Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Programmable Biomolecule Assembly and Activity in Prepackaged BioMEMS

    Thumbnail
    View/Open
    umi-umd-5805.pdf (6.899Mb)
    No. of downloads: 857

    Date
    2008-10-21
    Author
    Luo, Xiaolong
    Advisor
    Rubloff, Gary W.
    Metadata
    Show full item record
    Abstract
    Antibiotic resistance is an increasing public health concern and few new drugs for bacterial pathogenesis have been obtained without addressing this resistance. Quorum sensing (QS) is a newly-discovered system mediated by extracellular chemical signals known as "autoinducers", which can coordinate population-scale changes in gene regulation when the number of cells reaches a "quorum" level. The capability to intercept and rewire the biosynthesis pathway of autoinduer-2 (AI-2), a universal chemical signaling molecule, opens the door to discover novel antimicrobial drugs that are able to bypass the antibiotic resistance. In this research, chitosan-mediated in situ biomolecule assembly has been demonstrated as a facile approach to direct the assembly of biological components into a prefabricated, systematically controlled bio-microelectromechanical system (bioMEMS). Our bioMEMS device enables post-fabricated, signal-guided assembly of labile biomolecules such as proteins and DNA onto localized inorganic surfaces inside microfluidic channels with spatial and temporal programmability. Particularly, the programmable assembly and enzymatic activity of the metabolic pathway enzyme Pfs, one of the two AI-2 synthases, have been demonstrated as an important step to reconstruct and interrogate the AI-2 synthesis pathway in the bioMEMS environment. Additionally, the bioMEMS has been optimized for studies of metabolic pathway enzymes by implementing a novel packaging technique and an experimental strategy to improve the signal-to-background ratio of the site-specific enzymatic reactions in the bioMEMS device. I envision that the demonstrated technologies represent a key step in progress toward a bioMEMS technology suitable to support metabolic engineering research and development.
    URI
    http://hdl.handle.net/1903/8785
    Collections
    • Fischell Department of Bioengineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility