb was examined using a competitive template molecule, cytochrome c. The Bhb imprinted gels exhibited template recognition properties that were dependent on both the monomer charge density and on whether the chosen monomer carried a positive or negative charge. In addition to polyelectrolye hydrogels, polyampholyte hydrogels containing both positively and negatively charged monomers were also synthesized. The simultaneous presence of two oppositely charged monomers in the pre-polymerization mixture resulted in imprinted hydrogels with cavities that contain highly specific functional group orientation. The polyampholyte hydrogels exhibited decreased swelling when compared to their polyelectrolyte counterparts, due to the shielding of repulsive interactions between oppositely charge monomers. This decreased swelling resulted in greater template recognition, but lower selectivity, when compared to their polyelectrolyte counterparts. In addition, we found that common agents used in template extraction may be responsible for the specific and selective binding properties exhibited by molecularly imprinted polymers in many published studies, and the effect of variations of the template extraction protocol on the MIP recognition properties were also studied in depth.
    URI
    http://hdl.handle.net/1903/9157
    Collections
    • Materials Science & Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility