Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    NUMERICAL MODELING OF MULTIPHASE EXPLOSIONS

    Thumbnail
    View/Open
    umi-umd-5853.pdf (4.120Mb)
    No. of downloads: 1104

    Date
    2008-11-17
    Author
    McGrath, Thomas
    Advisor
    Jackson, Gregory S
    Metadata
    Show full item record
    Abstract
    This work describes the development and application of a compressible multiphase flow model for the numerical simulation of multiphase explosions containing a dispersed particle phase. The model treats all phases as fully compressible, allows full non-equilibrium among phases, and properly models the mathematical characteristics of a dispersed particle phase in both the dense and dilute limits. Using the characteristic equations, a multiphase Riemann solver is developed as the basis for a Godunov-based numerical method. The Riemann solver is approximate, non-iterative, and applicable to all phases. A heuristic equation of state modeling the functional dependence of the dispersed phase pressure on volume fraction is proposed and applied. Using the techniques developed, two multiphase explosion simulations are performed and compared with experiment. Excellent agreement between the numerical and experimental results is found, providing confidence in the solution techniques developed. The sensitivity of the model to correlations for drag, heat transfer, and dispersed phase pressure are also investigated. Results from this analysis indicate that the functional dependence of dispersed phase pressure on volume fraction must be properly represented to obtain accurate simulation results in scenarios where particle-particle interactions are important. Further analyses investigate the effects of physical parameters including particle loading, size, and material on multiphase explosion dynamics. The results of this study indicate the significant effect these parameters have on the overall explosion dynamics, which is important to applications involving both inert and reactive particles.
    URI
    http://hdl.handle.net/1903/8825
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility