Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed Wireless Multicast: Throughput and Delay

    Thumbnail
    View/Open
    umi-umd-5673.pdf (676.3Kb)
    No. of downloads: 1022

    Date
    2008-08-04
    Author
    Shrader, Brooke Erin
    Advisor
    Ephremides, Anthony
    Metadata
    Show full item record
    Abstract
    Multicast transmission, in which data is sent from a source to multiple destinations, is an important form of data communication in wireless networks. Numerous applications require multicast transmission, including content distribution, conferencing, and military and emergency messages, as well as certain network control mechanisms, such as timing synchronization and route establishment. Finding a means to ensure efficient, reliable multicast communication that can adapt to changing channel conditions and be implemented in a distributed way remains a challenging open problem. In this dissertation, we propose to meet that challenge through the use of random coding of data packets coupled with random access to a shared channel. We present an analysis of both the throughput and delay performance of this scheme. We first analyze the multicast throughput in a random access network of finitely many nodes, each of which serves as either a source or a destination node. Our work quantifies throughput in terms of both the Shannon capacity region and the stable throughput region and indicates the extent to which a random linear coding scheme can outperform a packet retransmission scheme. Next, we extend these notions to a random access network of general topology in which each node can act as a receiver or a sender for multiple multicast flows. We present schemes for nodes in the network to compute their random access transmission probabilities in such a way as to maximize a weighted proportional fairness objective function of the multicast throughput. In the schemes we propose, each node can compute its transmission probability using information from neighboring nodes up to two hops away. We then turn our focus to queueing delay performance and propose that random coding of packets be modeled as a bulk-service queueing system, where packets are served and depart the queue in groups. We analyze within this framework two different coding schemes: one with fixed expected coding rate and another with a coding rate that adapts to the traffic load. Finally, we return to the question of multicast throughput and address the effects of packet length, overhead, and the time-varying nature of the wireless channel.
    URI
    http://hdl.handle.net/1903/8364
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility