Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microcosm Studies of Nutrient Cycling in Bahamian Stromatolites

    Thumbnail
    View/Open
    umi-umd-5703.pdf (1.972Mb)
    No. of downloads: 971

    Date
    2008-08-13
    Author
    Jabro, Nicholas
    Advisor
    Marinelli, Roberta
    Harvey, Rodger
    Metadata
    Show full item record
    Abstract
    I report results of field observations and experiments that examine the oxygen and nutrient fluxes for stromatolites in Highborne Cay in the Exumas, Bahamas. The aim of this study is to determine whether nutrients play a role in the transition of the community structure within the mats that is thought to be responsible for lithification and, ultimately, mat growth and structure. The research includes nutrient monitoring of the sediment and water column, and measures of rates of oxygen and inorganic nutrient exchange from stirred microcosm chamber incubations of mats with varied community structure. On the basis of mat community composition, I hypothesized that different mat types would have different fluxes, and that Highborne mats would be limited by one or more nutrients that efficient recycling within the mats might otherwise help supply. Samples of the four major mat types were sealed in stirred microcosm flux chambers, incubated in a circulating water bath, and sampled for oxygen, NH4, NO3, PO4, and Silicate. Nutrient addition, treatments of PO4 and Si were employed to investigate whether they stimulate primary productivity, signaling that mats are limited in these solutes. Nutrients in Highborne Cay were high in nitrogen relative to P, with N:P as high as 30. There was no difference in nutrient flux or productivity among mat types, and the addition of nutrients did not change mat productivity. These observations suggest that mat development in Highborne Cay is not limited by nutrients, but more likely structured by external physical factors such as the rate of turbulent flow which may limit the recruitment of competitors such as macroalgae and benthic branching diatoms.
    URI
    http://hdl.handle.net/1903/8594
    Collections
    • Biology Theses and Dissertations
    • MEES Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility