Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Environmental conditions in winter and their ecological and evolutionary consequences for American redstarts (Setophaga ruticilla)

    Thumbnail
    View/Open
    umi-umd-5924.pdf (717.1Kb)
    No. of downloads: 815

    Date
    2008-11-21
    Author
    Studds, Colin Eastman
    Advisor
    Inouye, David W
    Metadata
    Show full item record
    Abstract
    I used both observational and experimental approaches to assess the causes of nonbreeding habitat quality and to evaluate their ecological and evolutionary consequences for a Neotropical-Nearctic migratory bird, the American redstart (Setophaga ruticilla). Relative to control birds overwintering in second-growth scrub, redstarts experimentally upgraded from scrub to mangrove forest incorporated mangrove stable-carbon isotope signatures, maintained mass over winter, departed earlier on spring migration, and had higher apparent annual survival. Significantly higher arthropod biomass on upgrade territories implicated food availability as a proximate mechanism of habitat quality. Food availability, body condition, and spring departure schedules also depended on nonbreeding season rainfall. Food availability in mangrove was higher than in scrub in three of four years, allowing birds in this habitat to maintain superior body condition and depart earlier on spring migration. Abundant rainfall in a single year led to abnormally high food availability in scrub and early departure of birds in both habitats, suggesting both the amount and timing of rainfall influenced nonbreeding performance. Habitat occupancy and annual variation in rainfall had significant consequences for natal dispersal and selection through annual survival. Stable-hydrogen isotope ratios (δD) in feathers of immature birds captured again as adults indicated that habitat use in the first nonbreeding season interacted with spring phenology on temperate breeding grounds to influence the distance traveled on the first spring migration and direction of natal dispersal. In contrast, adults showed site fidelity between breeding seasons, suggesting nonbreeding conditions did not affect breeding dispersal and that migration distance becomes fixed later in life. Patterns of δD also revealed directional selection for short migration distance to southern breeding areas, a pattern that was nearly twice as strong in scrub compared to mangrove. During dry winters, redstarts experienced stabilizing selection on departure dates and directional selection for short migration. In years of high rainfall, birds experienced correlational selection favoring late departure when in good body condition. Thus, occupancy of moist habitats and years of high rainfall relaxed selection against late departure and longer migration. Collectively, these findings emphasize the need to understand how events throughout the annual cycle interact to shape fundamental biological processes.
    URI
    http://hdl.handle.net/1903/8889
    Collections
    • Biology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility