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This work describes the development and application of a compressible multi-

phase flow model for the numerical simulation of multiphase explosions containing

a dispersed particle phase. The model treats all phases as fully compressible, al-

lows full non-equilibrium among phases, and properly models the mathematical

characteristics of a dispersed particle phase in both the dense and dilute limits.

Using the characteristic equations, a multiphase Riemann solver is developed as

the basis for a Godunov-based numerical method. The Riemann solver is approx-

imate, non-iterative, and applicable to all phases. A heuristic equation of state

modeling the functional dependence of the dispersed phase pressure on volume

fraction is proposed and applied. Using the techniques developed, two multiphase

explosion simulations are performed and compared with experiment. Excellent

agreement between the numerical and experimental results is found, providing

confidence in the solution techniques developed. The sensitivity of the model to

correlations for drag, heat transfer, and dispersed phase pressure are also inves-

tigated. Results from this analysis indicate that the functional dependence of



dispersed phase pressure on volume fraction must be properly represented to ob-

tain accurate simulation results in scenarios where particle-particle interactions are

important. Further analyses investigate the effects of physical parameters includ-

ing particle loading, size, and material on multiphase explosion dynamics. The

results of this study indicate the significant effect these parameters have on the

overall explosion dynamics, which is important to applications involving both inert

and reactive particles.
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Chapter 1

Introduction

This work proposes, develops, and applies a compressible multiphase flow

model for the numerical simulation of multiphase explosions. Compressible mul-

tiphase flow modeling is not as well developed as its single-phase counterpart,

and a need to improve existing techniques clearly exists. The numerical model

developed in this work distinguishes itself from others in the literature by: 1)

treating all phases as fully compressible, 2) properly representing the mathemat-

ical characteristics of dispersed particle phases in the both the dense and dilute

limits, 3) applying a Godunov-based solution to all phases, and 4) allowing com-

plete non-equilibrium among phases. Results from numerical simulations validate

the model against existing experimental data, and reveal fundamental information

on the physical nature of dispersed phases and the modeling approaches neces-

sary to treat them. Additional results investigate the sensitivity of the numerical

model to correlations for drag and heat transfer, as well as physical parameters

including particle loading, size, and material. The compilation of these efforts pro-

vides important fundamental information necessary for accurately understanding

and modeling multiphase explosions, as well as for designing/analyzing systems

utilizing them.
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1.1 Motivation

Multiphase explosions occurring in heterogeneous materials consisting of a

dispersed particle phase embedded in an explosive or otherwise reactive media are

of considerable interest to the combustion, energetic material development, propul-

sion, and hazard/risk assessment communities. Examples of multiphase explosion

events include coal dust explosions, supersonic combustion of metal-laden fuels,

deflagration-to-detonation transition in granular energetic materials, and the det-

onation of metalized high-explosive formulations. Yet, despite widespread interest

and practical application, much about the dynamics of multiphase explosions re-

mains unknown. The very high temperatures and pressures of explosion events,

coupled with the complex physical processes occurring due to the multiphase na-

ture of the flow, make experimental investigations of these events difficult. During

the explosion, particles can become high-speed projectiles that complicate tradi-

tional pressure measurements and destroy instrumentation. The particles can also

reduce optical clarity, inhibiting the effectiveness of optical diagnostic techniques.

Because of the experimental difficulties, numerical modeling is an attractive option

for investigating the dynamics of multiphase explosions.

When examining the literature relating to numerical modeling of multiphase

explosions, it is clear that the field is relatively young and work remains. Com-

pressible multiphase flows have not historically received as much attention in the

modeling community as their single-phase and incompressible counterparts, and

the complexities of phase interactions combined with compressibility present con-

siderable conceptual challenges. Perhaps the best indication of this is that to date

no universally accepted set of governing equations exists. Much of the debate con-

cerning the governing equations is centered around the existence and form of the

nozzling terms, which are discussed in Sec. 2.3.2. Disagreement also exists over
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the physical nature and treatment of dispersed materials, which are a major focus

of the current work.

The following section discusses previous work relating to the numerical mod-

eling of multiphase explosions. It provides a synopsis of five of the most influential

papers relating to this field, and identifies the distinguishing features of each.

While each work makes a unique contribution, none are completely satisfactory.

Improving on these models to develop a robust, accurate, and consistent modeling

approach is the motivation for the current work.

1.2 Previous Work

Perhaps the most influential work relating to multiphase explosion modeling

is the study of deflagration-to-detonation transition (DDT) in reactive granular

materials published by Baer and Nunziato [1]. Using arguments based on thermo-

dynamic constraints, Baer and Nunziato proposed a system of governing equations

for a reactive two-phase flow in granular explosives. This model treats both phases

as fully compressible, and allows for complete non-equilibrium between the phases.

To close the system of equations, a dynamic compaction equation governing the

evolution of volume fraction was introduced. The dynamic compaction equation

eliminated the need for the assumption of pressure equilibrium, which when rigidly

applied can cause the equations to become ill-posed [1]. Numerical solution of the

governing equations was accomplished with a standard artificial viscosity method,

as can be applied to the Euler equations. Since its publication, many of the fun-

damental principals of the Baer and Nunziato model [1] have been adopted in

subsequent works involving compressible multiphase flows.

Another notable work relating to the numerical modeling of DDT is that of

Gonthier and Powers [10]. This paper presents a Godunov-based numerical method
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for a reactive two-phase flow. The governing equations used were similar to those

of Baer and Nunziato [1] without the nozzling terms. The nozzling terms are a

source of debate in the literature, and are further discussed in Sec. 2.3.2 of this

work. Gonthier and Powers [10] develop a Roe-type [23, 24] approximate Riemann

solver for the two-phase flow equations, which forms the basis of a higher-order

Godunov-type numerical method. Apart from the nozzling terms, the application

of a high-resolution Godunov-type method is the distinguishing feature between

this work and that of Baer and Nunziato [1].

Saurel and Lemetayer [25] proposed a generalization of Baer and Nunziato’s

model [1] to a system involving more than two phases. Using these equations,

they present a numerical solution technique aimed at computing both multifluid

and multiphase problems. Multifluid problems are distinguished from multiphase

problems in that the various phases are discretized on the grid in a multifluid prob-

lem, while in multiphase problems they are not. The key difference separating the

model proposed by Saurel and Lemetayer [25] from that of Baer and Nunziato [1]

resides in the treatment of the relaxation terms. Saurel and Lemetayer introduce

infinite relaxation parameters for pressure and velocity, which enforce pressure

and velocity equilibrium among phases. Under this assumption, they introduce a

Godunov-based solution using the HLL [12] Riemann solver, while solving for the

non-conservative terms in a method that retains pressure and velocity equilibrium.

While the assumption of pressure equilibrium is often justified in multiphase ex-

plosion modeling (as discussed in Sec. 3.2), the assumption of velocity equilibrium

is not. Velocity non-equilibrium is, in fact, a critical feature in many multiphase

explosion scenarios, necessitating a numerical method accounting for these effects.

An important feature common to the models discussed above [1, 10, 25] as

well as others [2, 13] lies in the treatment of the dispersed phase pressure. These

models assume that the pressure of a dispersed phase is equal to that of the con-
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stituent material of the individual particles or grains. This assumption may be

justified in the case of densely-packed granular flows, but is not valid in general.

Rather, as particles separate and the flow becomes dilute, the pressure and sound

speed of a dispersed phase goes to zero [4, 8, 32]. This lack of pressure and sound

speed modifies the mathematical characteristics of the governing equations, which

affects the numerical solution. Properly representing the mathematical character-

istics of the governing equations, and developing an accurate solution technique is

a major motivation for the current work.

Papalexandris [17, 18] developed a numerical model for studying the effects

of inert and reactive particles on detonation waves in gases. Because the work

focused on gases mixed with stiff particles, the particle material was assumed to be

incompressible. Additionally, the model focused exclusively on scenarios involving

dilute collections of particles. Because of this, no pressure force was included in

the governing equation for the particle phase. The lack of pressure in the dispersed

phase equations further implies that the phase has zero sound speed, making the

particle phase equations hyperbolically degenerate. Given this, Papalexandris [17]

appropriately modifies the numerical solution for the particle phase. This work

provides useful insight into the development of numerical methods for multiphase

flows; however, the assumptions of incompressible particles and dilute flows are

unattractive for more general modeling purposes, necessitating further work.

Zhang, et al. [32] presented a numerical and experimental investigation of

the explosive dispersal of solid particles. The governing equations used in this

study were proposed to extend the Baer and Nunziato [1] model to dilute particle

flows. Here, a heuristic equation of state for the dispersed particle phase was

applied such that the particle phase pressure is a function of the particle volume

fraction. This is again based on the physical argument that the pressure of a

collection of particles is a function of particle spacing. Using the modified model,
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Zhang et al. [32] applied a Godunov-based method to the gaseous phase while

using a flux corrected transport McCormack scheme for the particle phase. The

experimental results presented by Zhang et al. [32] provide valuable insight into

multiphase explosion phenomenology, and present a challenging benchmark for

numerical model validation. Furthermore, the heuristic approach to developing

a dispersed phase equation of state provides a powerful tool for representing the

pressure of a collection of particles in the absence of a more rigorous theoretical

approach, and is adopted in the current work. However, the application of such

widely differing numerical methods to the individual phases is unattractive, and

questions remain about the form of the governing equation for the particle phase,

which no longer aligns with other models [1, 10, 25].

1.3 Statement of Work

The current work proposes, develops, and applies a compressible multiphase

flow model for the study of multiphase explosions. Specifically, the model focuses

on multiphase explosions containing a dispersed particle phase. The model devel-

opment effort is motivated by the lack of a satisfactory model in the literature, and

is intended to provide a computational tool for investigating fundamental aspects

of multiphase explosions, which are important in many fields.

Two original contributions to the literature are made. The first is the devel-

opment of a Godunov-based numerical technique for solving the multiphase flow

equations. This technique is driven by a novel multiphase Riemann solver that is

non-iterative and decoupled among phases. All phases are treated as compressible

and full non-equilibrium among phases is allowed. Additionally, the numerical

method allows for the proper representation of the mathematical characteristics

of dispersed particle phases thought the implicit assumption of a volume fraction

6



dependent equation of state. The second original contribution is the proposal and

validation of a volume fraction dependent equation of state for dispersed materials.

A generic equation of state format for representing the dependence of dispersed

phase pressure on volume fraction is proposed and applied. Numerical calculations

using this model are compared to experimental data, revealing the importance of

accounting for the volume fraction effects, and validating the proposed model. This

contribution is particularly important in the context of the disagreement over the

representation of dispersed particle phases that exists in the literature.

The remainder of this document is organized as follows. In Ch. 2, the gov-

erning equations for compressible multiphase flows are derived and discussed. The

derivation reveals the physical origins of individual terms in the governing equa-

tions, including the nozzling terms which are a source of debate in the literature.

Following the derivation, both the nozzling terms and the nature of dispersed phase

materials are discussed. The discussion of dispersed materials sets the stage for the

dispersed phase equation of state that is later proposed, applied, and investigated.

A brief review of the results of a characteristic analysis of the governing equations,

which is included in the appendix, concludes this chapter.

Ch. 3 focuses on numerical model development. Here, the characteristic

equations derived in the appendix are applied in the development of a multiphase

Riemann solver. The multiphase Riemann solver forms the basis of a Godunov-

based method for the numerical solution of the governing equations. Correlations

for interphase drag and heat transfer are taken from the literature and presented.

Finally, a generic equation of state for the representation of dispersed materials is

proposed and discussed.

In Ch. 4, numerical calculations are performed and compared with existing

experimental data. Simulations are based on the work of Zhang, et al. [32],

as well as Carney and Lightstone [3]. Both cases involve the detonation of a
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charge containing inert particles surrounded by an explosive fill. Results for shock

and particle front motion, as well as range-dependent pressures agree well with

experimental data, providing confidence in the numerical methods developed.

Finally, Ch. 5 and Ch. 6 focus on the effects modeling correlations and

physical parameters have on the calculated solutions. Ch. 5 focuses specifically on

the sensitivities of the model to correlations for drag, heat transfer, and dispersed

phase pressure. Numerical results obtained with various correlations reveal the in-

fluence of the correlations on the solution, and indicate which modeling strategies

compare best with experiment. Perhaps most importantly, a comparison of vari-

ous representations of dispersed phase pressure reveal that accounting for volume

fraction effects is critical to obtaining accurate solutions. This comparison also

validates the physical description of dispersed materials that forms the basis of

the proposed dispersed phase equation of state. Ch. 6 then focuses on the effect

physical parameters have on the explosion dynamics. The parameters investigated

include particle loading, size, and material. The results indicate the ability of these

parameters to significantly modify the explosion dynamics. These results provide

important fundamental information necessary for designing and analyzing systems

that employ multiphase explosion technologies.
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Chapter 2

Governing Equations

In this chapter, the governing equations for a compressible multiphase flow

are derived and discussed. The derivation provides insight into the physical origins

of the individual terms in the governing equations, including the nozzling terms,

which can be difficult to discern from the literature. A discussion of the physical

nature of dispersed materials follows the derivation. Proper modeling of dispersed

phase materials is a distinguishing feature of this work. A detailed examination of

the nozzling terms is then presented. Finally, the results of a characteristic analysis,

the details of which are given in the appendix, are reviewed. This chapter provides

both a mathematical model for, and physical insight into compressible multiphase

flows. It provides the basis for understanding the numerical algorithms developed

and numerical simulations performed throughout the remainder of this work.

2.1 Derivation of Governing Equations

To begin the derivation, an Eulerian control volume containing multiple ma-

terials that are intermixed but occupy separate volumes is considered. Fig. 2.1

depicts such a scenario in which a collection of particles is dispersed in a continuous

media. The control volume pictured is a one-dimensional non-uniform duct with
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fixed total volume V , and fixed boundaries of areas A1 and A2 through which flow

passes. The notion of a one-dimensional non-uniform duct is carried through the

derivation, resulting in a one-dimensional set of governing equations that are later

applied to systems of higher dimension using dimensional splitting [29, 15].

∆r

Figure 2.1: Eulerian control volume containing multiphase flow.

Each phase k in the flow retains a separate volume (defined by the volume

fraction αk), density ρk, velocity uk, temperature Tk, pressure Pk, and energy Ek.

Three assumptions that are standard in nearly all current compressible multiphase

models [1, 10, 25] are applied. First, the area acted on by a phase k is assumed

to be the volume fraction αk occupied by that phase multiplied by the total area,

so that Ak = αkA. Second, each phase is assumed to move independently except

during the interaction processes when volume, mass, momentum, and energy are

exchanged. Third, dissipative effects are accounted for among phases, but assumed

to be negligible within each phase.

2.1.1 Continuity Equation

The continuity equation expresses the conservation of mass for each phase. It

states that the change in mass of a phase k in a control volume is equal to the net
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mass flow in and out of the control volume plus the mass production. Expressing

this in the context of Fig. 2.1 gives:

∆t (αkV ρk) = (αkAρkuk)
∣∣
1
− (αkAρkuk)

∣∣
2

+ ṁkV (2.1)

Where ∆t represents the time derivative. Noting that the total volume V is

constant, and expressing the net mass flow in terms of the difference operator

∆ () = ()2 − ()1, leads to the continuity equation:

V∆t (αkρk) + ∆ (αkρkukA) = ṁkV (2.2)

Mass conservation also requires that the summation of the mass exchanged among

phases is zero: ∑
k

ṁk = 0 (2.3)

2.1.2 Momentum Equation

The momentum equation states that the change in momentum in a control

volume is equal to the net flow of momentum in and out of the control volume plus

the momentum production and the sum of the forces acting on the volume. Equat-

ing the time rate of change of momentum, net momentum flow, and momentum

production due to chemical reaction with the forces acting on the phase yields:

V∆t (αkρkuk) + ∆
(
αkρku

2
kA
)
− ṁkuRV =

∑
Fk (2.4)

Where uR represents the velocity of the reacting phase, which is the phase from

which mass is donated during reaction. The forces acting on each phase in the

control volume include the pressure force, gravity force, and drag force. Summing
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the pressure forces on a phase in the control volume gives:

FP,k = PkαkA
∣∣
1
− PkαkA

∣∣
2

+ Ps,k∆ (αkA) (2.5)

Where Ps,k is the average sidewall pressure acting on phase k. Simplifying this

expression with the difference operator yields:

FP,k = −∆ (αkPkA) + Ps,k∆ (αkA) (2.6)

The gravity force acting on the mass of a phase inside the control volume is:

Fg,k = αkρkgV (2.7)

The drag force acting on a phase may consist of both pressure drag and velocity

drag, although many multiphase explosion models only include the velocity drag

component [1, 32]. Crowe, et al. [4] provide a good discussion of the drag force.

Because there are many expressions that can be applied, no specific form of the

drag force is included here. Rather, the drag force is simply given as:

Fd,k = fd,kV (2.8)

Summing the forces yields:

∑
Fk = −∆ (αkPkA) + Ps,k∆ (αkA) + αkρkgV + fd,kV (2.9)
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Substituting this into Eq. (2.4) then provides the momentum equation:

V∆t (αkρkuk) + ∆
(
αkρku

2
kA+ αkPkA

)
=

Ps,k∆ (αkA) + αkρkgV + fd,kV + ṁkuRV (2.10)

2.1.3 Energy Equation

The energy equation is an expression of the first law of thermodynamics.

It states that the change in total energy in a control volume is equal to the net

energy flow through the volume plus the energy production and heat transfered to

the system, and minus the work done by the system. The equation expressing this

is:

V∆t (αkρkEk) + ∆ (αkρkukEkA)− ṁkERV = Q̇− Ẇ (2.11)

Where the total energy is defined as:

Ek = ek +
1

2
u2
k (2.12)

In Eq. (2.11), ER is the total energy of the reacting phase, which is the phase from

which mass is donated in a chemical reaction. Work terms affecting the system

include flow work, gravitational work, drag work, and work due to volume change.

The rate of flow work is expressed as:

Ẇf,k = ∆ (αkukPkA) (2.13)

The rate of work due to gravity is:

Ẇg,k = −αkρkukgV (2.14)
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The rate of work from drag is:

Ẇd,k = −uDfd,kV (2.15)

The rate of work due to volume change is:

ẆV,k = PiV̇k = PiV∆tαk (2.16)

Here, the pressure relevant to the volume change work is termed the interfacial

pressure Pi. The interfacial pressure must be equal among phases to ensure energy

conservation; it cannot equal the phase pressure Pk for all phases. If the phase

pressure Pk were applied in the volume change work, the energy change would be

isentropic for all phases. This is not physically correct however since energy is not

conserved along an isentrope.

Heat transfer occurs as the result of temperature non-equilibrium among

phases. Many correlations for heat transfer are available. To preserve the general-

ity of the governing equations, the rate of energy exchange due to heat transfer is

expressed as:

Q̇k = q̇kV (2.17)

Substituting Eqs. (2.13-2.17) into Eq. (2.11) yields the final form of the energy

equation:

V∆t (αkρkEk) + ∆ (αkukA [ρkEk + Pk]) =

− PiV∆t (αk) + q̇kV + αkρkukgV + uDfd,kV + ṁkERV (2.18)

14



2.1.4 Number Density Equation

For multiphase flow problems containing droplets or particles, it may be

necessary to track the number density Nk of the dispersed phase. Number density,

like mass density, is a conserved variable; it has units of (no. particles per total

volume). Representing the the rate of fusion or break-up of particles by Ṅk, the

number density equation has the form:

V∆t (Nk) + ∆ (NkukA) = ṄkV (2.19)

2.1.5 Convected Variable Equation

Many physical models contain variables that are convected with the flow.

Examples include chemical species, burn fractions, or off-axis velocity terms. Rep-

resenting any convected variable by υk,j, and the volumetric mass production rate

for species j of phase k by ω̇k,j, the convected variable equation is:

V∆t (αkρkυk,j) + ∆ (αkρkυk,jukA) = ω̇k,jV (2.20)

2.1.6 Volume Fraction Equation

In addition to those derived above, an additional relation governing the par-

titioning of volume among phases is needed to close the system of equations. Two

options exist: 1) the assumption of pressure equilibrium among phases, and 2) the

application of an evolutionary equation for volume fraction. Both choices present

complications. If the first option is chosen, the volume fractions for each phase are

fully defined at the pressure equilibrium state. However, the rigid application of

pressure equilibrium can lead to ill-posed systems of equations [1, 8]. The second

option is complicated by the fact that volume is not a conserved variable, making
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it difficult to form an evolutionary equation. Despite this, most current methods

for solving compressible multiphase flow problems [1, 10, 25, 32] do employ an evo-

lutionary equation for volume fraction. Baer and Nunziato [1] proposed a dynamic

compaction equation for tracking the evolution of volume fraction that has become

somewhat standard. Saurel and Lemetayer [25] have written this equation in the

slightly more general form shown below.

∂αk
∂t

+ ui
∂αk
∂r

= µ
(
Pint,k − ´Pint,k

)
+
ṁk

ρR
(2.21)

Where µ is the compaction viscosity [1], and the expression
(
Pint,k − ´Pint,k

)
de-

notes the change in pressure as the phases relax toward equilibrium [25]. This

equation is written in a non-unique manner, but satisfies the physical notion that

volume adjusts in conformance with convection, mass exchange, and pressure re-

laxation over time. It states that the volume fraction of each phase is convected

along a streamline at the interfacial velocity ui, and adjusts to pressure equilibrium

with a timescale governed by µ. The value of ui is common among all phases, en-

suring that all volume fractions sum to unity. While other evolutionary equations

for volume fraction are certainly possible, the form shown in Eq. (2.21) is adopted

in the current work.
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2.2 Multiphase Equations in Differential Form

In section 2.1 the governing equations for a compressible multiphase flow

were derived using a control volume analysis. However, it is instructive to put

the governing equations in differential form. The differential form is the starting

point for the characteristic analysis, which is used to determine the mathematical

characteristics of the governing equations. It is also the most widely used form in

the literature and thus necessary for comparing the current mathematical model

with existing models. Additionally, the differential form derived here allows for

the use of Cartesian (planar), cylindrical, or spherical coordinate systems, adding

to the utility of the numerical model.

Determining the differential form of the governing equations requires the

geometrical terms shown in Tab. 2.1. When comparing these terms with the

control volume shown in Fig. 2.1, cell edge 1 is located at radial distance r, and

edge 2 is located at radial distance r + ∆r. The differential form of the governing

equations is determined by substituting the edge areas and volumes into the derived

equations. Because the differential form is sought, the volume is taken in the limit

of ∆r → 0.

Geometry Area(r) Volume Volume ∆r → 0

Cartesian A = constant A∆r A∆r

Cylindrical 2πhr π
[
(r + ∆r)2 − r2

]
h 2πhr∆r

Spherical 4πr2 (4/3) π
[
(r + ∆r)3 − r3

]
4πr2∆r

Table 2.1: Coordinate System Geometries

The resulting differential forms of the governing equations are given below.

The equations are cast in Cartesian, cylindrical, or spherical coordinates by setting

n = 0, 1, or 2, respectively.
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∂ (rnαkρk)

∂t
+

∂

∂r
(rnαkρkuk) = rnṁk (2.22)

∂ (rnαkρkuk)

∂t
+

∂

∂r

(
rnαkρku

2
k + rnαkPk

)
= Ps,k

∂ (rnαk)

∂r

+ rnṁkuR + rnfk + rnαkρkg

(2.23)

∂ (rnαkρkEk)

∂t
+

∂

∂r
(rnαkuk [ρkEk + Pk]) = rnPiui

∂αk
∂r

− rnPiµ
(
Pint,k − ´Pint,k

)
+ rnṁkEkR + rnfkuD + rnαkρkukg

(2.24)

∂ (rnαkρkυk,j)

∂t
+

∂

∂r
(rnαkρkυk,juk) = rnω̇k,j (2.25)

∂ (rnNk)

∂t
+

∂

∂r
(rnNkuk) = rnṄk (2.26)

∂αk
∂t

+ ui
∂αk
∂r

= µ
(
Pint,k − ´Pint,k

)
+
ṁk

ρR
(2.27)

2.3 Discussion

While Eqs. (2.22-2.26) have been derived independently, they agree well

with the others presented in the literature [1, 10, 25]. When comparing the set of

equations presented above with others in the literature, the reader will find that

the form of the nozzling terms has been generalized in the current mathematical

model. The physical motivation behind this generalization is discussed in this

section. Preceding this, another topic important to the closure of the system

of equations is addressed: the modeling of dispersed phase materials. Here, the
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physical nature of dispersed phase materials is discussed, and the functional form

of the equation of state (EOS) required to model these materials is presented.

2.3.1 Dispersed Phase Material Modeling

The treatment of dispersed phases is critical in modeling multiphase explo-

sions and is the area wherein most discrepancies among modeling approaches exist.

Dispersed phases are defined as those whose constituent material is not physically

connected [4]. Such is the case when modeling a collection of particles where the

particle size is smaller than the size of the computational grid. While the material

within an individual particle is physically connected, the particles themselves are

not. The lack of physical connection in a dispersed phase creates material prop-

erties for the collection of particles that are quite different from the properties

of a continuous (non-dispersed) material. It is important to recognize that when

discussing a dispersed-phase material, two distinct pressures exist. The first is the

pressure existing within the individual particles making up the phase. The sec-

ond is the pressure exerted by the collection of particles. For the purposes of the

current work, the former will be given the distinction of being referred to as the

internal pressure Pint, while the latter will be referred to as the phase pressure or

simply the pressure P . Considering any individual particle in a dispersed phase,

it is clear that the material making up that particle is physically connected; there-

fore, as with any continuous (non-dispersed) material, the internal pressure for a

dispersed phase is found using an equation of state of the form Pint = Pint (ρ, e) or

Pint = Pint (ρ, T ). Conversely, the particles whose collection makes up a dispersed

phase are not physically connected. In this case, the pressure of the phase exists

due to direct particle interactions through contact or collisions [4, 8, 32]. Because

direct particle contact and the probability of particle collisions are strongly tied to

particle spacing, volume fraction is a key variable in determining the pressure of a
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dispersed phase.

To enable the modeling of multiphase flows containing a dispersed particle

phase, the functional form of the equation of state must be addressed. Following

the work of Zhang et al. [32], a generic equation of state with a functional de-

pendence on volume fraction is assumed. The pressure of any phase is therefore

represented as:

Pk = Pk (αk, ρk, ek) (2.28)

This expression is general and applies equally well to either a dispersed or contin-

uous phase, where in the case of a continuous phase the functional dependence on

volume fraction is null. The internal pressure of a phase, which does not depend

on volume fraction, is represented in the typical fashion:

Pint,k = Pint,k (ρk, ek) (2.29)

Again, the distinction between pressure and internal pressure is necessary when

discussing flows containing dispersed phases. For a continuous phase no distinction

exists, such that PC = Pint,C .

While the functional dependence of the dispersed phase pressure on parti-

cle volume fraction has certainly been recognized in the literature [4, 8, 32], this

dependence is not discussed or applied in many influential works relating to multi-

phase explosions [1, 10, 25, 2, 13]. Instead, these models assume that the pressure

of the dispersed phase is equal to the internal pressure within the particles so

that Pk = Pint,k. In the case of mathematical models focused exclusively on DDT

[1, 10, 2, 13], this assumption may be justifiable because the particle flows are

largely granular and heavily confined. However, as the particle volume fraction

drops this assumption is not longer physically accurate. Accounting for the func-
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tional dependence of pressure on volume fraction is a distinguishing feature of the

current mathematical model.

2.3.2 Discussion of Nozzling Terms

The nozzling terms are the first terms on the right hand side of the momen-

tum (2.23) and energy (2.24) equations. These terms are a source of debate in

the literature; they are included by some authors [1, 25], and excluded by others

[10, 17]. When included, the forms of the nozzling terms are slightly different

than those shown in Eqs. (2.23) and (2.24). In the momentum equation, the form

typically shown in the literature is:

Pi
∂αk
∂r

(2.30)

While the form typically shown in the energy equation is:

Piui
∂αk
∂r

(2.31)

The radius term rn shown in the current mathematical model does not appear

in the typical forms of the equations because these are cast in purely Cartesian

(planar) coordinates, allowing this term to cancel out. The more notable difference

between the typical and current forms of the nozzling terms exists in the value of

the pressures that pre-multiply the derivatives in each equation. In the literature,

the interfacial pressure Pi is applied in both the momentum and energy equations,

while in the current model separate values are applied in each equation. In the

momentum equation (2.23), the value of pressure pre-multiplying the derivative is

the sidewall pressure Ps,k, which is allowed to vary among phases. In the energy

equation (2.24), the interfacial pressure Pi is applied. Hence, the form of the energy
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equation nozzling term is equivalent to that typically presented in the literature,

while the form of the momentum equation nozzling term is not.

To understand the reason for this discrepancy, one must consider the physical

origin of the nozzling term in the momentum equation (2.23). From Sec. 2.1.2, the

nozzling term arises from the force acting on the sidewalls of a non-uniform duct.

This force is well-established in the derivation of the Euler equations. In the case

of the Euler equations, the sidewall force has the form Ps∆A, while in multiphase

flows it is taken as Ps,k∆ (αkA) for a given phase k. The challenge then becomes

defining the sidewall pressure. For the Euler equations the choice is clear: the

sidewall pressure is simply the average cell pressure so that Ps = P . However, this

choice is not as obvious for multiphase flows. In this case, dispersed phases have

two distinct pressures: the phase pressure Pk and the internal pressure Pint,k. Given

the physical meaning of the sidewall force, the the proper choice for the sidewall

pressure would appear to be the phase pressure so that Ps,k = Pk. Obviously, this

does not align with the typical definition of the momentum equation nozzling term,

where Ps,k = Pi. To investigate the ramifications of these two choices, consider

the following summations of the pressure terms in the momentum equation under

each approach.

Case 1: Ps,k = Pk

∂

∂r

(
rnαkPk

)
− Pk

∂

∂r

(
rnαk

)
= rnαk

∂Pk
∂r

(2.32)

Case 2: Ps,k = Pi

∂

∂r

(
rnαkPk

)
− Pi

∂

∂r

(
rnαk

)
= rnαk

∂Pk
∂r
−
(
Pi − Pk

) ∂
∂r

(
rnαk

)
(2.33)
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From Eq. (2.32) the case in which Ps,k = Pk simplifies to a result in which a

pressure gradient is necessary to accelerate the flow. In this case, as in the Euler

equations, a change in area alone does not result in a force on the fluid. Conversely,

from Eq. (2.33) if Ps,k = Pi a net force is exerted on the flow even in the absence of

a pressure gradient if a change in area or volume fraction exists. This is true except

in the special case where Pk = Pi; however, since only the internal pressures, and

not the phase pressures are driven toward equilibrium, this exception will rarely

occur. Hence in this case, an initially stationary flow in a duct of varying physical

area or volume fraction would be spontaneously accelerated even in the absence of

a pressure gradient.

While the form of the momentum equation nozzling term in which Ps,k =

Pi is typical of works including the nozzling terms in the literature [1, 25], it is

not clear that this is the appropriate choice. First, as shown above, this choice

can result in a force being exerted on the flow even in the absence of a pressure

gradient. Additionally, the works proposing this form of the governing equations

[1, 25] do not account for the dual-pressure nature of dispersed phases. Because

these models assume Pk = Pint,k the pressures of each phase will tend toward

equilibrium, making Pk ≈ Pi, and negating the artificial acceleration discussed

above. Hence this affect may be fortuitously avoided in such models. On the other

hand, setting Ps,k = Pi ensures that the governing equations obey the strong form

of the second law of thermodynamics [1]. As this discussion makes clear, significant

debate surrounds the nozzling terms. Given this, it is desirable to derive a model

and numerical method that are general enough to represent multiple forms of

these terms. In Eqs. (2.23) and (2.24) the expressions for the nozzling terms are

sufficiently general such that any relevant formulation can be obtained by altering

the values of Ps,k and Pi. Two possibilities exist. First, setting Ps,k = Pk in

Eq. (2.23) and Pi = 0 in the energy equation (2.24) nozzling term eliminates
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the traditional form of the nozzling terms while retaining the sidewall pressure

necessary when considering flow in a geometrically non-uniform duct. Second,

setting Pk,s = Pi in Eq. (2.23) while leaving Eq. (2.24) unmodified produces the

traditional form of the nozzling terms. This generalization is carried throughout

the numerical algorithm development to ensure the applicability of the derived

modeling techniques to all forms of the governing equations.

2.4 Results of Characteristic Analysis

A characteristic analysis of the governing equations (2.22–2.27) has been per-

formed. The details of this analysis, including the derivation of the characteristic

relations, are included in the appendix. By re-writing the governing equations in

terms of primitive variables, and assuming a general equation of state of the form

given in Eq. (2.28), the eigenvalues, eigenvectors, and characteristic equations of

the compressible multiphase flow equations were derived. The system of equations

is hyperbolic, having real eigenvalues and distinct eigenvectors. The eigenvalues

show that four characteristic speeds exist:

λi = ui; λ0 = uk; λ+ = uk + ck; λ− = uk − ck (2.34)

The definition of ck comes directly from the characteristic analysis, and follows

from:

c2
k =

∂Pk
∂ρk

∣∣∣∣∣
e,α

+
Pk
ρ2
k

∂Pk
∂ek

∣∣∣∣∣
ρ,α

=
∂Pk
∂ρk

∣∣∣∣∣
s,α

(2.35)

This definition is of interest given the functional dependence of pressure on volume

fraction that was assumed. From Eq. (2.35), the definition of ck is observed to

align with the standard definition of sound speed under the additional constraint

of constant volume fraction.
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Given the definition of sound speed and the eigenvalues, the multiphase equa-

tions are observed to possess the same characteristic velocities as the Euler equa-

tions, plus one additional characteristic velocity ui. This interfacial velocity is

the characteristic speed of the volume fraction discontinuity, following from Eq.

(2.27). Understanding the mathematical characteristics of the governing equations

is crucial for developing an accurate, stable, and consistent solution methodology.

In the next chapter, results from the characteristic analysis are directly applied in

the derivation of a numerical solution for the multiphase equations.
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Chapter 3

Numerical Model Development

The numerical model developed is based on a purely Eulerian framework in

which both continuous and dispersed phases are solved on a fixed grid. Within this

framework, the governing equations are solved using a time- and dimensionally-

split finite volume method. Using dimensional splitting, a one-dimensional solver

is extended to perform simulations in one, two, or three spatial dimensions [29,

15]. Under the time-splitting approach, the governing equations are divided into

convective terms and source terms that are solved independently within a single

time-step [29, 15]. The convective step is solved using a Godunov-based method

driven by a multiphase Riemann solver, while the source terms can be evaluated

with any applicable ordinary differential equation (ODE) solver. The time-splitting

approach to solving the multiphase flow equations has been applied successfully

in the work of Saurel and Lemetayer [25]. A first-order splitting scheme is given

below, where Q is the solution vector, LS is the source term operator and LC is

the convective operator; higher order schemes such as that of Strang [27] can also

be applied.

Qt+∆t = L∆t
S L

∆t
C Q

t (3.1)
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3.1 Convective Operator Solution

Under the splitting procedure, the convective portion of the governing equa-

tions consist of all terms on the left hand side of Eqs. (2.22–2.27), plus the first

term on the right hand side of Eqs. (2.23) and (2.24). All other terms on the

right hand side of the equations are treated as source terms and excluded from the

convective step. The solution of the equations will be discussed in a first-order,

one-dimensional framework. Extension to higher order accuracy can be achieved

by a number of methods already presented in the literature, and dimensional split-

ting can be used to solve problems in two or three dimensions [29, 15]. Applying

a first-order finite volume method [29, 15] to the convective step results in the

following numerical solution to the governing equations:

Qt+∆t
i = Qt

i −
∆t

∆r

[
F t
i+1/2 − F t

i−1/2 − φ
(
H t

i+1/2 −H t
i−1/2

)]
(3.2)

Q = [αk, r
nαkρk, r

nαkρkuk, r
nαkρkEk, r

nαkρkυk,j, r
nNk]

T (3.3)

F =
[
0, rnαkρkuk, r

nαk
(
ρku

2
k + Pk

)
, rnαkuk

(
ρkEk + Pk

)
,

rnαkρkυk,juk, r
nNkuk

]T (3.4)

φ = diag [ui, 0, Ps,k, −rnPiui, 0, 0] (3.5)

H = [αk, 0, rnαk, αk, 0, 0]T (3.6)

To solve the convective portion of the governing equations, a Godunov-based

method is applied. Here, the cell edge state used to calculate the intercell fluxes,

which is referred to as the Godunov state, is determined through the solution of a

Riemann problem with the right and left edge states as initial conditions [9]. In

a first order method the right and left edge states are those of the adjacent cell
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centers. The key to developing a successful method lies in determining an accurate

and robust Riemann solver to predict the Godunov state and form the fluxes to

solve Eq. (3.2).

The Riemann structure for the multiphase equations consists of four waves

for any single phase. The characteristic velocities of these waves are those given in

Eq.(2.34). Three of these waves align with those in the Euler equations, with the

leading and trailing waves being shocks or expansions, and the intermediate wave

being a contact discontinuity. The fourth wave is the volume fraction discontinuity

which is convected with the interfacial velocity ui. The interfacial velocity is as-

signed different values by different researchers [1, 25]; however, the value assigned

should be bounded by the local fluid velocity of each phase. Hence for a two-phase

flow:

ui = ui(u
∗
1, u

∗
2); where: u∗1 ≤ ui ≤ u∗2, or u∗2 ≤ ui ≤ u∗1 (3.7)

The value of the interfacial velocity is common among all phases, but depending on

the definition applied does not necessarily coincide with the characteristic velocity

of the other waves for any phase. Hence a generic solution to the multiphase Rie-

mann problem consists of five states separated by four waves for any given phase.

A generic wave structure for a two-phase flow is given in Fig. 3.1. Here, ui is the

interfacial velocity, u∗k is the slip-line velocity for phase k, and the variables U
(L,R)
(I,O),k

represent the speeds of either shocks or expansions in phase k. The superscripts

L,R denote left or right running waves, and the subscripts I, O denote the inner

and outer wave-speeds. In the case of a shock, UI = UO.

The solution of the multiphase Riemann problem is complicated by the pres-

ence of the volume fraction discontinuity, not only because a fourth wave exists for

every phase, but also because the interfacial velocity is not known a priori. More-

over, because the interfacial velocity can be a function of all the phase velocities,
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Figure 3.1: Generic Riemann structure for two-phase flow.

it is possible for the volume fraction discontinuity to lie within any region of the

flow with respect to a single phase. Six scenarios for the location of the volume

fraction discontinuity within any single phase exist. These scenarios are depicted

in Fig. 3.2.

The Riemann problem, by definition, is constructed in Cartesian coordinates

and does not contain source terms. An exact solution, even in the case of the Euler

equations, requires iterative methods. As an alternative, a linearized solution can

be found using the characteristic equations. The characteristic equations for a

multiphase flow are derived in the appendix, and the characteristic equations for

the Riemann problem are found by setting n = 0 in Eqs. (A.14–A.19).

Constructing a linearized Riemann solution for the multiphase equations is

complicated by the presence of the volume fraction discontinuity. For each phase,

six separate solutions exist corresponding to the six possible locations of the volume

fraction discontinuity shown in Fig 3.2. Moreover, the interfacial velocity is a

function of the slip line velocities for each phase and is not known at the start of

the Riemann problem solution. Because of this, the wave structure of the solution
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Figure 3.2: Possible locations of the volume fraction discontinuity within the Rie-

mann structure for any given phase.
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cannot be determined a priori; this necessitates an iterative approach in which a

wave structure is guessed and the resulting solution checked for consistency with

the assumed structure. This is an unattractive approach for use in a numerical

model given the possibility of solving the Riemann problem six times at every cell

boundary.

Closing the linearized solution presents another problem. The characteristic

equations themselves are not sufficient to close the system of equations, and must

be augmented with another relation for each phase. In the case of the Euler

equations, the isentropic condition, which is valid along a streamline, is an obvious

choice. However, this equation is not strictly applicable across the volume fraction

discontinuity because flow is non-isentropic across this jump. Alternate relations

based on a chain rule expansion of pressure can be derived, but solving the resulting

system will be problematic because of the lack of a defined thermodynamic path.

To avoid the difficulties discussed above, two simplifications to the solver

formulation are proposed. These simplifications are aimed at producing a robust,

non-iterative, approximate Riemann solver for the multiphase equations. To form

the solution, the following assumptions are made locally for each phase:

ui = uk; Pi = Ps,k = Pk (3.8)

The equilibration of the interfacial and phase velocities results in the alignment of

the contact and volume fraction discontinuities. This decouples the solution among

phases and removes the need for an iterative solution to find the proper wave struc-

ture. It also allows for the application of the isentropic condition along a stream-

line, since this path will not cross the volume fraction discontinuity. Assigning all

pressures the value of the phase pressure simplifies the characteristic equations,

which accordingly simplify the solution. Under these conditions, the characteristic
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equations for each phase are reduced from those shown in Eqs. (A.14–A.19) to

Eqs. (3.9–3.14) (now including the isentropic condition). The Riemann structure

based on the simplified characteristic equations is shown in Fig. 3.3.

λ0 = uk : dαk = 0 (3.9)

dυk = 0 (3.10)

dNk −
Nk

αk
dαk −

Nk

ρkhk
d (ρkek) = 0 (3.11)

d (ρkek)−
ρkhk (a2

k − c2
k)

αkc2
k

dαk −
hk
c2
k

dPk = 0 (3.12)

dPk − c2
kdρk = 0 (3.13)

λ+ = uk + ck : dPk + ρkckduk = 0 (3.14)

λ− = uk − ck : dPk − ρkckduk = 0 (3.15)

Figure 3.3: Structure of approximate Riemann solution for any single phase.
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From Eqs. (3.9–3.14), an approximate Riemann solution can be derived by

integrating along characteristics. Given the right and left states as initial condi-

tions, the approximate solution is given by:

u∗k =
PL,k − PR,k + ρL,kcL,kuL,k + ρR,kcR,kuR,k

ρL,kcL,k + ρR,kcR,k
(3.16)

P ∗
k =

ρR,kcR,kPL,k + ρL,kcL,kPR,k + ρL,kcL,kρR,kcR,k (uL,k − uR,k)
ρL,kcL,kρR,kcR,k

(3.17)

for S = L,R : α∗S,k = αS,k (3.18)

υ∗S,k = υS,k (3.19)

ρ∗S,k = ρS,k −
1

c2
S,k

(PS,k − P ∗
k ) (3.20)

e∗S,k =
1

ρ∗S,k

(
ρS,keS,k −

hS,k
c2
S,k

(PS,k − P ∗
k )

)
(3.21)

N∗
S,k = NS,k −

NS,k

ρS,khS,k

(
ρS,keS,k − ρ∗S,ke∗S,k

)
(3.22)

It is immediately observed that this solution is closely related to the three-

wave primitive variable Riemann solver for the Euler equations presented in pre-

vious works [29, 30]. This solution is attractive because it is independent of any

specific equation of state. It is applicable to any material as long as the pressure

and sound speed can be determined as functions of the other state variables.

Of major importance in the numerical modeling of multiphase explosions is

accurately treating the mathematical characteristics of a dispersed particle phase.

Unlike continuous materials, the pressure and sound speed of a dispersed material

become zero as the flow becomes sufficiently dilute. In this case, the mathematical
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characteristics of the phase become hyperbolically degenerate [17], and the lin-

earized Riemann solution becomes singular. When this happens, the eigenvalues

of the phase collapse from uk − ck, uk, and uk + ck to simply uk. The characteris-

tics are now those of the inviscid Burger’s equation, for which an exact Riemann

solution is easily determined. The two possible structures of the Riemann solution

are shown in Fig. 3.4. Toro [29] presents an excellent discussion of the Riemann

solution for the inviscid Burger’s equation that will not be repeated here. However,

because the linearized Riemann solution presented in Eqs. (3.16–3.22) is decou-

pled among phases, the exact Burger’s solution is easily substituted for a dispersed

phase with zero sound speed.

Figure 3.4: Structure of Riemann solution for hyperbolically degenerate systems.

The assumption of the local alignment of the phase and interfacial velocities

for each phase in the Riemann problem decouples the solution among phases and

leads to the derivation of a non-iterative solver. However, an inconsistency develops
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under conditions in which the phase velocities are not equal. Specifically, the region

of the multiphase Riemann solution between the contact discontinuities contains

volume fractions that do not sum to one. This is not physically possible and

requires correction.

To address this issue, consider the structure of the multiphase Riemann prob-

lem as shown in Fig. 3.5. The inconsistency in volume fractions occurs in the region

between the contact discontinuities, which for the remainder of this discussion is

termed the intermediate state. Since the numerical method being developed will

be solved on a fixed grid, only the state along the vertical axis is relevant to the

inter-cell fluxes. This means that the Riemann solver is self-consistent in an un-

modified form in all cases except under states of flow reversal when the slip-line

velocities are pointed in opposite directions. Multiple methods can be used to rem-

edy this problem under states of flow reversal. Such methods include: averaging

the right and left volume-fraction states for application in the intermediate state,

or directly enforcing an interfacial velocity over which the volume fractions jump.

The former approach is akin to smearing the volume-fraction discontinuity over

the intermediate state, while the latter directly enforces the dynamic compaction

equation (2.27). The latter approach is applied in the current work, with the in-

terfacial velocity being set as that of the least compressible phase, which is the

dispersed phase for all work completed to date. This choice of interfacial velocities

aligns with the original definition of Bear and Nunziato [1].

Eqs. (3.16–3.22), in combination with the volume-fraction fix, produce an

approximate Riemann solver for the multiphase equations. The solver is non-

iterative and closely related to the primitive variable Riemann solver for the Euler

equations presented in previous works [29, 30]. It is also independent of any specific

equation of state format, making it applicable to many different material models.

The cell-edge conditions are found by applying the approximate Riemann solution
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Figure 3.5: Structure of approximate Riemann solution for a two-phase flow before

volume fraction inconsistency fix.

to the right and left states adjacent to the cell edge and sampling the solution

along the edge. The flux terms are then formed by directly applying the cell edge

states in Eq. (3.2).

3.2 Source Term Operator Solution

Source terms in the governing equations (2.22–2.27) are not included in the

convective solution. These terms represent the exchange of volume, mass (or

species), momentum, and energy among phases, as well as the effects of body

forces such as gravity. Source terms typically do not contain derivatives and can

be advanced in time using standard methods for solving ordinary differential equa-

tions, which will not be discussed here. However, it is important to focus on the

specific models for drag, heat transfer, and pressure relaxation that determine the

form of the source terms in the current study. All numerical simulations presented

in this paper use inert particles, so rate laws for reacting particles – which can be
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quite complex and highly dependent on the specific materials that are reacting –

are not employed here.

A common method of expressing the drag force occurring due to velocity non-

equilibrium between a particle and the surrounding media is to use the correlation

shown below. The drag force f is expressed as a function of the drag coefficient

CD, which in this case is taken from Rowe [22].

f = 3πDµCCd (uC − uD)N (3.23)

Cd =


1 + 0.15Re0.687

R if ReR < 1000

0.01833ReR if ReR ≥ 1000

(3.24)

ReR =
ρCD |uC − uD|

µc
(3.25)

This correlation is based on low Mach number flow over an isolated sphere, and

may be expected to provide reasonable results in situations where these assump-

tions are valid. Papalexandris [17] applied this expression in studies of multiphase

detonations involving dilute collections of particles. In many multiphase explosive

applications however, the Mach number and particle volume fraction can be suf-

ficiently high that these assumptions are no longer valid. To model the drag at

increased Mach numbers, Tedeschi et al. [28] propose multiplying the base drag

force in Eq. (3.23) by:

CM =


1 if M < 0.3

1 +
Re2R

Re2R+100
e−0.225/M2.5

if M ≥ 0.3

(3.26)

To account for the effects of volume fraction, numerous researchers [21, 31, 6] have

proposed corrections to Eq. (3.23). Here, the advice of Crowe et al. [4] is followed
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and the correction of Wen and Yu [31] is chosen. This correction multiplies the base

drag force (3.23) by α−3.7
C . Applying both this and the Mach number correction

(3.26) results in the following expression for the drag force:

f = α−3.7
C 3πDµCCdCM (uC − uD)N (3.27)

In the case of sufficiently dense particle flows even the volume fraction correction

applied in Eq. (3.27) may be insufficient to model the increased drag force [4].

Because of this, Crowe et al. [4] recommend the use of an alternate expression

when αD ≥ 0.2. Under these conditions Eq. (3.27) is replaced by the correlation

of Shepherd and Begeal [26]:

f =
33µC
D2α4.5

C

(
1 + 0.01ReR

αC
αD

)
(uC − uD) (3.28)

Convective heat transfer between the particles and surrounding media is

modeled using the correlation:

q̇ = πDλCNu (TC − TD)N (3.29)

The heat transfer is a function of the temperature difference and Nusselt number

Nu. The Nusselt number is modeled as a function of the relative Reynolds number

ReR and Prandlt number Pr using the correlation of Ranz and Marshall [19, 20]:

Nu = 2 + 0.6Re0.5
R Pr0.33 (3.30)

The term µ
(
Pint,k − ´P int,k

)
in Eq. (2.27) represents the volume change

as phases relax toward pressure equilibrium. Modeling this process requires a

correlation or estimate for the compaction viscosity µ, which controls the rate
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of relaxation. Physically, the rate at which phases relax to pressure equilibrium

depends both on the compressibility of the materials and on the topology of the

flow [25]. However, to date no formal, validated methodology for calculating µ

exists.

Difficulties in obtaining a value for the compaction viscosity can be circum-

vented by assuming it to be infinite. This allows all phases to relax to full pressure

equilibrium during the source term solution in each time-step. The assumption of

an infinite compaction viscosity is justifiable in a numerical model if the time-scale

for pressure equilibration is smaller than the computational time-step. In an ex-

plicit model, the time-step is governed by the well-known CFL condition, and is

proportional to the time for a wave to cross a computational cell. The timescale

for a particle to relax to equilibrium with its surroundings is proportional to the

time for a wave to propagate through the particle. The ratio of the computational

time step and the relaxation timescale can be approximated by:

τcomp
τrelax

≈ ∆r

ck,max

cint,D
D

(3.31)

Here, ∆r and D are the computational cell size and particle diameter, respectively,

and ck,max and cD,int, are the maximum sound speed in any phase, and internal

sound speed in a particle, respectively. To model a collection of particles as a

continuum, the particle size is required to be much smaller than the computational

cell size; hence ∆r >> D. Additionally, the maximum sound speed in any phase

must be greater than or equal to the sound speed within a particle, such that in the

worst case ck,max = cD,int. This implies τcomp >> τrelax, satisfying the requirements

for assuming an infinite compaction viscosity. Given this, the compaction viscosity

µ is taken as infinite in the current work. However, this is not a requirement of

the model or numerical methods, and a finite rate can be used if desired.
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3.3 Dispersed Phase Equation of State

To close the numerical model, an equation of state properly modeling the

dependence of the dispersed phase pressure on volume fraction αD is needed. Rep-

resenting the pressure of a collection of particles in shock loading scenarios from

a first-principals approach is a daunting task and has not yet been sufficiently ad-

dressed in the literature. In the absence of a more rigorous approach, Zhang et

al. [32] have proposed using a heuristic interpolation method to define a dispersed

phase equation of state. The basic principals of the heuristic approach of Zhang

et al. [32] are adopted in this work to define a dispersed phase equation of state

for the current model.

Fundamentally, the heuristic method of determining an equation of state for a

dispersed particle phase states that two limits can be defined at which the pressure

of the dispersed phase PD will be known: 1) the dilute flow limit, which occurs

when αD is sufficiently low such that the pressure of the collection of particles is

taken as zero, and 2) the dense limit, occurring when αD is sufficiently high that the

pressure exerted in the particle phase is equal to that of the pure material at the

corresponding thermodynamic state. These limits place the following boundary

conditions on the dispersed phase equation of state, which has a functional form

defined by Eq. (2.28):

PD (αmin, ρD, eD) = 0 (3.32)

PD (αmax, ρD, eD) = Pint,D (ρD, eD) (3.33)

If these two limits are known, the challenge is then to define the pressure in the

transition regime between them. To satisfy the requirements imposed on the dis-

persed phase equation of state (2.28,3.32,3.33) a piecewise definition of the follow-
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ing form is proposed:

PD =ζ (αD)Pint,D (ρD, eD) ;

ζ (αD) =


0 if αD ≤ αmin(

αD−αmin

αmax−αmin

)z
if αmin < αD < αmax

1 if αmax ≤ αD

(3.34)

The dispersed phase pressure is the product of a function of volume fraction ζ

multiplied by the internal pressure. Below and above the volume fraction limits, ζ is

constant, equaling either zero or one. In the transition regime, ζ is assigned a power

law dependence on the normalized volume fraction, which forces the boundary

conditions to be met.

The proposed form of the dispersed phase equation of state (3.34) produces

the expected behavior in sound speed. When αD ≤ αmin, PD = 0 regardless of the

material density and energy, so that the sound speed cD is also zero. This corre-

sponds with the assumption of non-interacting particles that do not communicate

directly with one another. When αD ≥ αmax, PD = Pint,D and the functional

dependence on volume fraction vanishes; hence cD = cint,D. The proper prediction

of the sound speed is important as it is directly applied in the Riemann solver.

This approach to constructing an equation of state for a dispersed phase

material is attractive as it requires only knowledge of an equation of state for the

pure material, which also defines the internal pressure of the particles, and the

definition of the parameters αmin, αmax, and z. While an equation of state for

the pure material is likely to be available in the literature, the other parameters

must be estimated or fit to experiment. Physically, it is unlikely that a canonical

set of values will exist, as the behavior of a dispersed phase material is likely to
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be dependent material specific factors such as particle shape. However, in the

absence of an accurate theoretical model for the dispersed phase pressure in shock

driven environments, the heuristic approach provides a simple and robust method

for capturing the behavior of a collection of particles in flow regimes ranging from

dense to dilute.
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Chapter 4

Comparison with Experiment

In this chapter, two multiphase explosion scenarios are investigated numeri-

cally. The scenarios are chosen to align with existing experimental data in order to

validate the numerical modeling methodology and results. Both scenarios involve

the detonation of a multiphase explosive charge consisting of an ideal explosive

mixed with inert solid particles. Initial particle loadings vary widely, ranging from

a fully packed bed with 62% particles by volume in one case to only 10% particles

by volume in the other. Results include the transient motion of the leading particle

and shock fronts, as well as range-dependent pressure data. Excellent agreement

is found between the model and experiment, providing confidence in the numerical

modeling methodology proposed in Ch. 3.

Before comparing the simulations with experiment, a note on the governing

equations is in order. With reference to the nozzling terms, which were discussed in

Sec. 2.3.2, all results presented in this work were produced by setting Ps,k = Pk and

Pi = 0. Simulations were also attempted using the traditional form of the nozzling

terms (Ps,k = Pi), with the interfacial pressure set to that of the continuous phase

(Pi = PC), as in the work of Baer and Nunziato [1]. However, the additional

acceleration produced by the last term in Eq. 2.33 produced erroneously high

particle accelerations that caused numerical instability. The regions in which such
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problems occured were typically near the particle front, where the particle flow

was dilute and the dispersed phase pressure – and pressure gradient – were zero.

In these cases, it is difficult to justify the application of the force produced by

the last term in Eq. 2.33. Because of the erroneous results, and lack of physical

justification, this form of the governing equations was not used.

4.1 Multiphase Explosion Simulation #1

The first multiphase explosion investigated is based on the experimental work

of Zhang et al. [32], which investigated the explosive dispersal of solid particles. In

the experiments, a multiphase explosive charge was detonated in air, and data on

the time evolution of the leading shock and particle fronts was collected, in addition

to pressure data. The explosive charge was spherical and consisted of a fully-packed

bed of 463 µm spherical steel particles saturated with sensitized nitromethane.

The charge was mounted above the ground and centrally detonated, resulting in

an approximately spherical explosion in the time-frame of interest. Further details

on the experimental setup can be found in the original publication [32].

Numerical simulations of this experiment were performed in 1-D spherical

coordinates. Prior to the passage of the detonation front, the liquid nitromethane

was represented with a Mie-Gruneisen equation of state formulation [11], while the

detonation products and surrounding air are treated with the traditional Jones–

Wilkins–Lee (JWL) formulation [14, 11]. The steel particles are treated with the

heuristic equation of state approach proposed in Sec. 3.3, with a Mie-Gruneisen

formulation representing the internal pressure. The detonation process was mod-

eled with the history variable reactive burn (HVRB) method [11]. Equations of

state and reactive burn parameters for the materials used in this study can be

found in Ref. [11].
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The fully-packed nature of the initial particle configuration makes account-

ing for the dispersed phase pressure key to accurately simulating this multiphase

explosion scenario. Initially, the particles are in direct contact with one another

leading to strong interaction. However, as the explosion products expand, the

spacing between particles quickly increases and the volume fraction drops, such

that direct particle interactions become negligible and the dispersed phase pres-

sure becomes zero. This functional dependence of pressure on volume fraction is

modeled with the heuristic equation of state in Eq. (3.34). To close this equation,

the parameters αmin, αmax, and z must be set. For simplicity, z is set to one in

the current simulation; this choice results in a linear decay of the dispersed phase

pressure with respect to volume fraction. Further, it is postulated that when fully

packed, the pressure felt at the interface between two particles is approximately

equal to the internal pressure of the particles; therefore αmax was set to 0.62, which

is the fully packed volume fraction measured in the experiment. Given these pa-

rameters, αmin was determined though a series of trial simulations and is set a

0.2. Sensitivities of the simulation results to these parameters are discussed in the

following chapter.

Results from the numerical simulation are presented at selected times in Figs.

4.1-4.4. The continuous phase (nitromethane and air) velocity is shown, along

with the dispersed phase (particle) velocity and volume fraction. The particles are

initially accelerated by a combination of the dispersed phase pressure gradient and

the drag force resulting from velocity non-equilibrium with the surrounding fluid.

As the particles expand outwards, the volume fraction quickly drops, removing

the influence of the dispersed phase pressure. A consequence of this is that the

particle velocity is no longer reduced by the effects of volumetric expansion. The

continuous phase velocity, however, is affected by the volumetric expansion and

drops as the shock front propagates radially outward. These factors allow the
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particle front, which initially trails the shock front in the continuous phase, to

catch and surpass the leading shock at approximately 0.5 ms. Once past the

shock front, the particle front continues to separate from the shock within the

time-frame shown. The ability of the particles to run-away from the shock is a

function of the particle momentum, which in this case is relatively large because

of the particle size, density, and velocity.

Figure 4.1: Velocity and volume fraction profiles at 0.25 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 62% initial particle loading by

volume.
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Figure 4.2: Velocity and volume fraction profiles at 0.50 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 62% initial particle loading by

volume.

Figure 4.3: Velocity and volume fraction profiles at 1.00 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 62% initial particle loading by

volume.
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Figure 4.4: Velocity and volume fraction profiles at 2.00 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 62% initial particle loading by

volume.

Fig. 4.5 compares the numerical and experimental trajectories of the leading

shock and particle fronts with respect to time. The experimental values have

been digitized from the original work of Zhang et al. [32]. The numerical results

summarize the phenomena illustrated in Figs. 4.1-4.4 and discussed above. The

shock front leads the particle front until approximately 0.5 ms, at which point the

particle front overtakes the shock. The particle front then continues to separate

from the shock over the time-frame shown. The experimental data collected by

Zhang et al. [32] agrees well with the numerical results. The data shows that the

particle front escapes the shock between 0.4 and 0.6 ms, which closely bounds the

numerically predicted escape time of 0.5 ms. The experimental trajectories for

both the shock and particle fronts also agree well with the numerical results before

and after the time of escape.

Fig. 4.6 compares the numerical and experimental peak pressures with re-

spect to distance from the charge. Results are shown both for the nitromethane
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Figure 4.5: Comparison of experimental and numerical shock and particle front

locations from the detonation of a nitromethane charge with 463 µmsteel particles;

62% initial particle loading by volume.

charge containing steel particles described above, and for a pure nitromethane

charge of the same diameter. Peak pressures for the pure nitromethane charge are

also digitized from the original work of Zhang et al. [32]. In both cases, the nu-

merical results closely match the experimental data. The model correctly predicts

the reduction in peak pressure that occurs with the addition of particles. This

reduction in pressure is a function of both the reduced mass of energetic material

in the charge, and the transfer of momentum and energy from the high explosive

to the particles.

The close agreement between the experimental data of Zhang et al. [32] and

the numerical simulation results serve to validate the modeling techniques proposed

in Ch. 3. The multiphase Riemann solver and heuristic equation of state, com-

bined with the phase interaction models applied, accurately predict the explosion

dynamics of the charge investigated. The dynamics of this event are complex; as
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Figure 4.6: Comparison of experimental and numerical peak pressures from pure

nitromethane and nitromethane/steel particle explosions.

the explosion products expand the particle volume fraction transitions from dense

to dilute, and strong velocity non-equilibrium exists among the phases throughout

the time-frame of interest. The numerical modeling techniques reproduce these ef-

fects well, demonstrating the ability of the model to predict challenging multiphase

explosion phenomena.

4.2 Multiphase Explosion Simulation #2

The second multiphase explosion simulation performed is based on exper-

iments performed by Carney and Lightstone [3]. Unlike the charges of Zhang

et al. [32] which consisted of fully-packed particle beds, these explosives have a

more moderate initial particle loading. The multiphase charges investigated con-

sist of PETN mixed with spherical soda-lime glass particles. PETN is a relatively

sensitive solid explosive that detonates fully at the charge sizes of interest. Its

detonation products are clear allowing for the use of optical diagnostic techniques.
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The glass particles are 3 µm in diameter and are loaded at an initial volume frac-

tion of 0.10. The explosive charges are 1 inch right cylinders with a length to

diameter ratio of one. They were suspended in air and detonated in the center of

the top face of the cylinder. Fast-framing camera images taken in a shadowgraph

configuration provide the particle and shock front locations at multiple times.

Numerical modeling of this experiment was performed in 2-D cylindrical

coordinates. The PETN was modeled using a Mie-Gruneisen [11] equation of state

before the passage of the detonation front, and a JWL [14, 11] equation of state

afterwards. The air was likewise modeled with a JWL equation of state. The

dispersed particle phase was again modeled using the heuristic equation of state

proposed in Sec. 3.3, with a Mie-Gruneisen formulation representing the internal

pressure. However, because the initial particle volume fraction of 0.10 is below the

value of αmin applied in the first simulation, dispersed phase pressure effects were

not effective in this simulation.

Results from the numerical simulation are compared with images from the

experiment in Figs. 4.7 and 4.8. These results are taken at 10 and 20 µs after

detonation, respectively. The numerical images include 2-D contours of particle

volume fraction, as well as lines denoting the locations of the shock and detonation

product fronts. The numerical results show that nearly the entire volume behind

the shock front contains particles, but that virtually no particles exist outside

the shocked region. While the particles are sufficiently accelerated to escape the

detonation products, they do not efficiently escape the leading shock. This is in

contrast to the the results shown in Sec. 4.1, where the particles surpass and

separate from the shock. The particles in the current simulation are two orders of

magnitude smaller than those in the previous simulation, in addition to being less

dense. Because of this, the particles have significantly less momentum than the

larger particles investigated previously, even if accelerated to equivalent velocities.

51



The reduced particle mass and momentum are responsible for the inability of

the particles to escape the leading shock. When particles attempt to pass the

leading shock, they immediately experience an increased drag force as they enter

the ambient atmosphere. The increased drag quickly reduces the momentum of

the particles, which are then recaptured by the shock. This effect was discussed

previously by McGrath, et al. [16].

Figure 4.7: Comparison of numerical contours and experimental image 10 µs after

explosion of PETN charge with 10 µm glass particles. Numerical results include

contours of particle volume fraction (αD), solid line indicating shock front, and

dashed line indicating detonation product front. Dashed white line indicates initial

charge geometry.
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Figure 4.8: Comparison of numerical contours and experimental image 20 µs after

explosion of PETN charge with 10 µm glass particles. Numerical results include

contours of particle volume fraction (αD), solid line indicating shock front, and

dashed line indicating detonation product front. Dashed white line indicates initial

charge geometry.

The numerical results are strongly supported by the images from the experi-

ment. While the detonation products of pure PETN are optically clear, this clarity

is removed in locations where particles are present. As predicted by the model,

nearly the entire volume behind the leading shock front is observed to contain par-

ticles in the experiment. The particle front is aligned with the shock front except in

isolated areas of the 20 µs image. In this image, the shock leads the particles by a

small distance near the elbow of the blast where the radial and axial plumes meet.

These areas are similar to those predicted to have the smallest volume fraction of
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particles as shown by the contours.

To better quantify the numerical and experimental results, the location of

the leading particle front was tracked with respect to time along a line broadside

of the charge. The results of this comparison are shown in Fig. 4.9. Excellent

agreement between the experimentally measured and numerically predicted parti-

cle front trajectories is found. The numerical results lie well within the error of the

experiment. Hence the model produces not only good qualitative agreement with

experiment, but also good quantitative agreement. These results further validate

the numerical modeling techniques proposed in this work.

Figure 4.9: Comparison of experimental and numerical particle front trajectories

broadside of PETN/glass particle explosion.
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Chapter 5

Sensitivity to Correlations for Drag, Heat

Transfer, and Dispersed Phase Pressure

This chapter examines the sensitivity of the numerical solutions to correla-

tions for drag, heat transfer, and particle phase pressure. Investigating these sen-

sitivities is important to understanding the relative effect individual terms have

on the calculated solution and, in the case that multiple correlations are available,

determining which provides the best comparison with experiment. The compar-

isons also quantify the importance of properly accounting for the physical nature

and mathematical characteristics of dispersed materials. This result is important

in the context of the disagreement over the dispersed phase pressure that exists

in the literature, which was discussed in Sec. 2.3.1. This chapter is divided into

three sections that individually investigate the effect of drag correlations, heat

transfer, and dispersed phase pressure on the calculated results. Simulations are

based on the experiment performed by Zhang et al. [32], which was discussed in

Ch. 4. This scenario was chosen because it: 1) contains the largest amount of

experimental data to compare to, 2) has a high enough initial particle loading that

particle pressure effects are important, and 3) can be simulated in 1-D, easing the

computational time required to perform the study.
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5.1 Sensitivity to Drag Correlations

The basic methodology used to model the drag force was discussed in Sec. 3.2.

In this section, the standard drag correlation for an isolated sphere was replaced

by the method of Wen and Yu [31] to account for volume fraction effects. The

net effect of this correction is that drag force increases with increasing particle

volume fraction. However, at sufficiently high volume fractions (typically above

αD = 0.2) Crowe et al. [4] suggest the use of an alternate expression. In Sec.

3.2, the correlation of Shepherd and Begeal [26], which was used in the work of

Bear and Nunziato [1], was introduced for use in these conditions. However, the

correlation proposed by Ergun [7] in his study of fluid flow through packed columns

is another alternative. Ergun’s expression for drag force is is:

f =
µCαD
D2α2

C

(1.75αCReR + 150αD) (uC − uD) (5.1)

Four different methods of calculating the drag force are investigated in the

current study. The methods vary in the way that the effects of volume fraction are

handled. As a baseline, the drag force on a single particle with no correction for

volume fraction is considered. Next, the correction of Wen and Yu [31] is considered

alone, without the use of an alternate expression when αD ≥ 0.2. Finally, the

correction of Wen and Yu is again considered, but with the use of the alternate

expressions of Ergun and Shepherd & Begeal when αD ≥ 0.2. The four methods

of calculating drag force along with the naming convention used for each are listed

below:

1. Single Particle: no volume fraction correction

2. Wen: volume fraction correction of Wen & Yu only

3. Ergun: correction of Wen & Yu for αD < 0.2, Ergun correlation for αD ≥ 0.2
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4. Shepherd: correction of Wen & Yu for αD < 0.2, Shepherd & Begeal corre-

lation for αD ≥ 0.2

Before investigating the effect of these drag correlations on the numerical

results, it is instructive to examine the forces predicted by the correlations being

considered. These are plotted over a range of Reynolds numbers and particle

volume fractions in Fig. 5.1. Here, all drag forces have been non-dimensionalized

by the drag force on a singe particle (fS.P.). Only conditions under which the

Ergun and Shepherd expressions are typically used (αD ≥ 0.2) are considered.

From Fig. 5.1, it is observed that the force predicted by the Wen correlation

increases from 2.3X-30X that predicted for a single particle over the range of αD =

0.2 − 0.6. Because the Wen correlation corrects the single particle drag force as

a function of volume fraction only, the result is invariant with Reynolds number.

Comparing the Ergun and Shepherd correlations to that of Wen, it is observed

that the force produced by the Ergun correlation is generally greater than that of

Wen in the case of αD = 0.2, approximately equal to it for αD = 0.4, and less

than it for αD = 0.6. The Shepherd correlation produces substantially larger drag

forces that either of the other methods. Over the range of conditions shown in Fig.

5.1, it varies from 2X–25X the force produced by the Wen correlation, and 4X–10X

that produced by the Ergun correlation. Based on these results, it is clear that

the options presented produce significant differences in the magnitude of the drag

force predicted.

To investigate the effect of the different drag correlations on the calculated re-

sults, numerical simulations replicating the experimental work of Zhang et al. [32]

have been performed. In the simulations, the effects of dispersed phase pressure

were purposefully neglected by setting ζ = 0; this isolates drag as the lone source

of particle motion, allowing for a more direct comparison of the results. Numerical
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Figure 5.1: Comparison of drag force correlations.
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results are compared with the experimental data in Fig. 5.2. The results include

plots of shock propagation, peak pressure, and particle front trajectory. Among

the various drag correlations accounting for volume fraction effects, little differ-

ence is observed in the predicted shock front location or peak pressure. The shock

trajectories are nearly identical, and the peak pressures are similar, with the pres-

sure observed using the Shepherd correlation being slightly lower than the others.

When the drag correlation for a single particle is used however, larger differences

occur. In this case, the shock front leads that calculated by any of the other meth-

ods, and the peak pressures are higher. In the near-field, the pressure observed is

visibly higher than the data reported from the experiment [32]. When considering

the effects on particle motion, the single particle drag force produces the smallest

particle front velocity, while the Shepherd method produces the largest. None of

the calculated particle front trajectories compare well with the experimental data

in this case because the dispersed phase pressure was neglected.

The trends observed in the calculated results are consistent with those ex-

pected given the force comparison shown in Fig. 5.1. The single particle drag

correlation results in the smallest interaction force between the continuous and

dispersed phase, allowing a faster and stronger shock to propagate into the sur-

rounding environment, and reducing the velocity of the particles. On the other

hand, the Shepherd method produces the largest drag force; this accelerates the

particles more rapidly and restricts the continuous phase flow, resulting in reduced

shock velocity and peak pressure. It is interesting to note, however, that the vari-

ation among the results produced by the Shepherd, Ergun, and Wen methods is

minimal. While this may initially be unsuspected given the variations in drag force

shown in Fig. 5.1, one must recall that despite the naming convention used, the

Ergun and Shepherd correlations become active only in conditions where αD ≥ 0.2,

which for the current problem is a relatively small percent of the simulated time.
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Figure 5.2: Effect of drag correlations on shock propagation, peak pressure, and

particle front location.
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Overall, the results indicate that accounting for volume fraction effects in the drag

correlation improves the accuracy of the predicted shock velocity and pressure.

However, they do not support a definitive conclusion on the particular drag corre-

lation to use in cases where αD ≥ 0.2. A more definitive conclusion may require

analyzing scenarios in which the volume fraction of the particle flow remains above

0.2 for longer periods of time.

5.2 Sensitivity to Heat Transfer

In this section, the sensitivity of the computed results to heat transfer are

investigated. In all simulations conducted to this point, heat transfer is calculated

using the correlation presented in Sec. 3.2, which models the convective heat flux

as a function of the temperature difference among phases, as well as the Nusselt

number. To determine the sensitivity of the calculated solution to this expression,

numerical simulations have been performed in which the rate of heat transfer is

modified by the inclusion of a multiplicative factor in Eq. (3.29). Three cases have

been investigated, using factors of 0, 1, and 2. Thus, in addition to the baseline

rate defined by Eq. (3.29), the rate of heat transfer has been either completely

neglected or doubled.

The numerical simulation setup used for this study is identical to that pre-

sented in Sec. 4.1, with the only exception being the multiplicative factor included

in the heat transfer correlation. The drag force was calculated using the correction

of Wen and Yu [31] when αD < 0.2, and the correlation of Shepherd and Begeal

[26] for αD ≥ 0.2. Particle phase pressure effects were accounted for using the

parameters described in Sec. 4.1.

The maximum particle temperatures observed at selected times are shown in

Tab. 5.1 for each of the three heat transfer rates considered. Here, it is observed
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that the multiplicative factors applied to the base correlation have a meaningful

effect in terms of temperature variation during the time-frame considered. When

heat transfer is neglected, a drop of 86-93 K in maximum particle temperature is

observed when compared to the baseline simulation. Doubling the heat transfer

rate results in approximately a 60 K increase in maximum particle temperature

over the baseline simulation.

Time after Detonation

Factor 0.5 ms 1.0 ms 2.0 ms

0 314 K 314 K 314 K

1 400 K 407 K 405 K

2 461 K 469 K 465 K

Table 5.1: Maximum particle temperatures calculated using various heat transfer

rates

Results from the simulations are compared with the experimental data of

Zhang et al. [32] in Fig. 5.3. From this, it is observed that the variation in

heat transfer rate does have a measurable, although small, effect on the numerical

results. As the rate of heat transfer is increased, both the shock and particle front

velocities are reduced, as is the peak pressure. When compared to the experimental

data, the variations are sufficiently modest that any of the results would perhaps

be considered acceptable, although those computed with either the factor of 0 or

1 compare best. This trend suggests that the heat transfer rates predicted by Eq.

(3.29) are within a reasonable range for the current simulation. While the data

would imply that the rate of heat transfer should not be increased, neither does it

strongly suggest that the rate should be decreased.

Overall, it is instructive to note that the rate of heat transfer used in the

numerical simulation does have a quantifiable, although minor, effect on readily

observable parameters such as shock propagation, pressure, and particle motion.
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Figure 5.3: Effect of heat transfer on shock propagation, peak pressure, and particle

front location.
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Intuitively, the physical trend observed here may be expected when the physics of

the situation are considered. Heat transfer among the various phases in a multi-

phase flow is a dissipative process that reduces the amount of energy available to

do work in the system. This results in the reduction in pressure, shock velocity,

and particle velocity observed. While this physical trend may be expected, the

magnitude of the effect would be difficult to discern without the benefit of the

current numerical analysis.

5.3 Sensitivity to Dispersed Phase Pressure

Having investigated the sensitivity of the computed results to drag and heat

transfer, attention is turned to the effects of dispersed phase pressure. Recall from

Sec. 2.3.1 that methods for representing the dispersed phase pressure PD vary in

the literature. In this work, as in others [4, 8, 32], it is argued that the pressure

exerted by a dispersed material comes about through particle interactions resulting

from contact or collisions. This argument leads to the functional dependence of

PD on volume fraction, which is a measure of particle spacing. Based on this

argument, a model for calculating PD = PD (αD, ρD, eD) was proposed in Eq.

(3.34) of Sec. 3.2. In other influential models relating to multiphase explosions

[1, 10, 25, 2, 13], however, PD is not considered to be a function of αD at all. Rather

it is calculated as PD = PD (ρD, eD), making the pressure of the phase equal to that

inside the individual particles. Based on the arguments in the current work, this

can only be justified in regimes of very high particle volume fractions. Yet another

technique is to ignore the dispersed phase pressure completely. This assumption is

typically made in works focusing exclusively on dilute particle flows, such as those

of Papalexandris [17, 18]. Under the proposed theoretical picture of dispersed

phase pressure, this assumption is justified as long as the flow exists in the dilute
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regime.

This section has two objectives. The first is to investigate the effect different

representations of dispersed phase pressure have on the numerical solutions. The

second is to investigate the sensitivity of the predicted results to the parameters,

αmax, αmin, and z, that influence the behavior of the proposed model for PD

(3.34). The former objective directly addresses the physical nature of the pressure

of a dispersed material, while the latter reveals information relevant to the proper

modeling of these materials.

5.3.1 Sensitivity to Dispersed Phase Pressure Representation

First, the influence of different representations of particle phase pressure are

addressed. Three distinct representations of PD are considered; these are: 1)

PD = 0, 2) PD = Pint,D, and 3) PD = ζ (αD)Pint,D. In the first representation,

the dispersed phase pressure is neglected completely, which implies that particle-

particle interactions are unimportant. The second representation aligns with many

influential models [1, 10, 25, 2, 13] that assume the dispersed phase pressure is

equivalent to that within an individual particle. The third aligns with the theory

of dispersed material pressure presented in the current work. Here, PD is modeled

as a function of volume fraction, as proposed in Eq. (3.34). In this study, the

calculations performed are identical with the exception of the representation of

PD. The correlations for drag and heat transfer are those presented in Sec. 3.2. In

the case where PD = ζ (αD)Pint,D, ζ is defined using the parameters: αmax = 0.62,

αmin = 0.20, and z = 1, which are identical to those applied in Sec. 4.1.

Numerical results are compared with those from the experiment [32] in Fig.

5.4. In the case of the shock trajectories and peak pressures, it is observed that

the different representations of PD produce results that are nearly identical to

one another, and closely match the experimental data. When the plot of particle
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front location is considered, however, significant differences among the modeling

approaches are observed. Here, the case in which PD = Pint,D results the slowest

particle front velocity, while the case in which PD = ζ (αD)Pint,D provides the

fastest. When PD = 0, the front velocity falls between the other cases, but tends

toward the slower side, being only slightly faster than the result for PD = Pint,D.

From the results, it is also clear that the case in which PD = ζ (αD)Pint,D provides

the best match with the experimental data.

To understand the physics driving these results, the dynamics of each scenario

must be considered. The simplest case is that in which PD = 0. Here, because

the pressure of the dispersed phase is universally zero, no pressure gradient force

exists to accelerate the particle flow. The particle motion is purely the result of

interphase drag caused by velocity non-equilibium among the phases.

Next consider the case in which PD = Pint,D. The internal pressure Pint,D

is defined through the equilibration process with the continuous phase (explosive

and air). Because the continuous phase pressure PC always exists, Pint,D and

therefore PD are universally non-zero. In fact, pressure equilibrium ensures that

PC = PD, meaning that equal pressure gradients exist in both phases. After

the charge detonates, a large pressure gradient accelerates both phases outward.

Expansion effects, however, quickly reduce the pressure and set up an inverse

pressure gradient, slowing the flow. The important point to recognize is that by

assuming PD = Pint,D, the inverse pressure gradient affects both phases, which

serves to reduce the particle velocity. It is for this reason that the particle front

velocity when PD = Pint,D is observed to be slower than when PD = 0.

Finally, consider the result produced when PD = ζ (αD)Pint,D. In this case,

PD only exists when αD > αmin, where αmin = 0.2 in the current simulation.

The initial charge configuration has 62% particles by volume, making PD non-zero

during the detonation. Thus both the pressure gradient force and interphase drag
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Figure 5.4: Effect of dispersed phase pressure on shock propagation, peak pressure,

and particle front location.
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force are available to initiate particle motion. As the particles expand outward,

however, αD quickly drops below αmin, and PD becomes zero. At this point, a pres-

sure gradient no longer exists in the dispersed phase and only the drag force affects

the particles. In Fig. 5.5, it is observed that by 0.25 ms, which corresponds to the

first numerical time plotted in Fig. 5.4, the particle volume fraction has already

dropped below the threshold for non-zero PD. By applying PD = ζ (αD)Pint,D,

the initial particle acceleration is increased over the case in which PD = 0 because

of the pressure gradient force. However, the functional dependence on αD quickly

removes the pressure gradient force, shielding the particles from the reduction in

velocity that subsequently occurs in the case of PD = Pint,D. It is for this reason

that the case of PD = ζ (αD)Pint,D produces the fastest particle front velocity in

Fig. 5.4.

Figure 5.5: Profiles of pressure and particle volume fraction for the case of PD =

ζ (αD)Pint,D. Dotted line indicates threshold volume fraction.

The results of this comparison are important in the context of the disagree-

ment on the representation of dispersed phase pressure that exists in the litera-

ture. The current analysis clearly demonstrates that different representations of
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PD produce substantially different results. By comparing the various represen-

tations of PD with the experimental findings reported by Zhang et al. [32], it

becomes apparent that PD is a function of αD, as argued in Sec. 2.3.1, and that

accounting for this dependence is critical to obtaining accurate numerical predic-

tions. Furthermore, the close agreement with the experimental results suggests

that the proposed model for dispersed phase pressure (3.34) accurately represents

the behavior of such materials under the conditions encountered in the current

simulation. Determining the range of conditions in which this agreement is seen

requires a broader range of experiments not currently provided in the literature.

Further validation is therefore the subject of ongoing work.

5.3.2 Sensitivity to αmax,αmin, and z

Having shown the importance of modeling the functional dependence of dis-

persed phase pressure on volume fraction, the sensitivity of the proposed model for

PD (3.34) to the parameters αmax, αmin, and z is investigated. These parameters

are critical to obtaining accurate simulation results, as they define the transition

regime between dense particle flows in which pressure effects are important, and

dilute regimes in which they are not. From Eq. (3.34), the function ζ determines

the dependence of PD on αD. This dependence is schematically represented in Fig.

5.6. The transition regime exists between the parameters αmin and αmax, with the

shape of the function in this regime being defined by the parameter z.

In the following analyses, the set of parameters used previously is taken as

a baseline; they were: αmax = 0.62, αmin = 0.20, and z = 1. Each of these

parameters is varied around its baseline value, while the others are held fixed.

Results are then plotted against the experimental data, revealing not only the

trend encountered when the parameter is varied, but also the effect of the variation

on the solution accuracy.
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Figure 5.6: Functional dependence of ζ with respect to αmax, αmin, and z.

Sensitivity to αmax

First the parameter αmax is considered. This parameter defines the upper

bound of the transition regime; for αD ≥ αmax, ζ = 1 and PD = Pint,D. The

baseline value of αmax was previously set to align with the fully-packed state of

the particle bed from the experiment [32], which was 0.62. This was based on the

postulate that in its fully-packed state, the pressure experienced at the interface

between individual particles is equal to that within the particles. To investigate

the sensitivity of the computed results to this parameter, alternate values of 1.0

and 0.5 are chosen. Setting the value to 1.0 assumes that the pressure felt at the

interface between particles is only equal to the pressure inside the particles when

all voids are removed from the flow. While setting the value to 0.5 implies that

this same phenomena occurs at volume fractions somewhat below the fully-packed

state.

The numerical results are plotted against the experimental data in Fig. 5.7.

Almost no variation is detected in the results for shock motion or peak pressure.

This is because the parameters being investigated only directly affect the dispersed
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phase, any effect on the continuous phase, which these results are indicative of,

occurs only through the variation of phase interaction resulting from any changes

in particle motion. Differences are observed, however, in the plot of particle front

location. Here, setting αmax = 1.0 results in a decrease in the particle front ve-

locity. This trend may be expected because an increase in αmax over the baseline

value results in a reduction in the magnitude of PD applied as the charge deto-

nates. The results observed for the case in which αmax = 0.5 show little if any

difference from those obtained with the baseline value of 0.62. The likely reason

for this is that while setting PD = 0.5 increases the range of volume fractions over

which the maximum pressure, defined by PD = Pint,D, is felt, it does not increase

the magnitude of the maximum pressure. Overall, these results do indicate some

sensitivity of the computational results to the value of αmax selected. By compar-

ing the results with experiment, it is observed that setting αmax = 1.0 produces

results furthest from the experiment, suggesting that this choice is not physically

accurate. Additionally, because it is difficult to conceptually justify the setting

αmax significantly lower that the fully-packed state, and because doing so did not

produce any quantifiable increase in accuracy, it it can be loosely concluded that

the assignment of αmax to the fully-packed volume fraction is physically realistic.
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Figure 5.7: Effect of αmax on shock propagation, peak pressure, and particle front

location.
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Sensitivity to αmin

Next, the effects of varying αmin are investigated. In the same way that

αmax defines the upper limit of the transition regime for dispersed phase pressure,

αmin defines the lower limit. For αD ≤ αmin, ζ = 0 and PD ceases to exist. This

implies that particle-particle interactions are no longer important below αmin. The

baseline value used previously was αmin = 0.2, at this state the minimum distance

between particles is approximately one particle radius if a body centered cubic

structure is assumed. To investigate the sensitivity of the calculated results to this

parameter, alternate values of 0.4 and 0.01 were chosen.

The numerical results are plotted against the experimental data in Fig. 5.8.

Again, almost no discernible variation exists in the plots of shock trajectory and

peak pressure. More surprisingly, however, little variation is observed in the plot

of particle front location. The results for αmin = 0.2 & 0.4 are indistinguishable,

while the results for αmin = 0.01 show a small reduction in the particle front

velocity. The results indicate a general insensitivity to αmin over the range of

values investigated. Although it is noted that the larger values of 0.2 and 0.4,

which are O (10−1), produce slightly better results than the value of 0.01, which is

O (10−2), when compared to the experiment.
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Figure 5.8: Effect of αmin on shock propagation, peak pressure, and particle front

location.
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Sensitivity to z

Finally, the sensitivity of the results to the parameter z are investigated. This

parameter defines the shape of PD through the transition region. In addition to

the baseline value of z = 1, alternate values of 0.5 and 2 are selected. The results

of the simulations are shown in Fig. 5.9. As in the previous comparisons, no effect

on either the shock trajectory or peak pressure is observed. In terms of particle

front motion, little variation exists between the results for z = 1 & 2. Setting

z = 0.5, however, causes the particle front velocity to be decreased. The result of

setting z < 1 is that the shape of ζ becomes concave; this increases the slope of

the curve near αmin and decreases it near αmax. This is notable in the context of

the results obtained in the study of αmin. In that study, decreasing αmin to 0.01

had the effect of reducing the particle front velocity, just as setting z = 0.5 does

here. The interesting point is that both decreasing αmin and increasing z have the

effect of reducing the slope of ζ near αmax, and both make the comparison with

experiment worse. This suggests that properly predicting the slope of ζ near αmax

may be important to the correct prediction of particle motion, and that a steeper

slope is more physically correct. More study is needed to confirm this analysis,

but the suggested phenomenology is interesting nevertheless.
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Figure 5.9: Effect of z on shock propagation, peak pressure, and particle front

location.
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Chapter 6

Effect of Physical Parameters on Multiphase

Explosions

In this chapter, the effects of three physical parameters on the dynamics of

multiphase explosions are investigated. The parameters considered are: particle

loading, particle size, and particle material. Understanding the effects of these

parameters is critical to design efforts utilizing multiphase explosion or energetic

technologies. Many such applications involve reactive particles, which are intended

to burn either within the detonation products or external atmosphere. In these

systems, particle motion and placement are critical to obtaining the desired reactiv-

ity. While reaction rate considerations often drive the selection of key parameters

such as particle size and material, it is equally important to consider the effects of

these parameters on the overall explosion dynamics, including the location of the

particles with respect to the shock and detonation product fronts. The location

of the particles with respect to these fronts defines the oxidizer content and ther-

modynamic state of the media surrounding the particles, which affects the rate of

reaction. While the modeling of systems containing reactive particles is important,

the current work investigates explosives containing inert particles. The use of inert

particles allows for a simpler analysis that focuses exclusively on explosion dynam-
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ics and is not complicated by the effects of reaction. It also avoids the complexities

surrounding the modeling of burning particles, which is a major research topic in

and of itself. Nevertheless, the results of this study provide fundamental insight

into the effects of particle loadiing, size, and material on multiphase explosion dy-

namics, an understanding of which is critical in the analysis of systems containing

either inert or reactive particles.

The baseline configuration of the explosive considered in this study is again

taken from the experiments of Zhang et al. [32]. The charge is an 11.8 cm diameter

sphere containing sensitized nitromethane and spherical solid particles. It is sus-

pended in air and centrally detonated, allowing for the use of a 1-D model. In Ch.

4 and Ch. 5 numerical simulations based directly on this experiment were used

to validate the numerical model and investigate the sensitivities of the computed

results to various modeling correlations. The studies performed in this chapter

are no longer intended to directly simulate the experiments; however, the baseline

charge configuration is retained because it is relatively simple and computationally

efficient to employ in the context of a parametric study.

6.1 Effect of Particle Loading

First, the effect of initial particle loading is investigated. The original ex-

periments [32] contained a fully-packed bed of 463 µm steel particles, resulting in

an initial particle loading of 62% by volume (αD = 0.62). In this section, 463 µm

steel particles are again used, but the initial particle loading is varied. The parti-

cle loadings investigated are listed in Tab. 6.1 in terms of both volume and mass

fraction. The entire range of possible loadings is investigated, from zero particles

to the fully-packed state. In the numerical simulations, all parameters except the

initial particle loadings were held constant.
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Particle volume fraction (αD) 0.0 0.15 0.30 0.62

Particle mass fraction (YD) 0.0 0.55 0.75 0.92

Table 6.1: Particle volume and mass fractions investigated in Sec. 6.1

Results from the numerical simulations are summarized in Figs. 6.1-6.4. The

results include the shock, particle, and detonation front trajectories, as well as the

peak pressures calculated for all four initial particle loadings. From these figures,

it is observed that decreasing the initial particle volume fraction increases the

shock front velocity, peak pressure, particle front velocity, and detonation prod-

uct front velocity. It is also observed that the maximum radius of the detonation

product front (also called the fireball) is increased as the particle volume fraction

is decreased. Two factors account for these trends. First, because the particles

displace volume that would otherwise be occupied by nitromethane, the total ex-

plosive mass and energy increase as the particle loading decreases. Thus there is

simply more energy available in systems with lower particle content. Secondly, the

particles act as sinks to the surrounding explosive. The drag force that acceler-

ates the particles is felt equally and oppositely by the surrounding media, which

restricts the outward flow during the initial phase of the explosion. In the same

way, the heat transferred from the detonation products to the particles removes

energy from the explosive gas that would otherwise be available to do work. Thus

in addition to having a reduced amount of explosive mass and energy, the config-

urations with higher particle loadings are further restricted by dissipative losses

resulting from the phase interactions.
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Figure 6.1: Effect of initial particle loading on shock front motion.

Figure 6.2: Effect of initial particle loading on peak pressure.
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Figure 6.3: Effect of initial particle loading on particle front motion.

Figure 6.4: Effect of initial particle loading on detonation product front motion.
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The effects of initial particle loading are illustrated in more detail in Figs.

6.5 and 6.6, which contain spatial profiles of volume fraction and velocity at 0.25

and 1.0 ms after detonation. Results are only shown here for the charges initially

containing 15% particles by volume; the corresponding results with 62% particle

loading were shown previously in Figs. 4.1 and 4.3. When comparing the plots at

equivalent times, it is easily observed that the increasing the initial particle loading

has resulted in significant damping of the velocities for both the continuous and

dispersed phases. At 0.25 ms the peak velocity in the dispersed phase is above

1.5 × 105 cm/s for the 15% steel charge, while below 1.0 × 105 cm/s for the 62%

steel charge. This trend in velocities continues throught 1.0 ms, where the 15%

steel charge has produced substantially more separation between the particle and

shock fronts than the 62% steel charge. Although there are fewer total particles

in the 15% steel charge, they have propagated further into the ambient, pre-shock

environment in this time-frame. The smaller initial volume fraction, along with

the increased particle velocity, has also resulted in a volume fraction profile that

is generally lower in magnitude and more spread out in the case of 15% particle

loading when compared to 62%.

One more interesting point comes out of this comparison. In Ch. 5, a detailed

analysis of the effects of dispersed phase pressure was presented. Results of this

analysis demonstrated the importance of the dispersed phase pressure PD to the

accurate prediction of the particle front motion. In the case of a fully-packed

particle bed, it was shown that neglecting the PD resulted in the under-prediction

of the particle front velocity. Because it is a function of volume fraction, PD is

only active when αD ≥ αmin; where from Sec. 5.3, αmin = 0.2 was shown to

be reasonable. Hence in the current simulations, the force due to a dispersed

phase pressure gradient is only active in the simulations with 30% and 60% initial

particle loadings by volume. Thus, these scenarios are to some extent subject to
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Figure 6.5: Velocity and volume fraction profiles at 0.25 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 15% initial particle loading by

volume.

Figure 6.6: Velocity and volume fraction profiles at 1.00 ms for explosion of ni-

tromethane charge with 463 µm steel particles; 15% initial particle loading by

volume.
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an extra force not active in simulations with lower initial loadings. The interesting

point is that despite the presence of the pressure gradient force, the particle front

velocities for the 30% and 62% particle loadings still fall well below that observed

for the 15% particle loading. This indicates that the increased explosive energy

in the systems with lower particle loadings coupled with the decreased total mass

of particles results in particle accelerations that are greater than those in systems

with higher particle loadings, despite the lack of a pressure gradient force.
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6.2 Effect of Particle Diameter

In this section, the influence of particle size is investigated. The explosive

configuration uses steel particles at a fixed initial loading of 62% particles by

volume. Two particle sizes are then considered: 463 µm and 46.3 µm. The former

aligns with the baseline particle size from the experiment [32], while the latter is

an order of magnitude smaller. After these configurations are analyzed, results

are presented for the same scenario but with an initial particle loading of 15% by

volume.

Figs. 6.7 and 6.8 present the shock, particle, and detonation product front

trajectories for the charges with 46.3 µm and 463 µm particles, respectively. It

is immediately observed that reducing the particle size by an order of magnitude

significantly alters the explosion dynamics. The most obvious change relates to the

ability of the particles to escape and out-run the shock. When 463 µm particles

are used, the leading particle front escapes the shock at approximately 0.5 ms and

continues to separate from it in the time-frame considered. The 46.3 µm particles

escape the leading shock more rapidly; the particle front leads the shock front at

0.25 ms, which was the earliest time recorded in the simulation. However, after

the initial escape, the 46.3 µm particle front fails to continue separating from the

shock. Rather, the trajectories of the two fronts become somewhat parallel initially

before beginning to converge at 1 ms. The waves come together between 2.8-3.0

ms, at which time the shock overtakes and begins to separate from the particle

front.
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Figure 6.7: Shock, particle, and detonation front trajectories from nitromethane

charge with 46.3 µm steel particles; 62% particles by volume.

Figure 6.8: Shock, particle, and detonation front trajectories from nitromethane

charge with 463 µm steel particles; 62% particles by volume.
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Spatial profiles of the explosion containing 46.3 µm particles are shown in

Figs. 6.9 and 6.10. The plots contain the phase velocities along with the dispersed

phase volume fraction at 0.5 and 2.0 ms. The corresponding results for the 463

µm particles are shown in Figs. 4.2 and 4.4. Comparing the results at 0.5 ms,

it is immediately observed that the velocity profiles for both phases are shaped

somewhat differently for the two particle sizes, and that the velocities are lower

for the case with 46.3 µm particles. At 2.0 ms, the 46.3 µm particle front has

progressed only about 140 cm into the domain, and is closely aligned with the

shock front. Conversely, the 463 µm particles have progressed further into the

domain; the particle front is nearing 200 cm, while the shock front trails at about

150 cm.

Figure 6.9: Velocity and volume fraction profiles at 0.50 ms for explosion of ni-

tromethane charge with 46.3 µm steel particles; 62% initial particle loading by

volume.
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Figure 6.10: Velocity and volume fraction profiles at 2.00 ms for explosion of

nitromethane charge with 46.3 µm steel particles; 62% initial particle loading by

volume.

From these results, it is clear that significant differences in the explosion

dynamics exist. Throughout the time-frame considered, the charge containing

463 µm particles produces higher velocities for both the continuous and dispersed

phases than does the charge with 46.3 µm particles. Yet the 46.3 µm particles

escape the leading shock earlier in time, meaning that initially the relative velocity

of the 46.3 µm particle front with respect to the shock is higher than that of the

463 µm particle front. These results may at first seem inconsistent given that

both were produced by charges with exactly the same explosive and particle mass.

However, the differences observed are completely explained by dissipation among

the phases.

To understand how dissipation among the phases can so drastically effect

the explosion dynamics, consider the effects of particle diameter on the drag force

and heat transfer rate. The drag force is defined by Eq. (3.27). Neglecting

Mach number effects, the drag force per unit volume f scales with diameter as:
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f ∝ DCdN . Assuming Re ≥ 1000, Cd ∝ D. Additionally, N ∝ D−3. This leaves

f ∝ D−1. Thus reducing the particle diameter by an order of magnitude results

in approximately a 10X increase in the drag force. A similar effect occurs with the

heat transfer rate, defined in Eq. (3.29). Here q̇ ∝ DNuN . Again assuming high

Reynolds number Nu ∝ Re1.5 ∝ D1.5. This results in q̇ ∝ D−1.5, so that reducing

the particle diameter by 10 results in approximately a 31X increase in the heat

transfer rate.

This simple analysis clearly shows that decreasing the particle diameter in-

creases the magnitude of the drag and heat transfer, which results in an overall

increase in the rate of dissipation among the phases. This directly explains the

results observed. In the charge with 46.3 µm particles, the increased drag force

accelerates the particles more quickly, and slows the surrounding media, resulting

in a reduced time for the particles to escape the shock. The increased drag force

also increases the rate of waste heat generation, which in combination with the

increased heat transfer rate, reduces the amount of energy available to do work.

This is confirmed in Figs. 6.11 and 6.12, which compare the temperatures of the

46.3 and 463 µm particles at 0.50 and 2.00 ms. The 46.3 µm particles have temper-

atures 100-300 K higher than the 463 µm particles at equivalent times. Recalling

that the particles make up 92% of the initial mass of the charge, it is clear that

a significant amount of energy was required obtain this extra temperature rise.

It is the loss of this energy that creates the disparity in the explosion dynamics

observed with the different particle sizes. The energy lost through increased dis-

sipation in the system containing the smaller particles is apparent not only in the

decreased phase velocities, but also in the pressure. Fig. 6.13 shows the peak pres-

sures observed at different ranges from the charge. As would be expected from the

preceding analysis, the pressures generated by the charge with 46.3 µm particles

are damped with respect to those obtained with the 463 µm particles.
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Figure 6.11: Temperature profiles at 0.50 ms for explosions of nitromethane

charges with 46.3 and 463 µm steel particles; 62% initial particle loading by vol-

ume.

Figure 6.12: Temperature profiles at 2.00 ms for explosions of nitromethane

charges with 46.3 and 463 µm steel particles; 62% initial particle loading by vol-

ume.
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Figure 6.13: Peak shock pressures from explosions of nitromethane charges with

46.3 and 463 µm steel particles; 62% initial particle loading by volume.

From the results presented, it is clear that particle size can significantly effect

multiphase explosion dynamics. Given the rather large reductions in pressure and

velocities that have been observed, and because the initial particle loadings of

the charges considered were high (62% by volume), it is natural to ask whether

such an effect is observed in systems with lesser particle loadings. Results from

simulations identical to those above, but using charges with only 15% particles by

volume are presented in Figs. 6.14 and 6.15. These figures plot the shock, particle,

and detonation product front trajectories. The trends among the particle sizes are

identical to those for the charges with 62% particles. Hence it is observed that

the increased dissipation among phases affects these more lightly–loaded charges

in much the same way as it affected the fully–packed charges.
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Figure 6.14: Shock, particle, and detonation front trajectories from nitromethane

charge with 46.3 µm steel particles; 15% initial particle loading by volume.

Figure 6.15: Shock, particle, and detonation front trajectories from nitromethane

charge with 463 µm steel particles; 15% initial particle loading by volume.
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6.3 Effect of Particle Material

In this section, the influence of particle material is investigated. Steel and

soda-lime glass particles are considered. The properties of both the steel and glass

particles at ambient conditions are given in Tab. 6.2. The glass is approximately

3X less dense than steel, is slightly more compressible, and has a smaller heat

capacity. The initial particle loading and particle diameter are held constant in

this study, and are taken as 62% by volume and 463 µm, respectively.

Material Density(g/cc) Sound Speed(cm/s) Heat Capacity(cv) (erg/g/K)

Steel 7.795 4.44× 105 4.46× 106

Glass 2.5 4.09× 105 1.60× 106

Table 6.2: Particle material properties

The trajectories of the shock, particle and detonation product fronts for the

charge containing glass particles are plotted in Fig. 6.16. The corresponding plot

for the steel particles was previously shown in Fig. 6.8. Because the glass particles

are lighter, they are accelerated more rapidly than the steel particles, and are less

restrictive to the surrounding flow. The glass particles therefore achieve higher

velocities and escape the shock front at an earlier time. The glass particle front

passes the leading shock sometime prior to 0.25 ms, while the steel particle front

does not pass the shock until 0.5 ms. The detonation product front also achieves

a larger radius when glass particles are used, although the difference is slight.

The peak pressures generated by the two charges are compared in Fig. 6.17.

The pressures are higher for the charge with the glass particles, which is consistent

with the higher shock velocity. This is again caused by the decreased resistance

the glass particles exert on the surrounding flow, which generates less waste heat

and increases the energy available to do work.
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Figure 6.16: Shock, particle, and detonation front trajectories from nitromethane

charge with 463 µm glass particles; 62% initial particle loading by volume.

Figure 6.17: Peak pressures from nitromethane charges with 463 µm steel or glass

particles; 62% initial particle loading by volume.
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Profiles of the phase velocities and particle volume fractions for the charge

containing glass particles are shown in Figs. 6.18 and 6.19. The results are plotted

at both 0.5 and 2.0 ms. The steel particle results are shown in Figs. 4.2 and 4.4.

From these plots, the difference in particle velocities are apparent. By 2.0 ms,

the glass particle front is located between 240-250 cm, and is nearing the edge of

the computational domain. The steel particles trail significantly, having not yet

reached 200 cm at the same time. Although lighter, the glass particles are still

able to run-away from the shock. It is also interesting to compare the shapes of the

particle velocity profiles between the two materials. In the case of steel particles,

the discontinuous rise at the particle front is followed by a smooth and monotonic

decrease to zero at the origin. The profiles for the glass particles are similar but

do not monotonically decay. At 0.5 ms the discontinuous rise at the particle front

is followed by smooth rise that continues to the location of the shock front, while

at 2.0 ms a peak in the particle velocity is also observed at the location of the

shock. These results indicate that once initially accelerated, the steel particles are

less affected by the surrounding flow than are the glass particles, which is another

consequence of the material density difference.
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Figure 6.18: Velocity and volume fraction profiles at 0.50 ms for explosion of

nitromethane charge with 463 µm glass particles; 62% initial particle loading by

volume.

Figure 6.19: Velocity and volume fraction profiles at 2.00 ms for explosion of

nitromethane charge with 463 µm glass particles; 62% initial particle loading by

volume.
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Chapter 7

Conclusions and Future Work

In this research, a compressible multiphase flow model for the numerical sim-

ulation of multiphase explosions has been proposed, developed, and applied. The

model development effort was motivated by the lack of a satisfactory numerical

technique in the literature. While numerous related models have been proposed,

none are completely satisfactory. Sources of contention include the governing equa-

tions, representations of dispersed materials, treatment of phase compressibility

and non-equilibrium effects, and the numerical schemes applied. The model devel-

oped in this work distinguishes itself from others in the literature by: 1) treating

all phases as fully compressible, 2) properly representing the mathematical char-

acteristics of dispersed particle phases in the both the dense and dilute limits, 3)

applying a Godunov-based solution to all phases, and 4) allowing complete non-

equilibrium among phases. In application, the model has been shown to produce

results that compare well with existing experimental data. Additional studies have

investigated the sensitivity of the numerical model to correlations for drag, heat

transfer, and dispersed phase pressure, as well as to physical parameters including

particle loading, size, and material.

To develop a numerical model for multiphase explosions, the governing equa-

tions for a compressible multiphase flow were first derived and discussed. The
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derivation revealed the physical origins of the terms in the governing equations,

and provided a basis for the discussion of the nozzling terms, which are a source of

debate in the literature. A discussion of the physical nature of dispersed materials

was also presented, and a generic equation of state including a functional depen-

dence on volume fraction was proposed. A characteristic analysis of the governing

equations (presented in the appendix) was also performed and discussed. The

mathematical characteristics of the governing equations were shown to be hyper-

bolic and the characteristic equations later used in the Riemann solver development

were derived.

The numerical solution to the governing equations is based on a time- and

dimensionally-split finite volume method. Time-splitting was used to separate the

governing equations into convective and source terms, which are solved indepen-

dently. Dimensional-splitting allows the extension of a 1-D solver to systems of

higher dimension. An original contribution of this work was the development of

the multiphase Riemann solver, which forms the basis of a Godunov-type solution

to the convective portion of the governing equations. The Riemann solver was

developed from the characteristic relations derived in the appendix. The solu-

tion technique is approximate, non-iterative, and decoupled among phases. It is

also applicable to both continuous and dispersed phase materials because it was

derived under the assumption of a generic equation of state. To properly repre-

sent the mathematical characteristics of a dispersed materials, a dispersed phase

equation of state with a functional dependence on volume fraction was proposed.

The proposed equation of state, along with the study of dispersed phase pressures

performed in Ch. 5, represent a second original contribution to the literature.

Results from numerical calculations were compared with existing experimen-

tal data to demonstrate the validity of the modeling approach developed. Compar-

isons with two experiments were presented, Both scenarios involved the detonation
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of a multiphase charge consisting of a dispersed collection of particles embedded in

an explosive fill. The comparisons also covered a range of initial particle loadings,

from a fully-packed bed with 62% particles by volume, to a more lightly loaded sce-

nario with only 10% particles by volume. Results available for comparison included

transient shock and particle front motion, pressure gauge data, and fast-framing

camera images. Numerical calculation results were shown to compare well with

the experimental data, providing confidence in the numerical method.

The sensitivities of the numerical results to the chosen correlations for drag,

heat transfer, and dispersed phase pressure were then investigated. A compari-

son of the computational results to experimental data revealed the sensitivities of

the model to the chosen correlations, and provided fundamental information on

the modeling techniques most accurately addressing the physics of the flow. In

the investigation of drag correlations, the results indicate that accounting for the

volume fraction dependence on the drag force is necessary to obtaining accurate

predictions. From the study of heat transfer, the comparison with experiment

suggested that the baseline heat transfer rate was sufficient to produce accurate

results. Perhaps the most important conclusion comes from the study of dispersed

phase pressure. Here, various methods of representing the dispersed phase pressure,

including using the proposed dispersed phase equation of state, were investigated.

By comparing the results with experimental data, it was shown that accounting

for the volume fraction dependence on the dispersed phase pressure is critical to

obtaining accurate predictions of particle motion. An analysis of the physics driv-

ing this conclusion showed that this result is a function of the transition of the

mathematical characteristics of the dispersed phase from fully-hyperbolic to hy-

perbolically degenerate within the time-frame of the event. This transition leads

to the negation of the dispersed phase pressure gradient in the time-frame where it

would serve to restrict the particle flow. This phenomena is a direct consequence
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of the dependence of dispersed phase pressure on volume fraction. This result

confirms the physical nature of dispersed materials discussed in this work, as well

as the dispersed phase equation of state proposed.

Finally, the numerical model was used to investigate the effects of physical

parameters on multiphase explosion dynamics. While only inert particles were con-

sidered in this study, the results of this analysis are important for understanding

the behavior of systems utilizing reactive particles, as the particle motion defines

the oxidizer content and thermodynamic state the particles see. From the simula-

tions performed, several trends were observed. First, decreasing the initial particle

loading in a multiphase explosive serves to increase the shock, particle, and det-

onation front velocities, as well as the peak pressures. The maximum size of the

fireball also increased when the initial particle content was decreased. This trend

is driven primarily by the increase in explosive mass and decrease in dissipation

obtained with lighter particle loadings. Next, an analysis of the effects of particle

diameter showed that decreasing the particle diameter results in increased dissi-

pation among the phases. When the particle diameter was decreased by an order

of magnitude, the increased dissipation rate significantly altered the explosion dy-

namics. While the temperature of the particles was increased, the velocities of both

phases were substantially decreased when the smaller particle size was used. This

had the overall effect of inhibiting the ability of the particles to run-away from the

leading shock into the ambient atmosphere. Finally, in an investigation of particle

material effects, computations indicated that using lighter particles results in in-

creased velocities of the shock and detonation fronts, along with an increase in the

pressure generated. This trend occurs because lighter particle require less force to

accelerate, allowing them to obtain higher velocities and providing less resistance

to the surrounding flow.

The current work has provided a strong theoretical and computational ba-
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sis for the investigation of compressible multiphase flows containing a dispersed

particle phase. However, plans to extend the utility of the model remain. In the

near future, these plans include the addition of reactive particles to the numerical

model. Many systems applying multiphase explosion technologies contain reactive

particles, and particle combustion is a major research area. To extend the utility

of the model further, plans to combine the multiphase techniques developed in this

work with existing techniques for solving multifluid flows also exist. This upgrade

would allow for simulations containing more than one continuous phase material,

as is found in the example of a cased explosive charge.
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Appendix A

Characteristic Analysis

This appendix contains a review of the characteristic analysis for the com-

pressible multiphase flow equations (1-6). In accordance with the time-split solu-

tion methodology applied, only the convective portion of the multiphase equations

are analyzed here Eqs. (3.2–3.6). The objective of the characteristic analysis is

to linearize the governing equations in terms of primitive variables such that the

eigenvalues, eigenvectors, and characteristic equations can be determined. As such,

we choose the primitive variable to be W = (αk, Nk, υk, Pk, uk, ρkek)
T , and seek to

present the equations in the form:

W t +AW r = B (A.1)

To maintain the generality of this analysis, it is desirable not to prescribe a specific

equation of state. Rather, we use the chain rule expansion for a change in pressure

given the generic form in Eq. (2.28):

dPk =
∂Pk
∂αk

∣∣∣∣∣
ρ,e

dαk +
∂Pk
∂ρk

∣∣∣∣∣
e,α

dρk +
∂Pk
∂ek

∣∣∣∣∣
ρ,α

dek (A.2)
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Using this relation, the governing equations are recast in terms of the primitive

variables, resulting in the coefficient matrices:

A =



ui 0 0 0 0 0

0 uk 0 0 0 0

0 0 uk 0 0 0

ρk

αk

(
uka

2
s,k − uia2

i,k

)
0 0 uk ρkc

2
k 0

(Pk−Ps,k)
αkρk

0 0 1
ρk

uk 0

ρk

αk
(ukhs,k − uihi,k) 0 0 0 ρkhk uk



(A.3)

B = −n
r

[
0, Nkuk, 0, ρkukc

2
s,k,

(Pk − Ps,k)
ρk

, ρkukhs,k

]T
(A.4)

The eigenvalues of this system are those of matrix A:

λi = ui

λ0 = uk (multiplicity of 3) (A.5)

λ± = uk ± ck

The left eigenvectors satisfy the equation:

l [λI −A] = 0 (A.6)
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Using Eq. (A.6), the left eigenvectors associated with each eigenvalue are:

λi = ui;

li = [1, 0, 0, 0, 0, 0] (A.7)

λ0 = uk;

l10 = [0, 0, 1, 0, 0, 0] (A.8)

l20 =

[
−ρkNk (ukhs,k − uihi,k)

αk (uk − ui)
, ρkhk, 0, 0, 0, −Nk

]
(A.9)

l30 =

[
ρkhk

(
uka

2
s,k − uia2

i,k

)
− ρkc2

k

(
ukhs,k − uihi,k

)
αk (uk − ui)

, 0, 0, hk, 0, −c2
k

]
(A.10)

λ+ = uk + ck;

l+ =

[
ρk
(
uka

2
s,k − uia2

i,k

)
+ ck (Pk − Ps,k)

αk (uk − ui + ck)
, 0, 0, 1, ρkck, 0

]
(A.11)

λ− = uk − ck;

l− =

[
ρk
(
uka

2
s,k − uia2

i,k

)
− ck (Pk − Ps,k)

αk (uk − ui − ck)
, 0, 0, 1, −ρkck, 0

]
(A.12)

From Eqs. (A.7–A.12), the system of equations is observed to be hyperbolic, having

real eigenvalues and distinct eigenvectors.

Finally, the characteristic equations are determined by multiplying Eq. (A.1)

by the associated eigenvalue and eigenvector, which after simplification yields the

general expression for the characteristic equations:

l
dW

dt
= lB (A.13)

Substituting the left eigenvectors into this equation produces the characteristic

equations for the multiphase system. These equations describe the variation of the
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primitive variables along the characteristics. They are:

λi = ui;

dαk
dt

= 0 (A.14)

λ0 = uk;

dυk
dt

= 0 (A.15)

dNk

dt
− Nk (ukhs,k − uihi,k)

αkhk (uk − ui)
dαk
dt
− Nk

ρkhk

d (ρkek)

dt

= −nNkρkuk
r

(hk − hs,k)
hk

(A.16)

d (ρkek)

dt
−
ρkhk

(
uka

2
s,k − uia2

i,k

)
− ρkc2

k (ukhs,k − uihi,k)
αkc2

k (uk − ui)
dαk
dt

− hk
c2
k

dPk
dt

=
nρkuk
r

(
hkc

2
s,k − hs,kc2

k

c2
k

)
(A.17)

λ+ = uk + ck;

dPk
dt

+
ρk
(
uka

2
s,k − uia2

i,k

)
+ ck (Pk − Ps,k)

αk (uk − ui + ck)

dαk
dt

+ ρkck
duk
dt

= −n
r

[
ρkukc

2
s,k + ck (Pk − Ps,k)

]
(A.18)

λ− = uk − ck;

dPk
dt

+
ρk
(
uka

2
s,k − uia2

i,k

)
− ck (Pk − Ps,k)

αk (uk − ui − ck)
dαk
dt
− ρkck

duk
dt

= −n
r

[
ρkukc

2
s,k − ck (Pk − Ps,k)

]
(A.19)
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