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Multicast transmission, in which data is sent from a source to multiple des-

tinations, is an important form of data communication in wireless networks. Nu-

merous applications require multicast transmission, including content distribution,

conferencing, and military and emergency messages, as well as certain network con-

trol mechanisms, such as timing synchronization and route establishment. Finding

a means to ensure efficient, reliable multicast communication that can adapt to

changing channel conditions and be implemented in a distributed way remains a

challenging open problem. In this dissertation, we propose to meet that challenge

through the use of random coding of data packets coupled with random access to a

shared channel. We present an analysis of both the throughput and delay perfor-

mance of this scheme.

We first analyze the multicast throughput in a random access network of

finitely many nodes, each of which serves as either a source or a destination node.

Our work quantifies throughput in terms of both the Shannon capacity region and



the stable throughput region and indicates the extent to which a random linear

coding scheme can outperform a packet retransmission scheme. Next, we extend

these notions to a random access network of general topology in which each node

can act as a receiver or a sender for multiple multicast flows. We present schemes

for nodes in the network to compute their random access transmission probabilities

in such a way as to maximize a weighted proportional fairness objective function of

the multicast throughput. In the schemes we propose, each node can compute its

transmission probability using information from neighboring nodes up to two hops

away.

We then turn our focus to queueing delay performance and propose that ran-

dom coding of packets be modeled as a bulk-service queueing system, where packets

are served and depart the queue in groups. We analyze within this framework two

different coding schemes: one with fixed expected coding rate and another with a

coding rate that adapts to the traffic load. Finally, we return to the question of

multicast throughput and address the effects of packet length, overhead, and the

time-varying nature of the wireless channel.
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Chapter 1

Introduction

Multicast transmission, in which data is sent from a source to multiple destina-

tions, is an important form of data communication in wireless networks. Numerous

applications require multicast transmission, including content distribution, confer-

encing, and military and emergency messages, as well as certain network control

mechanisms, such as timing synchronization and route establishment. In addition

to practical interest, there is significant theoretical interest in multicast transmission

due to its use in demonstrating the benefits of the emerging paradigm of network

coding [1, 2], in which data from disparate sources is coded together at relay nodes in

a network. Multicast transmission is also an arena for studying wireless cross-layer

design and the ultimate limits on network capacity. The research carried out as part

of this thesis is meant to unify both the practical and theoretical aspects of wireless

multicast. In doing so, we consider the form of redundancy needed to provide reli-

able communication, the need for distributed operation in practical networks, and

the nature of the wireless channel.

For purposes of reliability in multicasting, some form of redundancy must be

introduced. As examples, redundancy might be added through retransmitting lost

packets or through some more general form of channel coding. How much redun-

dancy should be introduced and what form it should take are difficult questions.
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Clearly, there must be enough redundancy to provide sufficiently reliable transmis-

sions, yet too much redundancy would result in an inefficient flooding of data in the

network. Limiting redundancy will also result in limiting the amount of energy ex-

pended through transmission, which is a major concern for wireless nodes operating

on battery power [3].

Distributed implementation is important in wireless networks, particularly in-

frastructureless or ad hoc networks. In our work, we consider multiple sources

transmitting over a shared channel, which requires some form of medium access

control (MAC). We choose to focus our studies on the use of random access to the

channel [4], which can be implemented in a purely distributed fashion. In the ran-

dom access protocol we consider, each transmitting node decides independently and

randomly whether it will transmit in each time slot. Clearly, this leaves open the

possibility that multiple nodes will decide to transmit simultaneously; the resulting

collision on the channel may cause a level of interference that makes reception im-

possible. In order to limit or resolve collisions, more complex MAC protocols might

be constructed on top of the basic random access protocol we consider (eg, carrier

sensing or random access with collision resolution). However, we choose to focus on

a very simple form of random access which lends itself to a thorough analysis while

still capturing the effects of contention in wireless multicast.

The nature of the wireless channel directly impacts multicast transmission.

Assuming that the transmitter makes use of an omnidirectional antenna, a single

transmission may automatically reach multiple surrounding receivers, a property

referred to as the wireless multicast advantage [5]. However, the widespread signal
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propagation over the wireless channel also means that a transmission will interfere

with other nearby transmissions. As such, we make a point to specifically account for

interference in multicast transmissions. Furthermore, signal fading, node mobility,

and the ability to create or destroy links by adjusting data rates and/or transmission

power all indicate that specifying the network as a set of links may not be the most

accurate description. Therefore, we avoid the use of tree-based or graph-based

models typically used in studying wired multicast.

1.1 Random coding

Reliable communication requires some form of redundancy to overcome errors

introduced by the channel. As an example, the form of redundancy typically used for

wired and wireless unicast transmission is to resend data packets that are known to

have been received in error. This type of retransmission protocol can be particularly

inefficient for multicast communication since each destination may require a different

packet to be resent. Alternatively, error control coding can be introduced by sending

additional redundant packets with the aim that each destination receive one or more

redundant packets in order to recover the original transmitted packets that have

been received in error. The typical approach to error control coding is for it to be

performed at a fixed rate, or at a fixed proportion of redundant information. The

fixed rate is chosen based on the error rate of the channel, which must be known

or estimated. However, fixed rate coding can be problematic on a wireless channel,

where the error rate of the channel may change with signal fading or mobility, and
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particularly problematic for multicast transmission, where the channel to different

destinations may introduce different amounts of error. If the coding rate is fixed

according to the worst-case channel conditions, it may be inefficient and involve too

much redundant information when the channel is good. If, however, the coding rate

is fixed at a high value but the channel introduces more errors than expected, the

transmitted data may never be received.

The shortcomings of retransmissions and fixed-rate coding for wireless mul-

ticast may be overcome by the use of a random or rateless code. This notion has

recently arisen in the form of fountain codes and random linear network codes.

Fountain codes were invented by Luby in [6] and further developed by Shokrollahi

[7] for the purpose of multicast communication and involve sending random linear

combinations of data packets rather than the original data packets themselves. By

sending a potentially limitless stream of random linear combinations of data packets,

the effective rate of the code is adapted to the needs of each receiving destination

node. In terms of network coding, the new paradigm introduced in [1] for wired mul-

tihop networks requires that bottleneck links in the network be identified as coding

points. The signal variations and mobility introduced in wireless communication

mean that the location of bottleneck links may change and a lack of centralized

control may make it difficult to identify those coding points. As a solution, the

notion of random network coding was introduced in [8], in which random linear

combinations of data are sent through the network. The performance of random

coding for wireless multicast is the primary subject of this dissertation.

To introduce the notion of random coding, we describe the technique of random
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linear coding discussed in [9]. This is the random coding approach we consider

in much of this dissertation. Let s1, s2, . . . , sK denote K data packets awaiting

transmission from a source node in a wireless network. These data packets are

symbols from a finite field Fu, where we refer to u as the alphabet size and assume

throughout that u is a power of two. Equivalently, the data packets s1, s2, . . . , sK

can be viewed as strings of log2 u bits. Random linear coding is performed in the

following manner. A coded packet is randomly generated as

K∑

i=1

aisi (1.1)

where the coefficients ai, i = 1, 2, . . . , K, are generated randomly and uniformly

from the set {0, 1, 2, . . . , u − 1} and
∑

denotes addition in the finite field Fu. We

note at this point that it is possible to generate ai = 0 for all i = 1, 2, . . . , K,

meaning that the coded packet is an all-zero packet and contains no information.

The outcome could lead to inefficiencies, particularly for small values of K where it

is more likely, and would clearly be avoided in a practical system. A coded packet

formed according to (1.1) is the same length as one of the original packets si and can

be transmitted over the channel within the same time period and utilizing the same

bandwidth as one of the data packets si. For each coded packet sent, the coefficients

ai used in generating the packet will be appended to the header of the packet. For

each transmission, the source can generate a new coded packet according to (1.1)

and send it over the channel.

With each coded packet it receives, a destination node collects a u-ary col-

umn of length K in a matrix, where the column consists of the coefficients ai,
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i = 1, 2, . . . , K. If enough coded packets are received, the destination can decode

to recover the original K data packets by solving a system of linear equations, or

equivalently, by Gaussian elimination. We let N denote the number of random

linear combinations needed in order to decode. As the source may generate the

same coded packet twice, or may generate a coded packet that is linearly dependent

on the coded packets already received at the destination, N is a random variable

that must be at least as large as K. Let FK(j) denote the cumulative distribution

function (cdf) of N , or the probability that the number of coded packets needed for

decoding is less than or equal to j. Then FK(j) is the probability that decoding can

be performed if the matrix has at most j columns. Thus

FK(j) = Pr{a random K×j u-ary matrix has rank K}. (1.2)

Note that for j < K the matrix cannot possibly have rank K and FK(j) = 0. For

j ≥ K, we can write an expression for FK(j) following the procedure in [9] by first

counting up the number of K × j non-singular u-ary matrices, which is given by

(uj − 1)(uj − u)(uj − u2) . . . (uj − uK−1). (1.3)

In the product above, each term accounts for a row of the K × j u-ary matrix and

reflects that the row is neither zero, nor equal to any of the previous rows, nor equal

to any linear combination of previous rows. Since the total number of K × j u-ary

matrices is ujK, we obtain

FK(j) =






∏K−1
i=0 (1 − u−j+i) j ≥ K

0 j < K

. (1.4)
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The probability mass function (pmf) of N , or the probability that decoding can

be performed when the destination has received exactly j columns and no fewer, is

given by

fK(j) = FK(j) − FK(j − 1). (1.5)

From (1.4) and (1.5) the expected value of N can be computed, where E[N ] ≥ K.

The ratio E[N ]/K can be expressed as

E[N ]

K
=

K−1∏

i=0

(1 − u−K+i) +
1

K

∞∑

j=K+1

j

(
K−1∏

i=0

(1 − u−j+i) −
K−1∏

i=0

(1 − u−j+1+i)

)
.

We note that E[N ]/K → 1 as K → ∞ (with u fixed) and that E[N ]/K → 1 as

u → ∞ (with K fixed). This means that as either K or u grow large, the random

linear code becomes more efficient in the sense that the number of coded packets

needed for decoding approaches K, the number of original data packets si that are

being transmitted.

In this dissertation, we investigate the performance of random coding for mul-

ticast transmission in a wireless network. Our assumptions regarding the use of

random coding differ from its envisioned use as described in [6, 7] in that we con-

sider a finite time-horizon in which the sender cannot send coded packets indefinitely,

but must eventually move on to transmitting information about other data it wants

to communicate, which is more in line with the use described in [8]. The use of

random coding in this manner allows us to examine the notion of queueing delay

and means that our results are applicable to data as it traverses relay nodes in a

network. Also in contrast to [6, 7], we assume that there is feedback information

available on the channel, so that the destination nodes can signal to the sender when
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they are able to decode.

1.2 Random access

We are interested in the scenario in which multiple transmitting nodes access

a shared channel through the use of random access. Random access is of particular

interest because it is robust to variations in the channel and network topology and

can be implemented without coordination among the transmitting nodes. The form

of random access we consider is a slotted version of Abramson’s ALOHA protocol

[4]. We assume that within the network, there is a common time frame established

among the nodes so that all nodes maintain a common notion of time evolving in

synchronized time slots. In each time slot, if node n has some data to send, it

accesses the channel with probability pn. We can view this protocol as one in which

a transmitting node flips a coin and the outcome of its coin flip determines whether

or not the node will access the channel. The value of pn can be chosen by the node

using information it has collected regarding previous transmissions and the level of

interference those transmissions suffered. Ideally, the value of pn can be adapted

in time to account for varying channel conditions. In this dissertation, we analyze

performance assuming a fixed value of pn, but present results on performance for

any value of pn between zero and one.
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1.3 Performance measures

1.3.1 Throughput

A primary measure for evaluating the performance of a network is the rate

at which data can be communicated. For a point-to-point communication channel,

the data rate is typically described in terms of the bits per second that can be sent.

In this dissertation, we assume that data travels in the form of packets and that

a common time reference is established among the users. As such we describe the

data rate in terms of packets or bits per transmission or timeslot.

We consider three different theoretical frameworks leading to three different

notions of data rate; each of these notions has a different meaning and applicability.

The measures of data rate relate to different perspectives taken by the research

community: from the Networking perspective we consider stable throughput and

saturated throughput and from the Information-theoretic perspective we examine

the Shannon capacity. For the stable throughput, we consider a system in which

data packets randomly arrive at source nodes, packets are queued in infinite-capacity

buffers when the sources are busy, and the goal is to successfully transmit the packets

while ensuring that the queues at the sources remain stable. On the other hand, the

saturated throughput assumes that the sources always have packets to transmit and

simply aim to successfully transmit the packets at the highest rate possible. Finally,

the Shannon capacity looks at an asymptotic regime in which data is coded before

transmission over the channel and the probability of error at the destination must

approach zero as the number of channel uses grows. Through examining these three
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measures, our work sheds light on the relation between the stable throughput, the

saturated throughput, and the Shannon capacity.

Of particular interest, there is evidence that these three very different notions

of data rate may be equivalent, and this possibility is explored in our work. As a

simple illustration, consider an erasure channel where the parameter ǫ denotes the

probability with which a transmission on the channel is lost; with probability 1 − ǫ

the transmission is received without error. The Shannon capacity of the erasure

channel is 1 − ǫ bits per channel use for a channel with binary inputs and outputs.

If feedback is available to notify the sender when a channel input is erased, then

the capacity can be achieved by retransmitting lost inputs [10]. Alternatively, the

erasure channel can be viewed in a networking framework. Suppose we view the

channel input as a packet of fixed length that arrives at a random time to a sender

and is stored in an infinite-capacity buffer while awaiting its turn to be sent over

the channel. The packets in the buffer form a queue that is emptied in first-in-

first-out (FIFO) order. A retransmission protocol provides a form of redundancy to

ensure that the packet is eventually received at the output of the erasure channel.

If we assume that packets arrive to the sender according to a Bernoulli process and

that feedback is available to notify the sender of lost packets, then the buffer at the

sender forms a discrete-time M/M/1 queue [11] with maximum departure rate 1−ǫ.

The stable throughput is 1 − ǫ, which is identical to the Shannon capacity. In this

dissertation we often model the wireless channel as an erasure channel (generalized

to account for interference and multiple users) and explore the relation between

these different notions of throughput.
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1.3.2 Multicast throughput

For unicast transmission, the throughput in packets per transmission clearly

indicates the data rate between one sender and one receiver. For multicast transmis-

sion, the notion of throughput may have different meanings depending on whether it

expresses the data rate from the perspective of the transmitter or from the perspec-

tive of a receiver. From the perspective of the transmitter, a multicast throughput

of one packet per slot would indicate that the transmitter can reliability communi-

cate one packet per slot to all intended receivers, and implies that the application

requires that all intended receivers must receive the data. From the perspective of

a receiver, a multicast throughput of one packet per slot would indicate the data

rate to one receiver and another receiver may obtain an additional throughput for

receiving the same data. The receiver-oriented notion of multicast throughput im-

plies that it is not necessarily required for all destination nodes to receive the data,

but more throughput “credit” is awarded for each destination that does. We explore

both of these notions of multicast throughput in our work.

1.3.3 Delay

In addition to the throughput, we can also measure the performance of the

wireless network in terms of the amount of time (in seconds or time slots) needed

for data to be communicated. This notion of delay is closely linked with the data

rate of the network. It includes the time that elapses between the first attempt

at transmitting the packet over the channel and the instant at which successful
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reception is acknowledged at the receiver. In addition, in our work we place emphasis

in understanding the queueing delay, or the time that elapses between the generation

or arrival of data at the transmitter and the instant at which the transmitter becomes

available to transmit or serve that data.

1.4 Outline of the thesis

The work we present in this dissertation is organized as follows. In Chapter 2

we analyze the stable throughput, the saturated throughput, and the Shannon ca-

pacity of a random access multicast system consisting of finitely many nodes, each

of which can act either as a source node or as a destination node. We consider a

scenario in which the destination nodes are common to all source nodes, and we

carry out a performance analysis of both a retransmission protocol and random

linear coding. Chapter 3 deals with the saturated throughput of a wireless ran-

dom access network of arbitrary size and connection topology in which each node

can act as a transmitter or a receiver and can serve multiple multicast flows. We

consider both transmitter-oriented (or guaranteed) and receiver-oriented (or non-

guaranteed) multicast and present distributed schemes for transmitters to choose

their random access transmission probabilities pn. In Chapter 4 we explore the

queueing delay associated with random linear coding of packets that randomly ar-

rive to a source node. We present a coding scheme that adapts to the amount of

traffic at the source and analyze its performance. Finally, in Chapter 5, we revisit

the transmitter-oriented multicast throughput and characterize performance with

12



regard to the packet length, random coding overhead, and time-varying nature of

the wireless channel. A summary of our contributions and a description of future

work are included in Chapter 6.
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Chapter 2

Throughput and capacity regions in random access multicast

2.1 Background

In previous work, the throughput and capacity regions for unicast transmission

in random access networks have been analyzed and compared. The finite-user,

buffered random access problem was first formulated by Tsybakov and Mikhailov

[12], who provided a sufficient condition for stability and thus a lower bound on

the maximum stable throughput. The problem they considered was a system in

which finitely many source nodes with infinite-capacity buffers (forming queues)

randomly access a shared channel to send messages to a central station. Feedback

was used to notify the source nodes of failed transmissions and a retransmission

scheme was used to ensure eventual successful reception at the central station. The

users were assumed to access a collision channel, in which transmission by more

than one source results in the loss of all transmitted packets with probability 1.

This collision channel model is equivalent to an erasure channel, where for user

n, 1 − ǫ = pn

∏
j 6=n(1 − pj). Further progress on this problem was made in [13],

in which stochastic dominance arguments were explicitly introduced to find the

stable throughput region for a system with 2 source nodes, and in [14], wherein a

stable throughput region based on the joint queue statistics was found for 3 source

nodes. An exact stability result for arbitrarily (but finitely) many users has not been
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found, but bounds have been obtained in [14] and [15]. Recently, the authors of [16]

improved upon the collision channel model used in previous works and studied a

channel with multipacket reception (MPR) capability. They showed that the stable

throughput region transfers from a non-convex region under the collision channel

model to a convex region bounded by straight lines for a channel with MPR.

The Shannon capacity region of a random access system was considered in

[17] and [18], which both obtained the capacity region for finitely many source

nodes transmitting to a central station under the collision channel model. That

capacity result can be viewed as the capacity of an asynchronous multiple access

channel, which was obtained in [19] and [20]. The more recent contribution of [21]

shows explicitly how the random access capacity region in [17, 18] is obtained from

the results in [19, 20], in addition to analyzing the capacity for a channel in which

packets involved in a collision can be recovered.

The relation between the stable throughput, the saturated throughput, and

the Shannon capacity regions have been explored in previous works on unicast trans-

mission in random access networks. It was noted by Massey and Mathys [17] and

Rao and Ephremides [13] that the stable throughput and Shannon capacity regions

coincide for the special cases of two source nodes and infinitely-many source nodes.

This observation is surprising in that it suggests that the bursty nature of arriving

packets, which is captured in the stability problem but not in the capacity problem,

is immaterial in determining the limits on the rate of reliable communication. It

has been conjectured that for finitely-many source nodes transmitting to a central

station, the stable throughput region (which is an unsolved problem) coincides with
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both the saturated throughput and capacity regions. This conjecture was explored

in [22], in which it was shown that the stable throughput coincides with the capacity

in a special case involving correlated arrivals of packets at the source nodes. Re-

cently, further progress was made in [23], which explored transmission over a channel

with MPR. That work showed that for finitely-many source nodes transmitting to

a central station, the saturated throughput and capacity regions coincide.

In this chapter we explore the stable throughput, saturated throughput, and

capacity regions of random access for multicast transmission. We first consider

a small network consisting of two source nodes and two destination nodes and a

channel model that allows for MPR. After characterizing the capacity region of this

system, we contrast the throughput (stable throughput and saturated throughput)

for two different transmission schemes: a retransmission scheme and random linear

coding. Next, we consider a network consisting of N source nodes and M destination

nodes. We provide inner and outer bounds on the stable throughput region and an

exact result on the saturated throughput, all in the context of a retransmission

scheme.

2.2 A network of two sources and two destinations

The system of two source nodes, indexed by n, and two destination nodes,

indexed by m, that we consider is shown in Fig. 2.1. The data generated at source

n = 1 is assumed independent of the data generated at source n = 2. Time is

slotted; one time slot corresponds to the amount of time needed to transmit a single
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m2

m1

n2

n1

p2

p1

Figure 2.1: Two source nodes randomly access the channel to multicast to two desti-
nation nodes. When both sources transmit, which happens in a slot with probability
p1p2, the reception probabilities are as shown above.

fixed-length packet over the shared channel. In each time slot, if source n has a

packet to transmit, then we refer to the source as being backlogged; otherwise the

source is empty. A backlogged source transmits in a slot with probability pn. We

refer to pn as the transmission probability; it encapsulates random access to the

channel. We assume the value of pn to be fixed in time. (I.e., we do not assume

retransmission control, in which pn is varied over time according to the history of

successful transmissions.)

The channel model we consider is similar to the model used in [16]. A trans-

mitted packet is received without error with a certain probability. Otherwise, the

packet is lost and cannot be recovered. We assume that the channels between differ-

ent source-destination pairs are independent. We introduce the following reception

probabilities for sources n = 1, 2 and destinations m = 1, 2.

q
(m)
n|n = Pr{packet from n is received at m| only n transmits} (2.1)

q
(m)
n|1,2 = Pr{packet from n is received at m| both sources transmit} (2.2)

We assume throughout that interference cannot increase the reception probability

on the channel, i.e., q
(m)
n|n > q

(m)
n|1,2. The reception probabilities inherently account

17



for interference and also allow for multipacket reception (MPR). Note that these

probabilities can capture the effects of fading on the wireless channel by setting

them equal to the probability that a fading signal, represented by a random variable,

exceeds a certain signal to interference plus noise (SINR) threshold. The collision

channel model used in a number of previous works is given by q
(m)
n|n = 1, q

(m)
n|1,2 = 0.

2.2.1 Shannon capacity region

We now describe the system shown in Fig. 2.1 in an information-theoretic

framework in order to characterize the Shannon capacity region. We carry this

out in two steps: we first characterize the capacity of a general discrete memoryless

channel, and then evaluate the result to determine the capacity of the random access

system with the channel model described in Eqns. 2.1 and 2.2.

The discrete memoryless channel we consider consists of discrete alphabets

X1,X2,Y1, and Y2 and transition probability matrix W (y1, y2|x1, x2). The chan-

nel can be decomposed into two multiple access channels, each corresponding to a

destination node and defined as follows.

W1(y1|x1, x2) =
∑

y2∈Y2

W (y1, y2|x1, x2) (2.3)

W2(y2|x1, x2) =
∑

y1∈Y1

W (y1, y2|x1, x2) (2.4)

We assume that there is no feedback available on the channel. Source node n

generates a sequence of messages J1
n, J2

n, . . . where the tth message J t
n takes values

from the message set {1, 2, . . . , 2NRn}. Here N denotes the blocklength and Rn

the rate of source n. The messages are chosen uniformly from {1, 2, . . . , 2NRn} and
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independently over n. The encoding function fn at source n is given by the mapping

fn : {1, 2, . . . , 2NRn} → XN
n , n = 1, 2. (2.5)

The encoder output consists of a sequence of codewords Xn(J t
n), t ≥ 1. The system

is asynchronous in the following sense. Each source and each destination maintain a

clock. Let Snm denote the amount of time that the clock at source n is running ahead

of the clock at destination m. The Snm are assumed to be integers, meaning that

time is discrete and transmissions are symbol-synchronous. The time at each clock

can be divided into periods of length N corresponding to the length of a codeword.

Let Dnm denote the offset between the start of periods at source n and destination

m, where 0 ≤ Dnm ≤ N −1. We assume that Dnm are uniform over [0, 1, . . . , N −1]

for all N . The codeword Xn(J1
n) is sent at time 0 on the clock at source n.

A sequence of channel outputs are observed at each destination, where the

outputs at destination m each take values from the alphabet Ym. The decoder

operates on a sequence of N(T+1) channel outputs to form an estimate of a sequence

of T + 1 messages. A decoder is defined as follows.

φnm : YN(T+1)
m → {1, 2, . . . , 2NRn}T+1, n, m = 1, 2 (2.6)

where {1, 2, . . . , 2NRn}T+1 denotes the (T+1)-fold Cartesian product of {1, 2, . . . , 2NRn}.

Since the decoder must synchronize on a particular source n, the decoding function

is defined separately for each source. The output of the decoder is a sequence of

message estimates Ĵ1
nm, Ĵ2

nm, . . . , ĴT+1
nm , where Ĵ t

nm denotes the estimate at destina-

tion m of the tth message sent by source n. The error criterion we consider is the
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average probability of error P t
e defined as

P t
e = Pr

{
⋃

m

⋃

n

{J t
n 6= Ĵ t

nm}
}

. (2.7)

The rate pair (R1, R2) is achievable if there exists encoding functions (f1, f2) and

decoding functions (φ11, φ12, φ21, φ22) such that P t
e → 0 for all t as N → ∞. The

capacity region is the set of all achievable rate pairs.

In order to establish the capacity region, we first present a lemma that deals

with the error probability for a compound channel. Let P t
m denote the error proba-

bility for the tth message from the sources at receiver m.

P t
m , Pr

{
⋃

n

{J t
n 6= Ĵ t

nm}
}

. (2.8)

The following lemma provides a condition equivalent to P t
e → 0 and is used to

establish the capacity region.

Lemma 1. The average error P t
e → 0 if and only if maxm P t

m → 0.

Proof. The average error P t
e can be upper bounded by the union bound as follows:

P t
e ≤ P t

1 + P t
2 ≤ 2 maxm P t

m. A similar lower bound also holds, namely P t
e ≥

maxm P t
m. Thus maxm P t

m ≤ P t
e ≤ 2 maxm P t

m and the result follows.

The model we consider here is a compound version [24] of the totally asyn-

chronous multiple access channel treated in [19] and [20]. As shown in those works,

the asynchrony in the system results in the lack of a convex hull operation over the

achievable rates, and this holds as well in our compound version of the problem.

The capacity region is presented below.
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Theorem 2. The capacity region of the asynchronous compound multiple access

channel is the closure of all rate points (R1, R2) that lie in the region

⋂

m





(R1, R2) :

R1 < I(X1; Ym|X2)

R2 < I(X2; Ym|X1)

R1 + R2 < I(X1, X2; Ym)





for some product distribution P (x1)P (x2)W .

Proof. Achievability for our system is shown by first establishing achievability for

the MAC Wm. This is shown in [20] and [19]; the approach presented in [20] is

summarized here. Each codeword symbol in the codebook for source n is gener-

ated according to the distribution P (xn), independently over codeword symbols and

independently over messages. The following two properties are assumed.

(I) The codewords xn(1) and xn(2) are reserved for use as preambles. A preamble

is sent after every sequence of T messages and xn(1) and xn(2) are used

as preambles in an alternating fashion. In [20] it is shown that by using

the preamble, the receiver can synchronize on codeword boundaries with

arbitrarily small probability of synchronization error.

(II) In a sequence of T + 1 messages (including a preamble), no messages are

repeated. As a result, any two disjoint subsets of N(T +1) codeword symbols

(corresponding to T + 1 messages) are independent. For T ≪ 2NRn the

resulting loss in rate is negligible.

By observing the channel outputs, the decoder φ1m can detect the preambles x1(1)

and x1(2) to determine that the output symbols in between correspond to inputs

x1(j
1
1), x1(j

2
1), . . . , x1(j

T
1 ). Let x+

1 denote the sequence of N(T + 1) symbols corre-
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sponding to x1(j
1
1), x1(j

2
1), . . . , x1(j

T
1 ) augmented by portions of the preambles x1(1)

and x2(2). At the channel output, x+
1 will overlap with a sequence x+

2 consisting of

N(T + 1) symbols input by source 2, including N preamble symbols. Let y
N(T+1)
m

denote the output sequences corresponding to x+
1 and x+

2 at destination m. The

decoder φ1m outputs the unique sequence of messages ĵ1
1m, ĵ2

1m, . . . , ĵT
1m that lies in

the set of typical (x+
1 , x+

2 , y
N(T+1)
m ) sequences. With this approach it is shown in [20]

that Pr{J t
1 6= J t

1m} → 0 for all t. A similar technique can be used by decoder φ2m to

show that Pr{J t
2 6= J t

2m} → 0. Then by the union bound, P t
m → 0 for all t. Finally,

if the rate pair (R1, R2) lies in the intersection of the achievable rates for MACs W1

and W2, then maxm P t
m → 0 and thus P t

e → 0 for all t by Lemma 1.

The converse for the MAC Wm is shown in [20] and [19] by using Fano’s in-

equality, the data processing inequality, and the concavity of mutual information.

Then maxm P t
m → 0 implies that the rate pair (R1, R2) must lie within the intersec-

tion of the capacity regions of W1 and W2.

We now turn our attention to a random access system and apply Theorem 2 to

determine the capacity region of the system. Each codeword symbol corresponds to

a packet transmitted over the channel shown in Figure 2.1. We define the common

input alphabet as X = {0, 1, 2, . . . , 2b}, where Xn ∈ X , for n = 1, 2. A channel input

Xn can be either a packet of length b bits (an information-bearing symbol) or an idle

symbol. The 0 symbol is the idle symbol and we let Pr{Xn = 0} = 1−pn according

to the random access transmission probability. We assume a uniform distribution

on the information-bearing codeword symbols, Pr{Xn = x} = pn/2b, x = 1, 2, . . . 2b,
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meaning that a packet is equally likely to be any sequence of b bits. The channel

output at receiver m is given by Ym = (Y1m, Y2m) ∈ X ′ ×X ′ where Ynm denotes the

packet from source n and X ′ = X ∪ ∆. The ∆ symbol denotes a packet in error.

The introduction of the idle symbol 0 results in additional protocol or timing

information being transmitted over the channel. The information content of this idle

symbol is hb(pn), n = 1, 2, where hb denotes the binary entropy function. The term

hb(pn) appears in the proof provided below and represents the protocol information

that is studied by Gallager in [25]. Because we would like our capacity result to

represent the rate of reliable communication of data packets, we will aim to exclude

this timing information. We do so by considering capacity in packets/slot in the

limit as b → ∞, meaning that the data packets grow large and the fraction of

timing information transmitted approaches 0. The timing information is excluded in

previous work on random access capacity. In [17], prior to the start of transmission,

a “protocol sequence” indicating the occurrence of idle slots is generated at the

source and communicated to the receiver, effectively eliminating timing information.

In [21], the capacity for b → ∞ is presented. The capacity of the random access

multicast system is given in the following Corollary to Theorem 2.

Corollary 3. The capacity region of the random access system with two sources and

two destinations is the closure of (R1, R2) for which

R1 < min
m=1,2

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

}

R2 < min
m=1,2

{
(1 − p1)p2q

(m)
2|2 + p1p2q

(m)
2|1,2

}

for some (p1, p2) ∈ [0, 1]2. The rate Rn is expressed in packets/slot.
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Proof. The result follows by applying the assumptions about the input distribution

and channel reception probabilities to the expressions given in Theorem 2. We first

solve for I(X1; Ym|X2) by conditioning on X2 to obtain

I(X1; Ym|X2) = (1 − p2)I(X1; Ym|X2 = 0) + p2I(X1; Ym|X2 6= 0). (2.9)

An expression for I(X1; Ym|X2 = 0) can be found from the following sequence of

equalities.

I(X1; Ym|X2 = 0) = H(X1|X2 = 0) − H(X1|Ym, X2 = 0)

(a)
= H(X1) − Pr(Y1m = ∆|X2 = 0) log2 2b

= −(1 − p1) log2(1 − p1) − p1 log2(p1/2b) − p1(1 − q
(m)
1|1 )b

= hb(p1) + p1 log2 2b − p1b + p1q
(m)
1|1 b

= hb(p1) + p1q
(m)
1|1 b (2.10)

where (a) holds since X2 is independent of X1 and since H(X1|Y1m 6= ∆, X2 = 0) =

0. For (X1; Ym|X2 6= 0) we have

I(X1; Ym|X2 6= 0) = H(X1|X2 6= 0) − H(X1|Ym, X2 6= 0)

= H(X1) − Pr(Y1m = ∆|X2 6= 0) log2 2b

= −(1 − p1) log2(1 − p1) − p1 log2(p1/2b) − p1(1 − q
(m)
1|1,2)b

= hb(p1) + p1 log2 2b − p1b + p1q
(m)
1|1,2b

= hb(p1) + p1q
(m)
1|1,2b. (2.11)

Combining expressions (2.10) and (2.11) results in

I(X1; Ym|X2) = hb(p1) + bp1(1 − p2)q
(m)
1|1 + bp1p2q

(m)
1|1,2 bits/transmission. (2.12)
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Since one packet corresponds to b bits, we divide by b to obtain a result in units of

packets per slot. We then let b → ∞ to obtain

I(X1; Ym|X2) = p1(1 − p2)q
(m)
1|1 + p1p2q

(m)
1|1,2 packets/slot. (2.13)

By following a similar approach, we can show that I(X2; Ym|X1) is given as follows.

I(X2; Ym|X1) = (1 − p1)p2q
(m)
2|2 + p1p2q

(m)
2|1,2 packets/slot (2.14)

The bound on the sum rate can be found by breaking up I(X1, X2; Ym) into four

terms.

I(X1, X2; Ym) = H(X1, X2) − H(X1, X2|Ym)

= H(X1|X2) + H(X2) − H(X1|Ym, X2) − H(X2|Ym)

= H(X1) + H(X2) − H(X1|Y1m, X2) − H(X2|Y1m, Y2m)(2.15)

For n = 1, 2, the terms H(Xn) can be expressed as

H(Xn) = −(1 − pn) log2(1 − pn) − pn log2(pn/2b)

= hb(pn) + pn log2 2b

= hb(pn) + pnb. (2.16)
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The last two terms in (2.15) can be found in the following manner.

H(X1|Y1m, X2) = H(X1|Y1m = ∆, X2)Pr(Y1m = ∆|X2)

= (1 − p2)H(X1|Y1m = ∆, X2 = 0)Pr(Y1m = ∆|X2 = 0)

+p2H(X1|Y1m = ∆, X2 6= 0)Pr(Y1m = ∆|X2 6= 0)

= (1 − p2) log2 2bPr(Y1m = ∆|X2 = 0) + p2 log2 2bPr(Y1m = ∆|X2 6= 0)

= b(1 − p2)p1(1 − q
(m)
1|1 ) + bp2p1(1 − q

(m)
1|1,2)

= bp1 − bp1(1 − p2)q
(m)
1|1 − bp1p2q

(m)
1|1,2 (2.17)

H(X2|Y1m, Y2m) = (1 − p1)H(X2|Y1m = 0, Y2m) + p1H(X2|Y1m 6= 0, Y2m)

= (1 − p1)H(X2|Y1m = 0, Y2m = ∆)Pr(Y2m = ∆|Y1m = 0)

+p1H(X2|Y1m 6= 0, Y2m = ∆)Pr(Y2m = ∆|Y1m 6= 0)

= (1 − p1) log2 2bp2(1 − q
(m)
2|2 ) + p1 log2 2bp2(1 − q

(m)
2|1,2)

= bp2 − b(1 − p1)p2q
(m)
2|2 − bp1p2q

(m)
2|1,2 (2.18)

By substituting (2.16), (2.17), and (2.18) in (2.15), dividing by b and taking b → ∞,

we obtain

I(X1, X2; Ym) = p1(1− p2)q
(m)
1|1 + p1p2q

(m)
1|1,2 + (1− p1)p2q

(m)
2|2 + p1p2q

(m)
2|1,2 packets/slot.

(2.19)

Since I(X1, X2; Ym) = I(X1; Ym|X2) + I(X2; Ym|X1), the bound on the sum rate is

superfluous in terms of describing the capacity region. The result in Corollary 3

follows.
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2.2.2 Throughput regions

In this section we treat the system shown in Fig. 2.1 as a network of queues

and state the stable and saturated throughput regions of the system for two dif-

ferent transmission protocols: a retransmission protocol and random linear coding.

We first describe the derivation of the stable and saturated throughput regions for

random access, and the relation between them. This formulation is a generalization

of the formulation provided in previous work on unicast transmission.

The model we consider is as follows. Packets arrive to source n according to

a Bernoulli process with rate λn, n = 1, 2 packets per slot. The arrival process is

independent from source to source and independent, identically distributed (i.i.d.)

over slots. Packets that are not immediately transmitted are stored in an infinite

buffer maintained at each source. Transmissions occur according to the random

access protocol with source n transmitting with probability pn when it is backlogged.

If a source is empty in a given slot, it does not access the channel. Each source-

destination pair is assumed to maintain an orthogonal feedback channel so that

instantaneous and error-free acknowledgements can be sent from the destinations to

the sources.

Let Qn(k) denote the length of the queue at the nth source node at the begin-

ning of the kth slot. We refer to the system shown in Fig. 2.1 as the original system

and denote it S. The evolution of the queue in S is expressed as follows.

Qn(k + 1) = (Qn(k) − Bn(k))+ + An(k), (2.20)

where x+ = x if x ≥ 0, and 0 otherwise. In the above equation, An(k) denotes
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the arrivals to source n, where E[An(k)] = λn, ∀k and Bn(k) denotes completed

services (or departures) from n. Thus Bn(k) takes value 1 if a packet from source n

completes service in slot k. We introduce the service rate µn , limk→∞ Pr{Bn(k)}

as the probability that a packet completes service in the steady-state.

The vector of queue lengths forms a two-dimensional, irreducible, aperiodic

Markov chain Q(k) = (Q1(k), Q2(k)). The system is stable if, for x ∈ N
2

lim
x→∞

lim
k→∞

Pr{Q(k) < x} = 1. (2.21)

For our Markov chain Q(k), stability is equivalent to positive recurrence of the

Markov chain. For a given transmission protocol, we define the stable throughput

region of the system as the set of all arrival rates (λ1, λ2) for which there exists a

set of transmission probabilities (p1, p2) such that the system is stable. A primary

tool used in our work is Loynes’ result [26], which tells us that if An(k) and Bn(k)

are nonnegative, finite, and strictly stationary, then source n is stable if and only if

λn < µn.

The difficulty in finding the stable throughput region for our system S (and

for any buffered random access system) arises from the interaction of the queues:

the service rate µn varies depending on whether the other source is empty or back-

logged and can create interference on the channel. To overcome this difficulty, the

technique provided in [13] of introducing a dominant system can be used to de-

couple the sources. Let S [1] denote a system which behaves exactly like system S

except that both sources continue to transmit “dummy” packets when empty. The

dummy packets do not affect the information-carrying ability of the source, but
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their transmission results in a decoupling of the queues. In the dominant system

S [1], all sources behave as if they are backlogged, the probability of interference from

other sources is known according to the pn values, and we can easily write down the

service rates µ
[1]
n . Let Q

[1]
n denote the length of the queue at source n in system S [1].

It can be shown [12] that if µ
[1]
n ≤ µn then ∀x ∈ N,

Pr{Q[1]
n > x} ≥ Pr{Qn > x}.

In other words, the length of the queue in S [1] is never shorter than in S, or Q
[1]
n

stochastically dominates Qn. If we can find the conditions for stability in S [1], then

stability in S is implied. Thus, stability in the dominant system is a sufficient

condition for stability in the original system.

Let µnb denote the service rate at source n when the other source is backlogged

and µne the service rate when the other source is empty. Using the dominant systems

approach, the stable throughput region for a system with two sources can be found

exactly. This region is stated in the following theorem, which is a generalization

of a result in [13]. Note that in the stable throughput region presented below, the

service rates µnb and µne are functions of pn, n = 1, 2 (although not explicitly shown

in these expressions).

Theorem 4. [13] For a network with two sources and two destinations, the stable

throughput region is given by the closure of L(p1, p2) where

L(p1, p2) =
⋃

i=1,2

Li(p1, p2) (2.22)
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and

L1(p1, p2) =





(λ1, λ2) :
λ1 <

λ2

µ2b

µ1b +

(
1 − λ2

µ2b

)
µ1e

λ2 < µ2b





L2(p1, p2) =





(λ1, λ2) :

λ1 < µ1b

λ2 <
λ1

µ1b
µ2b +

(
1 − λ1

µ1b

)
µ2e





for some (p1, p2) ∈ [0, 1]2.

In addition to the stable throughput region, we will be interested in the satu-

rated throughput region of the random access system shown in Fig. 2.1. We define

the saturated throughput region of the system as the stable throughput region under

the assumption that all sources are always backlogged. Equivalently, the saturated

throughput region is the closure of the service rates µnb for all pn, n = 1, 2, where

both sources are assumed to be backlogged. The saturated throughput region of the

system S is equivalent to the stable throughput region of the dominant system S [1].

As we noted above, stability in the dominant system S [1] implies stability in the orig-

inal system S, so the saturated throughput region of the system provides an inner

bound to the stable throughput region. Previous work on buffered random access

systems has shown that in all cases in which the stable throughput region has been

found, it is known to coincide with the saturated throughput region. (Note that

for fixed (p1, p2), the stable throughput and saturated throughput regions are not

equivalent; it is when we take the closure over (p1, p2) that the two become equiva-

lent.) This result holds in general (and particularly for our multicast problem), as

stated in the following theorem.
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Theorem 5. For a random access system with two source nodes the stable through-

put region given in Theorem 4 is identical to the saturated throughput region, which

is given by the closure of (λ1, λ2) for which

λ1 < µ1b, λ2 < µ2b (2.23)

for some (p1, p2) ∈ [0, 1]2.

Proof. We show that the boundaries of the stable throughput and saturated through-

put regions, given by the solutions of two constrained optimization problems, are

identical. We express the backlogged service rates µnb as follows.

µ1b = p1f1(p2), µ2b = p2f2(p1). (2.24)

The service rate µnb is given by pn, the probability that source n transmits, times a

function fn(·) of the interference by the other user. The function f1(p2) is function-

ally independent of p1 and decreasing in p2, meaning that interference by source 2

decreases the service rate of source 1. Accordingly, f1(p2) ≤ f1(0). Similarly, f2(p1)

is independent of p2 and decreasing in p1. The empty service rates can then be

expressed as µ1e = p1f1(0) and µ2e = p2f2(0).

We replace λ1 by x and λ2 by y. With this notation in place, the boundary of

the region given in Theorem 4 for fixed (p1, p2) can be written as follows.

x = p1f1(0) − yp1 (f1(0)−f1(p2))

p2f2(p1)
, 0 ≤ y ≤ p2f2(p1) (2.25)

y = p2f2(0) − xp2 (f2(0)−f2(p1))

p1f1(p2)
, 0 ≤ x ≤ p1f1(p2) (2.26)

To find the stable throughput region, we should maximize the expressions in (2.25)

and (2.26) over (p1, p2) and take the intersection of the regions bounded by the
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resulting curves. We note that this is not a standard optimization problem because

the objective function is piece-wise and non-differentiable at a point in its domain.

An example of an analytical solution to this optimization problem is given in [16]

for the single destination case.

The boundary of the saturated throughput region for fixed (p1, p2) can be

written as follows.

x = p1f1(p2), 0 ≤ y ≤ p2f2(p1) (2.27)

y = p2f2(p1), 0 ≤ x ≤ p1f1(p2) (2.28)

The saturated throughput region is found by maximizing the expressions in (2.27)

and (2.28) and taking the intersection of the resulting regions. Consider Eqn. (2.28)

in which we wish to maximize y over (p1, p2). Note that the constraint x ≤ p1f1(p2)

is a lower bound on p1 over which we perform the maximization. Since f2(p1) is

decreasing in p1, the lower bound p1 ≥ x/f1(p2) provides an upper bound on y,

and this upper bound can be achieved when maximizing (2.28) over (p1, p2). Then

maximization of y in (2.28) is equivalent to maximizing y as follows.

y = p2f2(p1)

∣∣∣∣
p1=

x
f1(p2)

, 0 ≤ x ≤ p1f1(p2) (2.29)

To see that this is identical to (2.26), we write f2(p1) as follows.

f2(p1) = f2(0) − (f2(0) − f2(p1)) (2.30)

= f2(0) − p1 (f2(0) − f2(p1))

p1
(2.31)

Then

p2f2(p1)

∣∣∣∣
p1=

x
f1(p2)

= p2f2(0) − xp2 (f2(0)−f2(p1))

p1f1(p2)
(2.32)
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and the maximum y in (2.28) is identical to the maximum y in (2.26). Similarly,

the maximum of x in (2.27) is identical to the maximum of x in (2.25).

We next derive the backlogged and empty service rates µnb and µne for two

different transmission schemes. Together with Theorems 4 and 5, this provides us

a complete characterization of the stable and saturated throughput regions.

2.2.2.1 Retransmissions

In this section we describe the service rates assuming that a retransmission

protocol is used to ensure reliable communication. In the retransmission scheme, as

long as source n has not received feedback acknowledgements from both destinations

m = 1, 2, it will continue to transmit the packet over the channel with probability

pn in each slot. As soon as the source has received acknowledgements from both

destinations, it will remove the packet from its queue and begin transmitting the

next packet waiting in its buffer, if any. Let random variable Tn denote the service

time for source n, given by the total number of slots that transpire before the packet

from source n is successfully received at both destinations. (Note that the service

time includes slots during which the source does not transmit, which happens with

probability 1 − pn). Since each completed service in the retransmission scheme

results in 1 packet being removed from the queue, the average service rate, which

we denote µR
n , is given by µR

n = 1/E[Tn].

We first find the backlogged service rates µR
nb. Let T

(m)
n denote the number

of slots needed for successful reception of a packet from source n at destination m,

33



m = 1, 2. The T
(m)
n are geometrically distributed according to the transmission

probabilities pn and reception probabilities q
(m)
n|n , q

(m)
n|1,2. We introduce the following

notation. Let φn denote the probability of successful reception of the packet from

source n at destination 1 given that source n transmits and that both sources are

backlogged. Similarly, σn denotes the probability of successful reception at desti-

nation 2 given that both sources are backlogged and that source n transmits. For

instance, φ1 and σ1 are given by

φ1 = p2q
(1)
1|1 + p2q

(1)
1|1,2 (2.33)

σ1 = p2q
(2)
1|1 + p2q

(2)
1|1,2 (2.34)

where pn = 1 − pn. When source 2 is backlogged, T
(1)
1 is geometrically distributed

with parameter p1φ1 and T
(2)
1 is geometrically distributed with parameter p1σ1.

The total service time for source 1 when source 2 is backlogged will be given by the

maximum of the service times to each destination,

T1 ∼ max
m

T
(m)
1 . (2.35)

Similarly, when source 1 is backlogged, the service time for source 2 is given by

T2 ∼ max
m

T
(m)
2 , (2.36)

where

T
(1)
2 ∼ geom (p2φ2) , T

(2)
2 ∼ geom (p2σ2) . (2.37)

The expected maximum value E[Tn] can be readily found and (after some algebra)

the backlogged service rates are given by

µR
nb =

pnφnσn(φn + σn − τn)

(φn + σn)(φn + σn − τn) − φnσn
(2.38)
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where τn denotes the probability that a packet sent from n is received at both

destinations given that source n transmits, e.g., τ1 = p2q
(1)
1|1q

(2)
1|1 + p2q

(1)
1|1,2q

(2)
1|1,2. The

empty service rates µR
ne can be found directly from µR

nb as

µR
1e = µR

1b|p2=0, µR
2e = µR

2b|p1=0. (2.39)

We now compare the throughput region for the retransmissions scheme to the

Shannon capacity region. We consider the backlogged service rate µR
nb, since, by

Theorem 5, this is the term that bounds both the stable throughput and saturated

throughput regions for source n. The expected service time for source 1 when source

2 is backlogged is bounded as

E[T1] = E[max
m

T
(m)
1 ]

(a)

≥ max
m

E[T
(m)
1 ] (2.40)

(b)
= max

m

{
1

p1(1 − p2)q
(m)
1|1 + p1p2q

(m)
1|1,2

}
(2.41)

=
1

minm

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

} (2.42)

where (a) follows from Jensen’s inequality and (b) follows from the expected value

of a geometrically distributed random variable. Then the backlogged service rate

µR
1b is bounded as

µR
1b =

1

E[T1]
≤ min

m

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

}
(2.43)

and µR
2b can be bounded similarly. Note that the right-hand side of (2.43) is equal

to the bound on the Shannon achievable rate R1 given in Corollary 3. Thus the

Shannon capacity region outer bounds the throughput region for the retransmission

scheme.
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2.2.2.2 Random linear coding

In this section we present two different approaches to analyzing the throughput

region for a transmission scheme in which groups of K packets at the front of the

queue are randomly encoded and transmitted over the channel. By encoded, we

mean that a random linear combination of the K packets is formed, and we refer

to this random linear combination as a coded packet. As described in Chapter

1, a random linear combination is formed by randomly and uniformly generating

a weight ai from a u-ary alphabet for each of the K packets and computing the

weighted sum in the finite field Fu. A new coded packet is formed for each time

slot in which the source transmits. As soon as a destination has received enough

coded packets and is able to decode the original K packets, it does so and sends an

acknowledgement to the source over its feedback channel. Once the source receives

acknowledgements from both destinations, it removes the K packets it has been

encoding and transmitting from its queue and begins encoding and transmission of

the next K packets waiting in its buffer. The stable throughput region for a similar

system with K = 2 is found in [27].

We first analyze the random linear coding scheme by examining the expected

service time. Let T̃n denote the service time for source n, which is the number of

slots that elapse from the transmission of the first coded packet until the source has

received acknowledgements from both destinations. Since each completed service

in the random linear coding scheme results in K packets being removed from the

queue, the average service rate is given by µC
n = K/E[T̃n]. The service time will

36



be a random variable dependent upon the random access transmission probabilities

pn, the reception probabilities q
(m)
n|n and q

(m)
n|1,2, and the number of coded packets

needed to decode. Let N
(m)
n denote the number of coded packets received from

source n at destination m such that m can decode the original K packets. The N
(m)
n

will be identically distributed over n and m since all coded packets are generated

using the same distribution. Additionally, N
(m)
n will be independent over n since

the two sources generate their coded packets independently. However, N
(m)
n will be

correlated over m, since a given source n will generate and transmit the same coded

packets to both destinations m = 1, 2.

Let FK(j) denote the common cumulative distribution function (cdf) of N
(m)
n ,

or the probability that the number of coded packets needed for decoding is less than

or equal to j. Similarly, let fK(j) denote the probability mass function (pmf) of

N
(m)
n , or the probability that decoding can be performed when the destination has

received exactly j columns and no fewer. As described in Chapter 1, the distribution

of N
(m)
n is given by the probability that a random u-ary matrix is full-rank. We have

FK(j) =





∏K−1
i=0 (1 − u−j+i) j ≥ K

0 j < K

(2.44)

and

fK(j) = FK(j) − FK(j − 1). (2.45)

From Eqns. 4.6 and 4.7 the expected value of N
(m)
n can be computed, where
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E[N
(m)
n ] ≥ K. The ratio

E[N
(m)
n ]

K
=

K−1∏

i=0

(1 − u−K+i) +
1

K

∞∑

j=K+1

j

(
K−1∏

i=0

(1 − u−j+i) −
K−1∏

i=0

(1 − u−j+1+i)

)

ց 1 as K → ∞ (2.46)

for all n, m = 1, 2.

With the distribution of N
(m)
n characterized, we can now describe the service

time for random linear coding from source n to destination m, which we denote

T̃
(m)
n . The number of slots needed for the successful reception of each coded packet

will be geometrically distributed and in total N
(m)
n coded packets must be received.

Then T̃
(m)
n can be modeled as the sum of N

(m)
n independent geometrically distributed

random variables.

T̃ (m)
n = g

(m)
n,1 + g

(m)
n,2 + . . . + g

(m)

n,N
(m)
n

(2.47)

In the above expression, g
(m)
n,i , i = 1, 2, . . . , N

(m)
n , will be geometrically distributed

with a parameter that depends on the reception probabilities and on the assumption

of whether the other source is backlogged. For instance, when source 2 is backlogged

g
(m)
1,i ∼ geom

(
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

)
, i = 1, 2, . . . , N

(m)
1 (2.48)

and when source 2 is empty,

g
(m)
1,i ∼ geom

(
p1q

(m)
1|1

)
, i = 1, 2, . . . , N

(m)
1 . (2.49)

The total service time is given as

T̃n = max
m

T̃ (m)
n . (2.50)
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As in the case of random access with retransmissions, we argue that the

throughput region for random access with random linear coding will be outer bounded

by the Shannon capacity region. In the case that source 2 is backlogged, the ex-

pected service time for source 1 is now bounded as

E[T̃1] = E[max
m

T̃
(m)
1 ]

(a)

≥ max
m

E[T̃
(m)
1 ] (2.51)

(b)
= max

m

E[N
(m)
1 ]

p1(1 − p2)q
(m)
1|1 + p1p2q

(m)
1|1,2

(2.52)

(c)
=

E[N
(m)
1 ]

minm

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

} (2.53)

where (a) again follows from Jensen’s inequality, (b) holds since g
(m)
1,i are independent,

identically distributed, and (c) holds since N
(m)
1 is identically distributed over m,

meaning that E[N
(1)
1 ] = E[N

(2)
1 ]. The backlogged service rate µC

1b is bounded as

µC
1b =

K

E[T̃1]
≤ K

E[N
(m)
1 ]

min
m

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

}
(2.54)

≤ min
m

{
p1(1 − p2)q

(m)
1|1 + p1p2q

(m)
1|1,2

}
. (2.55)

Then the Shannon capacity region outer bounds the stable throughput region for

random access with random linear coding.

Unfortunately a difficulty arises in finding the service rates µC
nb and µC

ne in

closed form from E[maxm T̃
(m)
n ]. This difficulty arises for a number of reasons: T̃

(1)
n

and T̃
(2)
n are not independent, and T̃

(m)
n is distributed according to a composite

distribution function, for which the pdf is not easily expressed in closed form. In

fact, even if these two difficulties were to be removed, E[maxm T̃
(m)
n ] cannot be easily

handled. For instance, let us assume that T̃
(1)
n and T̃

(2)
n are independent and that

N
(m)
n = n(m) are deterministic (which means that the pdf is no longer composite).
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In that case, T̃
(m)
n is the sum of n(m) iid geometric random variables, meaning that

T̃
(m)
n follows a negative binomial distribution. Let us further make the assumption

that q
(1)
n|n = q

(2)
n|n and q

(1)
n|1,2 = q

(2)
n|1,2, which means that T̃

(m)
n are identically distributed

over m. In this very simplified case, E[maxm T̃
(m)
n ] is the expected maximum of two

iid negative binomial random variables. The computation of this expected value is

treated in [28], and the result involves a periodic function which is approximated by

a Fourier series. Thus, even in this very simplified case, we can at best approximate

E[maxm T̃
(m)
n ], and this approximation must be computed numerically.

As an alternative to the analysis presented above, we now develop a Markov

chain model which allows us to find the queueing service rates. For a given source

node, we set up a vector Markov chain with state (i, j, k) corresponding to the

number of linearly independent coded packets that have been received from the

source node. In this model, i represents the number of linearly independent coded

packets that have been received at destination 1, and j represents the number of

linearly independent packets that have been received at destination 2. Since the

coded packets are generated by the same source, the two destinations may have

received some packets in common; the number of those packets which are received

in common and are linearly independent to those received at both destinations

is represented by k, where k ≤ min(i, j). The variable k allows us to track the

correlation between N
(1)
n and N

(2)
n , which was a difficulty in our previous approach

described above. The Markov chain evolves in discrete time over the time slots in

our system model.

The state space of the Markov chain is the three-dimensional discrete set of
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points [0, K]3. The states (K, K, k), 0 ≤ k ≤ K correspond to completion of the

encoding and transmission process of the current group of K packets. From any state

(K, K, k), 0 ≤ k ≤ K, a transition back to the (0, 0, 0) state occurs with probability

one and the source can begin encoding and transmission for the next group of

packets. With the exception of self-transitions and transitions into the (0, 0, 0)

state, transitions in the Markov chain can only occur “upward”, corresponding to the

reception of a new linearly independent packet, and a transition results in an increase

of the indices i, j, k by at most 1, meaning that at most 1 new linearly independent

packet can be received in a slot. We use the notation (i1, j1, k1) → (i2, j2, k2) to

denote the transition from state (i1, j1, k1) to state (i2, j2, k2).

The Markov chain is irreducible and aperiodic, and because it has a finite state

space, a stationary distribution exists. Let πi,j,k denote the steady-state probability

of (i, j, k). The steady-state probabilities are found by solving the set of equations

πi1,j1,k1 =
∑

(i2,j2,k2)

πi2,j2,k2Pr((i2, j2, k2) → (i1, j1, k1)) (2.56)

and

∑

(i,j,k)

πi,j,k = 1. (2.57)

The service rate µ̃n is equal to K times the probability of transitioning into state

(K, K, k), 0 ≤ k ≤ K, from a non-zero state, thus completing transmission to both

destinations. There are only a few ways to transition into (K, K, k) from a non-zero

state. Let Ak, 0 ≤ k ≤ K denote the set of states that are one step away from
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(K, K, k). For k ∈ [0, K − 1] we have

Ak = {(K−1, K, k), (K−1, K, k−1), (K, K−1, k), (K, K−1, k−1), (K−1, K−1, k−1)} ,

(2.58)

and for k = K,

AK = {(K − 1, K, K − 1), (K, K − 1, K − 1), (K − 1, K − 1, K − 1)} . (2.59)

Note that we define AK in this way since the states (K−1, K, K) and (K, K−1, K)

violate k ≤ min(i, j). The service rate for source n is given by

µC
n = K

K∑

k=0

∑

(i,j,k)∈Ak

πi,j,kPr((i, j, k) → (K, K, k)). (2.60)

The transition probabilities (i1, j1, k1) → (i2, j2, k2) for source n can be written

assuming that the other source is either backlogged or empty, leading to the service

rates µC
nb and µC

ne.

As an example, consider the transition (i, j, k) → (i + 1, j, k) in the Markov

chain for source 1 when source 2 is backlogged. Assume first that source two does

not transmit, which happens with probability 1 − p2. Then there are two ways for

the transition (i, j, k) → (i + 1, j, k) to occur. First, destination 2 could receive

no packet, which happens with probability 1 − q
(2)
1|1, while destination 1 receives a

coded packet which is neither an all-zero packet nor equal to any linear combination

of the i packets it has already received, which happens with probability q
(1)
1|1(1 −

uiu−K). Alternatively, both destinations could receive a coded packet, but that

packet is either the all zero packet or some linear combination of the packets that

have been received by destination 2 and not by destination 1. This happens with
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probability q
(1)
1|1q

(2)
1|1(u

j − uk)u−K. The same two alternatives are possible in the

case that source 2 does transmit, which happens with probability p2, except that

the reception probabilities are now given by q
(m)
1|1,2. Then the transition (i, j, k) →

(i + 1, j, k) for source 1 when source 2 is backlogged occurs with probability

p1

[
p2

{
q
(1)
1|1(1 − q

(2)
1|1)(1−uiu−K) + q

(1)
1|1q

(2)
1|1(u

j − uk)u−K
}

+p2

{
q
(1)
1|1,2(1 − q

(2)
1|1,2)(1−uiu−K) + q

(1)
1|1,2q

(2)
1|1,2(u

j − uk)u−K
}]

. (2.61)

The same transition probability can be used when source 2 is empty by setting

p2 = 0. Similar arguments can be used to find all transition probabilities for our

Markov chain model; we have stated those probabilities in Appendix A. Ultimately,

we would like to find closed-form expressions for the service rates µC
nb and µC

ne, but

due to the size of the state-space, this is a difficult task. Instead we have computed

some numerical examples based on the Markov chain model presented above, and

those are presented next.

2.2.3 Numerical examples

We have computed numerical examples of the Shannon capacity region and

the throughput regions for retransmissions and random linear coding. The results

for random linear coding have been computed with the service rates given by Eqn.

2.60. Fig. 2.2 shows results for a “good” channel with relatively large reception

probabilities while Fig. 2.3 shows results for a “poor” channel with smaller re-

ception probabilities. In both figures, we have plotted the throughput for random

linear coding (labeled “RLC”) with various values of K. The results show that the
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Figure 2.2: Closure of the throughput and capacity regions for a channel with
reception probabilities q

(1)
1|1 = q

(2)
2|2 = 0.8, q

(2)
1|1 = q

(1)
2|2 = 0.7, and q

(m)
1|1,2 = q

(m)
2|1,2 =

0.6, m = 1, 2. Random linear coding is carried out over binary symbols (u = 2) and
is labeled RLC.

Shannon capacity region is strictly larger than the throughput regions for both the

retransmissions and random linear coding schemes. Additionally, the throughput

region for random linear coding grows with increasing values of K.

The random linear coding scheme does not necessarily outperform the retrans-

mission scheme. For small values of K, the coding scheme is inefficient in the sense

that the ratio K/E[N
(m)
n ] is small. This inefficiency is largely due to the fact that

an all-zero coded packet can be generated and transmitted; this occurs more often

for small values of K. As the channel improves, the retransmission scheme performs

better relative to random linear coding, since for a “good” channel, packets are more

often received correctly and do not need to be retransmitted.
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Figure 2.3: Closure of the throughput and capacity regions for a channel with
reception probabilities q

(1)
1|1 = q

(2)
2|2 = 0.8, q

(2)
1|1 = q

(1)
2|2 = 0.7, and q

(m)
1|1,2 = q

(m)
2|1,2 =

0.2, m = 1, 2. Random linear coding is carried out over binary symbols (u = 2) and
is labeled RLC.

2.3 A network of N sources and M destinations

We now consider the multicast system shown in Fig. 2.4, where N source

nodes, s1, s2, . . . , sN multicast to M destination nodes. Once again, we assume that

packets arrive to sn according to a Bernoulli process with rate λn, n = 1, 2, . . . , N

packets per slot. The arrival process is independent from source to source and inde-

pendent, identically distributed over slots. Packets that are not immediately trans-

mitted are stored in an infinite buffer maintained at each source. All source nodes

compete in a random fashion for access to the channel in order to transmit a packet

of information to all M destination nodes. When source n has a packet to transmit,

it does so with probability pn in the first available slot. Each packet is intended

for all M destinations. We assume that instantaneous and error-free acknowledge-
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Figure 2.4: N source nodes multicast to M destination nodes.

ments (ACKs) are sent from the destinations and that each source-destination pair

has a dedicated channel for ACKs. We focus now on the retransmission scheme.

If the source has not yet received an ACK from all M destinations, the packet is

retransmitted. We know from the analysis of two sources and two destinations that

retransmissions can be inferior to random linear coding. However, our aim here

is to understand the relationship between the stable throughput and the saturated

throughput for multicast transmission, and in doing so, we focus on one particular

transmission scheme.

The channel model is now a simplified version of the model presented for

the N = 2, M = 2 scenario. We assume that whenever two or more sources

transmit simultaneously, none of the transmissions are successful. Additionally,

we assume that the channel reception probabilities from a source are the same for

all destinations, q
(1)
n|n = q

(2)
n|n = . . . = q

(M)
n|n = qn|n, n = 1 . . . N . We refer to the

destinations as being indistinguishable in this channel model.

The definitions given for two sources and two destinations can be generalized

to this scenario. Once again, Qn(k) denotes the length of the nth queue at the
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beginning of time slot k, An(k) denotes the number of arrivals at sn (which can

be at most one), and Bn(k) denotes the number of departures. The service rate

of sn is denoted µn. The vector of queue lengths forms an N -dimensional Markov

chain Q(k) = (Q1(k), Q2(k), . . . , QN(k)) and the system is stable if the condition in

Eqn. 2.21 holds. The stable throughput region is the set of all arrival rate vectors

λN = (λ1, λ2, . . . , λN) for which there exists a set of transmission probabilities

pN = (p1, p2, . . . , pN) such that the system is stable. We again make use of the

dominant systems approach and refer to the original system, in which none of the

sources transmit when they become empty, as S. The backlogged service rate (i.e.,

the service rate when all other sources are backlogged) is denoted µnb and the empty

service rate (i.e., the service rate when all other sources are empty) is denoted µne.

The saturated throughput region of the network of arbitrary size can be deter-

mined exactly by taking the closure over pN ∈ [0, 1]N of the the backlogged service

rates µnb. As in the case of unicast transmission, the stable throughput region

has not been determined exactly, but instead, we develop inner and outer bounds.

Before doing so, we characterize the service rates for the N -source M-destination

network.

2.3.1 Service rates for retransmissions

We define the receiver-state variable rn for each source n = 1, 2, . . . , N as the

number of destinations that have received the packet that source n is attempting to

transmit, rn ∈ [0, 1, . . . , M − 1]. We do not allow rn to take value M since as soon
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Figure 2.5: Receiver state Markov chain for M indistinguishable destinations.

as all destinations have received the packet, the source will instantaneously revert

back to rn = 0 and either begin serving the next packet in the queue of source n

or become idle if the source is empty. We define the set B as the set of all sources

that are backlogged at the time source n is attempting to transmit the packet at the

front of its queue. Let βn denote that probability that source n accesses the channel

without interference, i.e.,

βn = pn



∏

l∈B\n

pl


 . (2.62)

The service process conditioned on rn can be described by

Pr{Bn = 1|rn = r} = βnqn|n
M−r. (2.63)

We develop a Markov chain model for rn as shown in Fig. 2.5. In this model,

transitions “upward” can occur between all pairs of states, however, transitions

“downward” can only occur between a state and the 0 state. Additionally, each state

has self-transitions. Let P denote the transition matrix for this Markov chain. When

source n accesses the channel without collision, which happens with probability βn,

the transition probability matrix will be a matrix P∗ which depends only on the

reception probabilities qn|n. Otherwise, a self-transition occurs, corresponding to a

transition probability matrix equal to the identity matrix I. Thus, we can describe
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P as the convex combination of two probability matrices,

P = βnP∗ + (1 − βn)I. (2.64)

Let π be the stationary distribution of P∗, π = πP∗. Clearly π will also be

the stationary distribution of P since πP = βnπ + (1 − βn)π. We can solve for π

as follows. Let p∗i,j denote the probability of transition in rn from i to j conditioned

on sn accessing the channel without collision. The transition probabilities are given

as

p∗i,0 =






(1 − qn|n)M + qM
n|n, i = 0

qM−i
n|n , 0 < i < M.

(2.65)

p∗i,j =





(1 − qn|n)M−i, i = j

(
M−i
j−i

)
qj−i
n|n (1 − qn|n)

M−j, i < j

0, i > j.

(2.66)

In order to satisfy πi =
∑

j πjp
∗
i,j we have

πi =
i−1∑

j=0

πjp
∗
i,j + πip

∗
i,i i = 1, 2, . . . , M − 1

=

∑i−1
j=0 πjp

∗
i,j

1 − p∗i,i

=

∑i
k=1 πi−kp

∗
i−k,i

1 − p∗i,i
. (2.67)

Together with
∑M−1

i=0 πi = 1, we can find the steady-state probabilities π, which is

the stationary distribution of P.

Once the steady-state probabilities of the receiver Markov chain are found, the
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average service rate is given as follows.

µn = βn

M−1∑

i=0

πiqn|n
M−i (2.68)

We further define

αn =

M−1∑

i=0

πiqn|n
M−i. (2.69)

Thus the service rate can be represented in simplified form as

µn = βnαn. (2.70)

This equation summarizes the natural relation between our multicast problem and

the unicast collision channel problem [15]. The probability that source n completes

transmission of a packet, given by µn, is equal to βn, the probability that the source

access the channel without collision, times αn, which is the probability that all

destinations receive the packet conditioned on collision-free access to the channel.

In the unicast collision channel problem, we have qn|n = 1 and αn = 1. Thus for

αn = 1 we would expect the stable throughput region for our multicast problem to

coincide with the results in [15] for the unicast collision channel. This is indeed the

case as shown in the following section.

We define the empty and backlogged service rates as follows. When B contains

all N sources, the broadcast service rate will take its minimum value µnb where

µnb = pn

(
∏

l 6=n

pl

)
αn. (2.71)

The maximum value of µn is attained when only source n is backlogged and all other

sources are empty. We denote this service rate by µne

µne = pnαn. (2.72)
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In deriving bounds on the stable throughput region, we will take advantage of the

form of µn as expressed in 2.70 and the fact that µnb ≤ µn ≤ µne.

2.3.2 Bounds on the stable throughput

We follow the methodology outlined in [15] to develop bounds on the stable

throughput region. These results are a generalization of the bounds on the stable

throughput region for unicast given in [15]. To begin, by the dominant systems

argument and Loynes’ result, we can develop loose inner and outer bounds on the

stable throughput region. First, if λn < µnb, then since µnb ≤ µn, queue n must

be stable. Furthermore, if λn < µnb for all n, then the entire system is stable.

Likewise, if λn > µnb for all n, then the system is unstable. This follows since

λn > µnb corresponds to instability of all the queues in dominant system S [1], in

which case all of the queues grow to infinity and the dominant system S [1] becomes

indistinguishable from the original system S [13]. In order to improve upon these

loose bounds, we make use of the stability rank of the queues as introduced in

[15]. Let S [n] denote a dominant system in which sources sn, sn+1, . . . , sN transmit

dummy packets when empty while sources s1, s2, . . . , sn−1 do not. The proof for

the following theorem is the same as in the original [15] with the exception of the

constant αn.

Theorem 6. Given λN and pN, we order the indices of the sources so that

λ1(1 − p1)

α1p1

≤ . . . ≤ λN(1 − pN )

αNpN

. (2.73)

Then in system S and any dominant system S [n], if queue i is stable and j < i, then
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queue j is also stable.

We can find conditions for the stability of the system through the procedure

outlined in [15]. After ordering the sources according to stability rank, we first check

for stability of s1 in system S [1]. If we find that s1 is unstable, we can conclude that

the entire system is unstable. However, if s1 is stable, we proceed by examining s2

in system S [2]. The queue at s1 is known to be stable in S [2] due to the stability

rank. Given stability of s1, we will check whether s2 is stable in S [2]. The procedure

continues in which the stability of sn in system S [n] is verified assuming that sources

s1, s2, . . . , sn−1 are all stable in S [n]. If we can finally conclude that source sN is

stable in system S [N ], then this implies that the original system is stable.

Assuming that sources s1, s2, . . . , sn−1 are all stable, we will develop bounds

on the average service rate µ
[n]
n for source n in system S [n] in order to help determine

whether sn is stable. We can express µ
[n]
n as

µ[n]
n = αnpnP

[n]
E

N∏

j=n+1

(1 − pj), (2.74)

where P
[n]
E is the probability that none of the sources s1, s2, . . . , sn−1 transmit in the

dominant system S [n]. One way to bound µ
[n]
n is by bounding P

[n]
E when expressed

as

P
[n]
E = 1 − Pr{only one of s1, s2, . . . , sn−1 transmits}

− Pr{more than one of s1, s2, . . . , sn−1 transmit}. (2.75)

The bounds on µ
[n]
n result in the following two theorems.
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Theorem 7. Sufficient condition. Given an N source, M destination random access

system with λN, pN and the sources ordered according to the stability rank as in

(2.73), if ∀n, 1 ≤ n ≤ N , λn < Bn, where Bn is defined below, then the system is

stable.

Bn = max(Cn, Dn)

B1 = α1p1

N∏

j=2

(1 − pj)

Cn =
αnpn

1 − pn




N∏

j=n

(1 − pj) −
∑k−1

i=1 λi

min
1≤l≤n−1

αl

− 1

2

n−1∑

j=1

(
λjpj

Bj

N∏

i=n

(1 − pi) −
λj

αj

)


Dn =
αnpn

1 − pn

N∏

j=1

(1 − pj)

(
1 +

n−1∑

i=1

(
1 − λi

Bi

)
pi

1 − pi

)

Proof. Our proof follows the one given in [15]. A sufficient condition for stability

corresponds to bounding µ
[n]
n from below. We obtain two separate lower bounds, Cn

and Dn, and take their maximum to obtain the result. The bound Cn is derived

by bounding the expression in (2.75). Since sources s1, s2, . . . , sn−1 are stable, the

following holds.

Pr{success by one of s1, s2, . . . , sn−1} =

n−1∑

i=1

λi

The above probability is lower bounded by

(
min
1≤l≤n

αl

)
Pr{one of s1, s2, . . . , sn−1 transmits}

N∏

j=n

(1 − pj),

therefore,

Pr{one of s1, s2, . . . , sn−1 transmits} ≤
∑n−1

i=1 λi(
min

1≤l≤n
αl

)∏N
j=n(1 − pj)

. (2.76)
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This provides a bound for the second term in (2.75). For the third term, we

first develop an expression for the probability that a packet sent by sj , where

j ∈ [1, n − 1], collides with at least one other packet sent by the other sources

among s1, s2, . . . , sn−1. In doing so, we define the following sets of sources, where

source sj, j ∈ [1, n − 1], is excluded from the set.

Aj
n−1 = {s1, s2, . . . , sj−1, sj+1, . . . , sn−1}

Aj
N = {s1, s2, . . . , sj−1, sj+1, . . . , sN}

Then

Pr{packet from sj collides with others from Aj
n−1}

= Pr{sj transmits} − Pr{sj transmits, none from Aj
n−1 transmit}

= pjPr{sj backlogged} − Pr{sj transmits, none from Aj
N transmit}

∏N
i=n(1 − pi)

= pj
λj

µ
[n]
j

− λj

αj

∏N
i=n(1 − pi)

.

We next make use of the result shown in [13] that for j < n, µ
[j]
j ≤ µ

[n]
j . Thus, the

third term in (2.75) is upper bounded as follows.

Pr{more than one of s1, s2, . . . , sn−1 transmit} ≤ 1

2

n−1∑

j=1

(
pj

λj

µ
[j]
j

− λj

αj

∏N
i=n(1 − pi)

)

(2.77)

By combining (2.75), (2.76), and (2.77) we obtain the lower bound

P
[n]
E ≥ 1 −

∑n−1
i=1 λi(

min
1≤l≤n

αl

)∏N
j=n(1 − pj)

− 1

2

n−1∑

j=1

(
pj

λj

µ
[j]
j

− λj

αj

∏N
i=n(1 − pi)

)
. (2.78)

Together with (2.74), this provides Cn, our first lower bound on µ
[n]
n .
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The other lower bound on µ
[n]
n is derived using an approach from [13]. We

have adapted it for the multicast problem below and refer to it as Dn.

µ[n]
n ≥ αnpn

1 − pn
Pr{no other source transmits}

+
αnpn

1 − pn

Pr{one of s1, s2, . . . , sn−1 transmits but is empty}

=
αnpn

1 − pn

N∏

j=1

(1 − pj)

(
1 +

n−1∑

i=1

(
1 − λi

µ
[i]
i

)
pi

1 − pi

)
= Dn. (2.79)

Note that we can express the exact value of µ
[1]
1 as µ

[1]
1 = α1p1

∏N
j=2(1 − pj). By

beginning with B1 = µ
[1]
1 we can iterate through n values 2, . . . , N to obtain the

result.

Theorem 8. Necessary condition. Given an N source, M destination random ac-

cess system with λN, pN and the sources ordered according to the stability rank as

in (2.73), a necessary condition for stability of the system is that ∀n,

λn ≤ αnpn

1 − pn




N∏

j=n

(1 − pj) −
∑n−1

i=1 λi

max
1≤l≤n−1

αl


 .

Proof. The proof develops upper bounds on µ
[n]
n and thus on P

[n]
E . The technique is

similar to the one used in finding Cn in the proof of Theorem 7.

2.3.3 Numerical examples

We first observe the effect of the number of destinations on the stable and

saturated throughput regions as shown in Fig. 2.6. These results are for N = 2

sources and M = 2, 5, and 15 destinations. The results are generated using the

approach outlined for N = 2, M = 2 in Theorems 4 and 5 with the exception that
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Figure 2.6: Stable and saturated throughput regions for N=2 sources and (I) 2, (II)
5, and (III) 15 destinations when using the retransmission scheme. The reception
probabilities are q1|1 = 0.7, q2|2 = 0.8.

we use the backlogged and empty service rates for M destinations as given in (2.71)

and (2.72). The results demonstrate that as the number of destinations increases,

the throughput regions diminish in size. Additionally, we observe that the stable

and saturated throughput regions coincide for N = 2 sources and arbitrarily many

destinations, as indicated by Theorem 5.

A collection of results on stability and throughput for various values of N and

M are shown in Tables 2.1 and 2.2. To generate these results, we fix λ1, λ2, . . . , λN−1

and maximize λN over all pN subject to λN < µNb. In Table 2.1 we observe that

as the number of sources N increases, the throughput regions diminish in size. The

values in Table 2.2 demonstrate the effect of the channel reception probabilities and

the number of destinations on the throughput regions. The trends in these results

are the same as those observed for a network of N = 2 sources. Furthermore, in all
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Table 2.1: Saturated throughput (T) and bounds on the stable throughput (S) for a
network of N = 5, 10 sources and M = 10 destinations. The reception probabilities
are qn|n = 0.8 ∀n. The values of λ1, . . . , λN−1 are fixed and λN has been optimized
over all p.

N λ1, . . . , λN−1 S-upper S-lower T

5 [0.010, 0.010, 0.010, 0.010] 0.2078 0.1939 0.1939

[0.070, 0.020, 0.010, 0.010] 0.1051 0.0789 0.0789

[0.035, 0.035, 0.035, 0.035] 0.0751 0.0362 0.0362

[0.050, 0.035, 0.035, 0.035] 0.0602 0.0223 0.0223

10 [0.010, 0.010, . . .0.010] 0.1266 0.0912 0.0912

[0.070, 0.010, . . .0.010] 0.0679 0.0252 0.0252

[0.017, 0.017, . . .0.017] 0.0621 0.0137 0.0137

[0.020, 0.017, . . .0.017] 0.0591 0.0108 0.0108

Table 2.2: Saturated throughput (T) and bounds on the stable throughput (S) for
a network of N = 4 sources and M = 8, 10 destinations. The values λ1, λ2, λ3 are
fixed and λ4 has been optimized over all p.

M q1|1 q2|2 q3|3 q4|4 λ1 λ2 λ3 S-upper S-lower T

8 0.9 0.8 0.7 0.9 0.01 0.01 0.01 0.3648 0.3213 0.3213

0.07 0.02 0.01 0.2125 0.1672 0.1672

0.05 0.05 0.05 0.1363 0.0566 0.0566

0.07 0.05 0.05 0.1090 0.0376 0.0376

8 0.8 0.8 0.8 0.8 0.01 0.01 0.01 0.2527 0.2433 0.2434

0.07 0.02 0.01 0.1294 0.1090 0.1090

0.05 0.05 0.05 0.0784 0.0428 0.0428

0.07 0.05 0.05 0.0587 0.0254 0.0254

10 0.8 0.8 0.8 0.8 0.01 0.01 0.01 0.2329 0.2236 0.2236

0.07 0.02 0.01 0.1153 0.0951 0.0951

0.05 0.05 0.05 0.0651 0.0318 0.0321

0.065 0.05 0.05 0.0503 0.0196 0.0196
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cases, the saturated throughput values fall within the upper and lower bounds on

the stable throughput values. As such, these results support the conjecture that the

stable and saturated throughput regions coincide. Of special note, the lower bound

for the stable throughput and the saturated throughput value appear to be equal

in many cases. This is not entirely true. In the results shown here, the saturated

throughput is in fact slightly larger than the lower bound on the stable throughput,

but the difference is at most 10−6.

2.4 Discussion

In this chapter we explored the stable throughput, saturated throughput, and

information-theoretic capacity regions for a random access system in which nodes

carry out multicast transmissions. The interest in exploring these three different

notions of data rate stems in part from the comparisons drawn between them in

previous work on random access for unicast transmission.

In Section 2.2 we characterized the throughput and capacity regions for a

network with two source nodes and two destination nodes. We showed that in this

small network, the stable throughput and saturated throughput regions coincide.

We also compared two different transmission schemes and showed that if K, the

number of packets drawn from the queue for random linear coding, is sufficiently

large, then random linear coding provides a larger stable throughput region than a

retransmission scheme. Finally, we saw that both the retransmissions and random

linear coding schemes provide a stable throughput region that is outer bounded by
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the Shannon capacity region - the ultimate upper limit on performance.

In Section 2.3 we examined the throughput regions for random access multicast

with N sources and M destinations, where both N and M are arbitrary but finite.

For this arbitrarily large network, the stable throughput region is unknown for

random access unicast; it remains so for multicast as well. However we developed

bounds on the stable throughput region for the retransmission scheme, and our

numerical examples of those bounds support the conjecture that the stable and

saturated throughput regions coincide.

The implications of these results are clear. In order to obtain large data

rates for random access multicast, the use of random linear coding is preferable

to retransmissions - but only if K is sufficiently large. If K is chosen as large as

possible, this will ensure a large rate region, but as a trade-off, will also lead to

a large delay. The queueing delay for random linear coding, including a coding

approach that adapts to traffic load, is explored in Chapter 4. Another implication

of the results of the present chapter is that for multicast transmission, the saturated

throughput region closely approximates (and possibly coincides with) the stable

throughput region. This motivates the narrowing of our discussion in Chapter 3 to

the saturated throughput, which can be characterized exactly.
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Chapter 3

Proportionally fair multicast throughput for a random access

network of general topology

3.1 Background

In this chapter we consider the multicast throughput in a large random access

network with arbitrary connection topology. We focus our analysis on the saturated

throughput, which as shown in Chapter 2, closely approximates and possibly coin-

cides with both the stable throughput and the Shannon capacity for random access

multicast. We propose distributed schemes to assign the random access transmis-

sion probabilities pn in order to optimize a weighted proportional fairness objective

function.

The model we consider is as follows. The network consists of a finite set N

of nodes and each node n serves multiple multicast flows. Source n together with

the one-hop neighbors in a multicast flow emanating from that source constitute a

multicast tree and the set of receivers in the tree is denoted Dnm, where m indexes

the multicast tree. Time is slotted, and in each time slot, node n accesses the channel

with probability pn and chooses to transmit on multicast tree m with probability

pnm. Thus pn =
∑

m pnm. A transmission by node n interferes with reception at all

nodes in a set Nn; interference at the receiver causes destruction of any transmitted
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packets intended for that receiver. Interference is not assumed to be symmetric - for

nodes n, k ∈ N , k ∈ Nn does not necessarily imply that n ∈ Nk. We consider two

different multicast scenarios: non-guaranteed and guaranteed multicast. In both

cases, we characterize the network throughput and find the access probabilities

that maximize the proportional fairness objective. Our results in this chapter are

summarized below.

• Non-guaranteed multicast: We assign a distinct link weight wnmd > 0 for

all destinations d ∈ Dnm. The weighted proportional fairness problem is

max
µI

∑

(n,Dnm,d)

wnmd log µnmd (3.1)

where µnmd is the throughput obtained by receiver d on tree (n, Dnm), i.e.

the number of packets successfully received by receiver d on tree (n, Dnm) per

unit time, and µI = {µnmd} is the vector of µnmd for all links in the network.

This approach is of interest for applications in which it is beneficial, but not

required, for each destination in the multicast tree to receive the transmitted

packets.

• Guaranteed multicast: For applications that require that all destinations

in the multicast tree must receive the transmitted packets, we assign weight

wnm > 0 to the multicast tree (n,Dnm) and are interested in the problem

max
µT

∑

(n,Dnm)

wnm log µnm (3.2)

where µnm is the multicast throughput on tree (n, Dnm), i.e. the number of

packets that have been successfully received by all receivers on the tree per

61



unit time, and µT = {µnm} is the vector of µnm for all trees in the network.

We emphasize that although all receivers need to receive the packet in order to

get credit, they do not have to receive it in the same timeslot. We characterize

µnm for a retransmissions strategy as well as for a random packet (fountain)

coding strategy. We then recast the weighted proportional fairness problem by

introducing the constraint µnm ≤ µnmd, ∀d ∈ Dnm and provide an algorithm

that converges to the optimal set of access probabilities pnm.

Previous work has considered optimal throughput allocation for unicast trans-

mission in random access. In works by Kar et al. [29] and Gupta and Stolyar [30],

the access probabilities are assigned in order to optimize a weighted proportional

fairness objective function of the single-hop throughput. The access probabilities

in this case can be computed using only the link weights in the local neighborhood

(2-hop neighbors). In [31], Wang and Kar propose distributed algorithms to solve

the weighted proportional fairness problem for end-to-end throughput. A family

of objective functions which encapsulates proportional fairness, max-min fairness,

and other types of fairness is presented by Mo and Walrand in [32]; this family of

objective functions is applied to a random access network by Lee et al. in [33].

There has also been previous work in designing efficient multicast transmission

strategies. In [34], Chaporkar and Sarkar propose a strategy in which the number

of receivers that are available for reception is compared to a threshold in order to

determine whether the source should transmit. The same authors study a multicast

transmission strategy aimed at minimizing delay in [35]. In the models considered in
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[34, 35], the ability of a node to receive a transmitted packet is determined by some

exogenous process, i.e., they are given as part of the problem input; in contrast,

in our work, the ability of a node to receive depends on the access probabilities

of neighboring nodes as determined by our algorithm. In [36], Kar et al. study

the end-to-end multicast rate control problem under the assumption that different

nodes in the multicast group can receive at different rates, which is similar to the

non-guaranteed multicast we consider here. The work in [36] treats the multicast

problem for a wireline network, whereas in the present work we consider wireless

transmission.

3.2 Model

An example of the setting we consider in this chapter is shown in Fig. 3.2.

The network consists of a finite set N of nodes. Node n ∈ N has traffic to send to

some subset of its neighbors. Let Dn ⊆ N denote the set of nodes for which n has

some traffic to send. The set Dn consists of subsets Dnm, m ∈ Dn, for which node

n intends to send the same traffic, i.e., node n will multicast traffic to all nodes in

the set Dnm where |Dnm| ≥ 1. This model can account for a mix of unicast and

multicast traffic since unicast would correspond to |Dnm| = 1.

We assume that time is slotted and in each time slot, node n can attempt

transmission of a packet to (all nodes in) one of the sets Dnm. We say that node n

makes a transmission attempt on multicast tree (n,Dnm). (This is a tree of depth
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Figure 3.1: An example of multicasting in a network of general connection topology.

1.) Denote by

T = {(n,Dnm) : n ∈ N ,Dnm ⊆ Dn} (3.3)

the set of all (depth-1) multicast trees in the network. Additionally, let d ∈ Dnm

denote a leaf in the tree (n,Dnm) and (n,Dnm, d) denote the link between n and d

in the tree. The set I denotes the set of all multicast links in the network.

I = {(n,Dnm, d) : n ∈ N ,Dnm ⊆ Dn, d ∈ Dnm} (3.4)

We make the following assumptions with regard to transmissions and the chan-

nel. (I) A node n can transmit on at most one multicast tree (n,Dnm) in each time

slot. (II) A node can receive at most 1 packet per slot. (III) Any transmission at-

tempt by node n will interfere with and destroy any attempt to receive a packet at

any of the nodes in a set Nn where Dn ⊆ Nn and n ∈ Nn. Nodes in the network make

use of a random access strategy as follows. In each time slot, node n transmits with

probability pn. When n transmits, it chooses a particular multicast tree to trans-

mit on from among (n,Dnm),Dnm ⊆ Dn, randomly with probability pnm/pn where

∑
m∈Dn

pnm = pn. We assume throughout that each multicast tree (n,Dnm)) ∈ T

in the network has an infinite backlog of packets awaiting transmission on the tree;

equivalently, we consider the saturated throughput of the network.
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3.3 Non-guaranteed multicast

We first focus our attention on the optimization problem in Eqn. (3.1). Note

that for a transmitting node n and receiving node d, the weight wnmd and throughput

µnmd may take different values depending on the multicast tree (or multicast flow) of

interest, i.e., links (n,Dnm, d) and (n,Dnl, d), m 6= l, are distinct, with wnmd 6= wnld.

For a given link (n,Dnm, d) it can be shown that µnmd is maximized by a policy

in which each packet is transmitted on (n,Dnm) only once. Once the packet has

been transmitted on (n,Dnm), it is removed from memory at n. Then the multicast

transmission process on (n,Dnm) consists of only a single transmission and the

average throughput is given by

µnmd = pnm

∏

k:d∈Nk,k 6=n

(1 − pk). (3.5)

Let Ln denote the set of links (l,Dlk, j), j ∈ Dlk, that either originate at n or are

such that a transmission by n causes interference and destroys that on (l,Dlk, j).

Ln = {(l,Dlk, j) : j ∈ Dlk, j ∈ Nn} (3.6)

Define further L−
n as the set of links in Ln that do not originate at n.

L−
n = {(l,Dlk, j) ∈ Ln : l 6= n} (3.7)

The following theorem describes the optimal throughput allocation for non-guaranteed

multicast. Our analysis is based on techniques used in [30].

Theorem 9. For arbitrary sets of positive real-valued weights {wnmd, (n,Dnm, d) ∈
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I}, there exists a unique set of access probabilities that maximize the function

∑

(n,Dnm,d)∈I

wnmd log µnmd. (3.8)

The optimal probabilities are given by

pnm =

∑
d∈Dnm

wnmd∑
(l,Dlk,j)∈Ln

wlkj
. (3.9)

Proof. The proof is similar to the proof of [30, Theorem 1]. In addition, we note

that

Ln = L−
n

⋃
{
⋃

m∈Dn

{
⋃

d∈Dnm

(n,Dnm, d)

}}
(3.10)

which gives rise to the sum
∑

d∈Dnm
wnmd in the numerator of (3.9).

3.4 Guaranteed multicast

We now address the weighted proportional fairness problem in Eqn. (3.2).

Here µnm denotes the throughput for the tree, or the number of packets per slot

that can be successfully transmitted to all recipients on the tree. The multicast

throughput µnm is in general difficult to describe. The difficulty arises in that

the intended recipients on (n,Dnm) have distinct sets of neighboring, interfering

nodes and as such, the intended recipients have distinct probabilities of successfully

receiving a packet transmitted by n. Node n might employ different strategies to

ensure successful reception ∀d ∈ Dnm, e.g., node n might retransmit the packet on

(n,Dnm) as long as the packet has not been received by some d ∈ Dnm. Regardless

of the transmission strategy that node n employs, due to the non-uniformity of the
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channels on the links (n,Dnm, d), d ∈ Dnm, the process by which node n transmits

on (n,Dnm) to ensure successful reception ∀d ∈ Dnm is a process with memory.

In this section, we characterize µnm for a retransmission strategy as well as for a

random packet (fountain) coding strategy. We then recast the weighted proportional

fairness problem by introducing the constraint µnm ≤ µnmd, ∀d ∈ Dnm and provide

an algorithm that converges to the optimal set of access probabilities pnm.

3.4.1 Throughput: retransmission strategy

We now consider a strategy whereby node n repeatedly transmits a packet

on the multicast tree (n,Dnm) until it has received a feedback acknowledgement

of successful reception of the packet from all intended recipients in the tree, i.e.,

∀d ∈ Dnm. For destination d ∈ Dnm, the probability of successful reception of a

packet in any given time slot is equal to µnmd, the average unicast throughput on

link (n,Dnm, d). The transmission time to destination d, or the number of slots that

elapse from the time a packet is first available for transmission on tree (n,Dnm)

until the end of the slot in which destination d successfully receives the packet,

is a geometric random variable Xd with parameter µnmd, where Pr(Xd > 0) =

1. (Equivalently, Xd is the number of independent coin tosses needed up to and

including the first toss that results in a heads, where heads occurs in each toss

with probability µnmd.) The total transmission time, or the number of slots needed

until all intended recipients on (n,Dnm) receive the packet, has the expected value

E[maxd∈Dnm
Xd]. As noted earlier, the transmission process described above is a
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process with memory. Additionally, the random variables Xd, d ∈ Dnm, may be

correlated since the intended recipients may have overlapping sets of interfering

nodes. In the following lemma, we bound the throughput for this retransmission

strategy.

Lemma 10. The guaranteed multicast throughput µR
nm for the retransmission strat-

egy is bounded as

µmin
nmd

(1 + log |Dnm|)
(

1 + 2

e(1− 1
e|Dnm|)

2

) ≤ µR
nm ≤ µmin

nmd (3.11)

where

µmin
nmd = pnm min

d∈Dnm

∏

k:d∈Nk,k 6=n

(1 − pk) (3.12)

Proof. The result follows by bounding the expected total transmission time E[maxd∈Dnm
Xd]

and by noting that µR
nm = 1/E[maxd∈Dnm

Xd]. The upper bound in (3.11) can be

shown as follows.

E[max
d

Xd]
(a)

≥ max
d

E[Xd] = max
d

1

µnmd
=

1

µmin
nmd

where (a) holds by Jensen’s inequality since the max function is convex. To show

the lower bound in (3.11), let c denote a fixed constant. The following sequence of
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inequalities holds for any c > 1.

E[max
d

Xd] ≤
∞∑

i=1

ic

µmin
nmd

Pr

(
(i−1)c

µmin
nmd

< max
d

Xd≤
ic

µmin
nmd

)

≤
∞∑

i=1

ic

µmin
nmd

Pr

(
(i−1)c

µmin
nmd

< max
d

Xd≤∞
)

(b)

≤ c

µmin
nmd

+
∞∑

i=2

ic

µmin
nmd

∑

d

(1−µnmd)
(i−1)c

µmin
nmd

(c)

≤ c

µmin
nmd

(
1 + |Dnm|

∞∑

i=1

(i + 1)e−ci

)

=
c

µmin
nmd

(
1 +

2|Dnm|e−c − |Dnm|e−2c

(1 − e−c)2

)

where (b) holds by the union bound and by using the fact that Xd is geometrically

distributed and (c) holds since (1 − µnmd)
(i−1)c/µmin

nmd ≤ e−(i−1)cµnmd/µmin
nmd ≤ e−(i−1)c.

By taking c = 1 + log |Dnm| we obtain

E[max
d

Xd]≤
1

µmin
nmd

(1+ log |Dnm|)


1+

2

e
(
1− 1

e|Dnm|

)2




This provides the lower bound in (3.11).

Lemma 10 shows that when using the retransmission strategy, the guaranteed

multicast throughput on tree (n,Dnm) is upper bounded by the (unicast) throughput

to the destination d ∈ Dnm that has the smallest (unicast) throughput among all

destinations in the multicast tree.

3.4.2 Throughput: coded transmission strategy

We now consider a strategy whereby node n performs coding over groups of

packets awaiting transmission on multicast tree (n,Dnm). Let K denote the number
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of packets involved in encoding, or the number of inputs to the encoder. The coding

strategy works as follows. For each transmission attempt on (n,Dnm), the encoder

at node n samples from a degree distribution to obtain a value w between 1 and

K. The encoder then selects w packets randomly and uniformly from among the

K input packets and forms the sum (modulo-2) of these w packets, which is the

output of the encoder. The encoder output is then transmitted on the multicast

tree (n,Dnm). We assume that the coefficients of the random sum are transmitted

in the header of the packet; these coefficients will be needed to perform decoding.

In the next transmission attempt on (n,Dnm), the encoder follows the same

procedure to independently and randomly form a new output for transmission on

the tree. This process continues as the intended recipients on (n,Dnm) collect coded

versions of the K packets. Once a destination d ∈ Dnm has received N encoder

outputs, where N ' K, and is able to decode the original K packets, it sends a

feedback acknowledgement to node n. As soon as node n has collected acknowledge-

ments from all intended recipients in Dnm, the transmission process is complete and

node n can commence encoding and transmission of another group of K packets

awaiting transmission on (n,Dnm). The coding strategy described here is a general

description of Fountain coding.

For an appropriately designed degree distribution, the value of N can be

made arbitrarily close to K and decoding can be performed by belief propaga-

tion with low computational complexity. The LT-codes invented by Luby in [6]

can be implemented through use of the Robust Soliton Distribution, for which

N = K + O(
√

K(log K)2) ensures that belief propagation decoding can be per-
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formed with error at most k−c, c > 0 and decoding complexity on the order of

K log K. The Raptor codes described in [7], which were proposed by Shokrollahi

and involve concatenating an error-correcting pre-code with an LT-code, provide

better performance in the sense that N can be made even closer to K with small

error probability and low-complexity decoding. For the purpose of describing the

multicast throughput, we do not assume the use of a particular Fountain code.

More generally, we assume that for a given error probability and decoding complex-

ity, there exists a deterministic value N which is arbitrarily close to (but slightly

larger than) K.

For destination d ∈ Dnm, the probability of successful reception of an encoder

output in any given time slot is µnmd. The transmission time to destination d, or the

number of slots that elapse from the time a group of K packets is first available for

transmission on tree (n,Dnm) until the end of the slot in which destination d suc-

cessfully receives the N th encoder output, is given by Yd = Xd,1 + Xd,2 + . . . + Xd,N ,

where Xd,i, 1 ≤ i ≤ N are independently, geometrically distributed with parameter

µnmd. The geometric distribution of Xd,i does not imply that a particular encoder

output is retransmitted until received; it merely indicates that if a new encoder out-

put is generated at each transmission attempt, then the number of slots that elapse

until one encoder output is received is geometrically distributed. (Equivalently, if

instead of tossing a single coin, we have a collection of coins with identical bias and

choose a different coin for each toss, then the number of independent tosses until

the first heads appears is geometric.) The total transmission time, or the num-

ber of slots needed for all destinations on (n,Dnm) to receive N encoder outputs is
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E[maxd∈Dnm
Yd].

Lemma 11. The guaranteed multicast throughput µC
nm for the coded transmission

strategy is bounded as

µC
nm ≤ µmin

nmd (3.13)

where the bound holds with equality in the limit as K → ∞.

Proof. We again make use of Jensen’s inequality to show that

E[ max
d∈Dnm

Yd] ≥ max
d

E[Yd] = max
d

N

µnmd
=

N

µmin
nmd

. (3.14)

By using µC
nm = K/E[maxd Yd] and by the assumption that the Fountain code allows

for N to be made arbitrarily close to K, the upper bound in the lemma follows.

To show when the upper bound holds with equality, we argue as follows. Let

Yd denote the vector of transmission times for d ∈ Dnm and let Ya
d and Yb

d denote

two realizations of the vector Yd. The convexity of the max function means that

for any realizations Ya
d,Y

b
d

max(θYa
d + (1 − θ)Yb

d) ≤ θ maxYa
d + (1 − θ) maxYb

d (3.15)

where 0 ≤ θ ≤ 1. As K → ∞, by the strong law of large numbers, Yd → N/µnmd

with probability 1 and (3.15) holds with equality. This is true even if the values of

µnmd, d ∈ Dnm are not distinct as long as ties are broken (i.e., a unique destination

with the worst channel is selected) by an arbitrary but fixed rule. Since (3.15)

holds with equality, Jensen’s also holds with equality and the upper bound on the

throughput is tight.
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Lemma 11 shows that as with the retransmission strategy, the guaranteed

multicast throughput for the coded transmission strategy is upper bounded by the

smallest unicast throughput among all destinations on the tree (n,Dnm). However,

unlike the retransmission strategy, the coded transmission strategy can reach the

upper bound on the throughput, but at the cost of infinite delay.

3.4.3 Weighted proportional fairness for guaranteed multicast

We now return to the problem of maximizing the weighted proportional fair-

ness for guaranteed multicast. We can formulate the problem as maximizing the

weighted proportional fairness subject to a constraint on the throughput µnm given

by Lemmas 10 and 11. Our constraint is

µnm ≤ µmin
nmd ⇐⇒ µnm ≤ µnmd, ∀d ∈ Dnm (3.16)

where, as shown in Lemma 11, µnm = µmin
nmd is achievable by making use of the coded

transmission policy. Our weighted proportional fairness problem P is stated below.

P : max
∑

(n,Dnm)∈T

wnm log µnm

s.t. µnm ≤ µnmd, ∀d ∈ Dnm, ∀(n,Dnm) ∈ T

µnmd = cnmd(p), ∀(n,Dnm, d) ∈ I

0 ≤ pnm ≤ 1, ∀(n,Dnm) ∈ T

pn ≤ 1, ∀n ∈ N

µnm ≥ 0, ∀(n,Dnm) ∈ T
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For link (n,Dnm, d), we define cnmd(p) as

cnmd(p) = pnm

∏

k:d∈Nk,k 6=n

(1 − pk) (3.17)

where p is the vector of random access probabilities, p = {pnm, (n,Dnm) ∈ T }. The

formulation of P for our guaranteed multicast problem is similar to the formulation

for maximizing end-to-end proportional fairness in (unicast) random access net-

works, which is treated in [31] and [33]. Due to the form of cnmd(p), the problem is

non-separable and non-convex in p, which makes it difficult to provide a distributed

algorithm that converges to the global optimum. However, due to the similarity of

this problem to the end-to-end proportional fairness problem, we can easily adapt

the Dual-Based Algorithm provided in [31], which overcomes these difficulties and

is shown to converge to the optimal pnm.

We proceed by decomposing P into two problems. The problem P̂ optimizes

the same objective as P but is parameterized by the set of (unicast) link through-

puts µI = (µnmd, (n,Dnm, d) ∈ I) , meaning essentially that the random access

probabilities p are assumed fixed. The problem P̂ is defined below.

P̂ : max
∑

(n,Dnm)∈T

wnm log µnm

s.t. µnm ≤ µnmd, ∀d ∈ Dnm, ∀(n,Dnm) ∈ T

µnm ≥ 0, ∀(n,Dnm) ∈ T

Since p is fixed, the problem P̂ is equivalent to a rate allocation problem in a wired

network. Since the log function in the objective function is strictly concave and the

constraints are linear in µnm, P̂ is a convex problem and has no duality gap. Then
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P̂ can be solved by the gradient projection method applied to its associated dual

problem. This procedure is described below.

The solution to the problem P̂ will be a function of the link throughputs µI.

Let Û(µI) denote the solution to P̂, defined as follows.

Û(µI)= max

{
∑

(n,Dnm)∈T

wnm log µnm : µnm≤µnmd,

∀d ∈ Dnm, ∀(n,Dnm) ∈ T
}

(3.18)

The vector of link throughputs µI will ultimately be a function of p. We define the

function Ũ(p) = Û(c(p)), where c(p) = (cnmd(p), (n,Dnm, d) ∈ I) and the problem

P̃ as follows.

P̃ : max Ũ(p)

s.t. 0 ≤ pnm ≤ 1, ∀(n,Dnm) ∈ T

pn ≤ 1, ∀n ∈ N

Problem P̃ is the problem we want to solve to determine p. In the process of

converging on the optimum p, in each update we make we must optimize the vector

of link throughputs µI, which is accomplished by solving problem P̂. The algorithm

will work at two different time scales. Let t1 denote time instants in the larger time

scale in which we update p. Let t2 denote time in the smaller time scale, which is

the time scale over which we solve P̂ through its dual problem.

We first describe the algorithm for solving the dual problem of P̂ when µI =

c(p(t1,t2)). The Lagrangian is given by L(t1,t2)(µT , λ), where µT = (µnm, (n,Dnm ∈

T ) denotes the vector of throughputs on the multicast trees in the network and
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λ = (λnmd, (n,Dnm, d) ∈ I) denotes the vector of Lagrange multipliers, or link

prices. We have

L(t1,t2)(µT , λ) =
∑

(n,Dnm)∈T

wnm log µnm −
∑

(n,Dnm,d)∈I

λnmd

(
µnm − µ

(t1,t2)
nmd

)
. (3.19)

The solution to the dual problem of P̂ is

λ∗(t1,t2) = arg min
λ≥0

max
µT

L(t1,t2)(µT , λ) (3.20)

Note that the Lagrangian can be rewritten as

L(t1,t2)(µT , λ)=
∑

(n,Dnm)∈T

(
wnm log µnm − µnm

∑

d∈Dnm

λnmd

)
+

∑

(n,Dnm,d)∈I

λnmdµ
(t1,t2)
nmd

(3.21)

and the first term is separable in µnm. The objective function for the dual problem

of P̂ at µI is

D(t1,t2)(λ) = max
µT

L(t1,t2)(µT , λ)

=
∑

(n,Dnm)∈T

max
µnm

(
wnm log µnm − µnm

∑

d∈Dnm

λnmd

)

+
∑

(n,Dnm,d)∈I

λnmdµ
(t1,t2)
nmd

We can maximize D(t1,t2)(λ) over µT by setting

µnm =
wnm∑

d∈Dnm
λnmd

(3.22)

The dual problem of P̂ can be solved using the gradient projection method, where

λnmd are adjusted in the direction opposite to the gradient ∂D(t1,t2)(λ)/∂λnmd. The

update is performed as

λ
(t1,t2+1)
nmd =

[
λ

(t1,t2)
nmd − γ

∂D(t1,t2)(λ(t1,t2))

∂λnmd

]+

(3.23)
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where

∂D(t1,t2)(λ(t1,t2))

∂λnmd
=

−wnm∑
d∈Dnm

λ
(t1,t2)
nmd

+ µ
(t1,t2)
nmd (3.24)

and γ > 0 is the step size.

Once the gradient projection algorithm has converged to its solution λ∗(t1,t2),

we can update the pnm as follows.

p(t1+1,t2)
nm = p(t1,t2)

nm + α
∑

(l,Dlk,j)∈I

λ
∗(t1,t2)
lkj

∂clkj(p
(t1,t2))

∂pnm

(3.25)

where

∂clkj

∂pnm
=






∏
i:j∈Ni,

i6=l

(1−pi), (n,Dnm, d)=(l,Dlk, j)

−plk

∏
i:j∈Ni,

i6=l,i6=j

(1−pi), j=n, j ∈ Dlk

−plk

∏
i:j∈Ni,

i6=l,i6=n

(1−pi), j ∈ Nn\{n}, j ∈ Dlk

0, else

(3.26)

and α > 0 is the step size. Once p has been updated, we again run the algorithm

in (3.23) to converge on the optimal link prices, and repeat.

We summarize the proposed algorithm for guaranteed multicast throughput

allocation in the following steps.

(1) Pick arbitrary initial values for the access probabilities with 0 < pnm < 1.

(2) Find λ∗ using the algorithm described in (3.23) and (3.24).

(3) Update the access probabilities according to (3.25) and (3.26).

(4) Return to step (2) and repeat until the access probabilities pnm have con-

verged.
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Figure 3.2: A simple example network to demonstrate our distributed throughput
allocation algorithms for non-guaranteed and guaranteed multicast.

The convergence analysis of this algorithm follows directly from the proof of The-

orem 1 in [31]. The analysis can be summarized as follows. Since the algorithm

adjusts the access probabilities pnm in the direction of the gradient, it yields a local

optimal point for P̃. This local optimal point for P̃ is also a local optimal point for

P since the two problems are equivalent. The analysis in [31] shows that the local

optimal point for P is globally optimal.

3.5 An example network

We now consider an example network to demonstrate the non-guaranteed and

guaranteed approaches to optimal throughput allocation for random access multi-

cast. The example network we consider is shown in Fig. 3.2, where the numbers

correspond to the node identities. The lines in the figure indicate interference; for

simplicity, we assume that interference is symmetric, i.e., k ∈ Nn ⇐⇒ n ∈ Nk.

The multicast flows we consider are shown in Table 3.1, where nodes 3, 5 and 8 act

as source nodes and two multicast flows emanate from each source. We assume that

multicast traffic traversing the center of the network is given higher priority; thus
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Table 3.1: Multicast flows for the example network shown in Figure 3.2.

Source (n) Tree (m) Receivers

3 1 D31 = {1, 2}

3 2 D32 = {1, 2, 5}

5 1 D51 = {3, 4}

5 2 D52 = {6, 7, 8}

8 1 D81 = {5, 7, 11}

8 2 D82 = {9, 10}

in the examples we consider, we assign higher weights wnmd and wnm to multicast

flows passing through node 5.

3.5.1 Non-guaranteed multicast

For non-guaranteed multicast, we assign a weight wnmd > 0 to each link in

the network and compute the optimal access probabilities according to (3.9). An

example of the link weights, optimal access probabilities, and link throughputs µnmd

as computed from (3.5) are shown in Table 3.2. Due to the large weights wnmd

associated with the multicast flows emanating from node 5, node 5 is assigned a

large access probability with p5 > 0.9. As a result, the value of the link throughput

µnmd is smallest for links (3, 2, 5), (8, 1, 5), and (8, 1, 7), where node 5 is either a

receiver or causes interference. The value of the link throughput µnmd is largest for

links on the edge of the network, which do not suffer interference.
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Table 3.2: Optimal access probabilities and link throughput values for non-
guaranteed multicast in the example network. A ” indicates that an entry is the
same as the entry in the row above it.

Link wnmd pnm µnmd

(3, 1, 1) 0.5 0.25 0.25

(3, 1, 2) 0.5 ” 0.25

(3, 2, 1) 0.5 0.5 0.5

(3, 2, 2) 0.5 ” 0.5

(3, 2, 5) 1.0 ” 0.0154

(5, 1, 3) 2.0 0.4615 0.1154

(5, 1, 4) 1.0 ” 0.4615

(5, 2, 6) 0.5 0.4615 0.4615

(5, 2, 7) 1.0 ” 0.1846

(5, 2, 8) 1.5 ” 0.1846

(8, 1, 5) 1.0 0.4 0.0077

(8, 1, 7) 0.5 ” 0.0308

(8, 1, 11) 0.5 ” 0.4

(8, 2, 9) 0.5 0.2 0.2

(8, 2, 10) 0.5 ” 0.2
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3.5.2 Guaranteed multicast

For guaranteed multicast, we assign a weight wnm > 0 to each multicast tree

and make use of the proposed algorithm to compute the random access probabilities.

The link weights that we considered, along with the values of pnm and µmin
nmd that

the algorithm reached at convergence, are shown in Table 3.3.

In implementing the algorithm, we set the step sizes at α = 5 × 10−4 and

γ = 25. We have assumed that the gradient projection algorithm has converged

to its solution λ∗(t1,t2) once the variation in all λnmd values is less than 5 × 10−3.

With these parameters, we observed that the convergence of the gradient projection

algorithm required at most 180 iterations, and typically required fewer than 20

iterations. As shown in Figs. 3.3 and 3.4, the algorithm to update pnm converges

on the optimal pnm and µmin
nmd for guaranteed multicast. In those two figures, the

number of iterations (along the x-axis) refers to the number of updates to the values

of pnm, and we observe that at most 300 iterations are needed to reach convergence.

For implementation in practical scenarios, the convergence speed can be adjusted

by varying the step sizes, particularly by choosing the step size γ individually for

each link (n,Dnm, d).

Once again, due to the large weights assigned to the multicast flows emanating

from source 5, it is assigned a large access probability with p5 ≈ 0.65 and the guar-

anteed multicast throughput is largest for trees (5,D51) and (5,D52). The multicast

flows on the edge of the network obtain a moderate throughput due to the lack of

interference. The guaranteed throughput is smallest for flows (3,D32) and (8,D81)
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Table 3.3: Optimal access probabilities and minimum link throughput values for
guaranteed multicast in the example network.

Tree wnm pnm µmin
nmd

(3,D31) 1 0.0952 0.0952

(3,D32) 2 0.3178 0.0718

(5,D51) 3 0.2040 0.1198

(5,D52) 3 0.4549 0.3012

(8,D81) 2 0.2330 0.0466

(8,D82) 1 0.1048 0.1048
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Figure 3.3: Values of pnm versus iteration number for the proposed algorithm to
compute random access probabilities for guaranteed multicast.

due to the moderate weight assigned to those flows coupled with the interference

from node 5.
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Figure 3.4: Values of µmin
nmd versus iteration number for the proposed algorithm to

compute random access probabilities for guaranteed multicast.

3.6 Discussion

In this chapter we treated the problem of multicast transmission in a ran-

dom access network of general topology. We focused on the saturation throughput

and proposed schemes to assign the random access probabilities to nodes in a wire-

less network in order to optimally allocate the multicast throughput. For applica-

tions where non-guaranteed multicast is sufficient, the optimal throughput allocation

can be computed in a simple, distributed manner similar to the manner in which

throughput is allocated for unicast transmission. If guaranteed multicast transmis-

sion is required, the throughput-optimal strategy involves random coding of packets

and a distributed algorithm that converges to the optimal access probabilities.

For guaranteed multicast, we have assumed that random coding is performed

with K → ∞ in order to achieve the optimum throughput. However, coding with
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K → ∞ would yield an infinite delay, which is undesirable in practical systems. In

the next chapter, we analyze the delay performance of a random coding scheme that

adapts to the traffic load. The scheme we consider provides good performance in

terms of both throughput and delay.
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Chapter 4

Queueing delay

4.1 Background and model

In Chapters 2 and 3 we saw that random coding of packets can offer per-

formance benefits in terms of multicast throughput. Given the well-documented

tradeoff between the throughput and delay in a network, a natural question that

arises is: does the throughput gain offered by random coding result in a penalty in

terms of the delay? There has been relatively little attention given to this question.

In [37], the authors examined the use of network coding for multicast transmission

in a network and it was shown to offer improvements in delay performance. How-

ever, that work was carried out under the assumption that there is a fixed amount

of data awaiting transmission at the source node, which means that queueing or

waiting time at the source node is not considered.

In order to capture the effect on the delay performance of varying traffic load

at the source node, it is useful to consider coding of packets that randomly arrive

at the source node and analyze performance in a queueing framework. This has

been explored in [38], where in each transmission opportunity, the source node

sends a random linear combination of the packets queued in a finite-capacity buffer.

Simulation studies are used in [38] to investigate the delay as a function of buffer

size. Our intent is to develop analytical models and results on the delay performance
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of random coding, and this is the subject of the current chapter. In the following

sections, the random linear coding scheme is analyzed as a discrete-time bulk-service

queue. The bulk-service property of the queue captures the fact that packets are

encoded, transmitted, and removed from the queue in groups. Bulk-service queueing

is an appropriate model for performing coding of randomly arriving packets, and has

been used in [39] to model forward error correction for transmission over a broadcast

channel.

.

.
... ...

.

λ

q(1)

q(2)

q(M)

Figure 4.1: Packets arrive randomly to a single source node and are stored in an
infinite-capacity buffer before multicast transmission to M destinations.

The system we consider is shown in Figure 4.1. Time is slotted; a slot cor-

responds to the time needed for a packet to be transmitted over the channel. A

packet is a fixed-length vector of bits. Data packets arrive to a source node through

a Bernoulli process with rate λ packets/slot. Thus λ represents the probability that

a data packet arrives in a slot. Upon arrival, the data packet is placed in a buffer of

infinite capacity in order to await transmission. The buffer forms a first-in-first-out

(FIFO) queue. When a packet reaches the front of the queue, it is transmitted over

the channel. The channel is a wireless (broadcast) medium, so a transmission has

the potential to reach multiple destination nodes. There are M destination nodes

and all of them must receive the data packets from the source node. The chan-
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nel between the source and destination m is an independent erasure channel with

reception probability in each slot given by

q(m) = Pr{coded packet received at destination m}, 1 ≤ m ≤ M. (4.1)

We assume that each source-destination pair has an independent, error-free feedback

channel over which the destination node can send acknowledgement messages. We

model the system shown in Figure 4.1 as a discrete-time queue. Much of the analysis

is carried out through use of the probability generating function (pgf). For a non-

negative discrete random variable with probability mass function (pmf) f(n), the

pgf, denoted F (z), is the z-transform of f(n) and is given by F (z) =
∑

n≥0 f(n)zn.

4.2 Retransmissions

We first present delay results for a scheme in which a data packet is retransmit-

ted over the channel until received at all M destinations. As soon as a destination

has received the packet under transmission, it sends an acknowledgement message

to the source node. Transmission is complete when the source node has received

acknowledgement messages from all M destinations. Let T (m) denote the number of

slots needed for destination m to successfully receive the packet. According to the

erasure channel model, T (m) is geometrically distributed with parameter q(m), i.e.,

Pr(T (m) = t) = q(m)(1− q(m))t−1. The time needed for all M destinations to receive

the packet is denoted T and is given by T = maxm T (m). In analyzing the average

delay, we will be interested in the first and second moments of T . The problem of

finding the moments of the maximum of independent, differently distributed geo-
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Encoder Decoder

λ 12k

Figure 4.2: Random linear coding of randomly arriving packets. The first k packets
at the front of the queue are passed to the encoder for encoding and transmission.

metric random variables can be solved numerically. (For approximations, we refer

the reader to [40].) A numerical solution can be found by noting that the cdf of T

is given as

Pr(T ≤ t) = Pr(max
m

T (m) ≤ t) = Pr(T (1) ≤ t) × Pr(T (2) ≤ t) × . . . × Pr(T (M) ≤ t).

(4.2)

The first and second moments, E[T ] and E[T 2], can be found numerically using

(4.2).

According to the Bernoulli arrival process and the distribution of T , the ap-

propriate queueing model is a Geo/Geo/1 queue, for which a complete analysis

is available in [41]. In particular, the queueing stability condition is given by

ρ1 = λE[T ] < 1, or equivalently, λ < E[T ]. Additionally, the average delay (waiting

time in the queue plus service time), which we denote D1, is given as follows [41].

D1 = E[T ] +
λE[T 2] − ρ1

2(1 − ρ1)
. (4.3)

4.3 Random linear coding

We now analyze the random linear coding scheme depicted in Fig. 4.2 to deter-

mine the queueing delay involved. Let k denote the number of packets at the front

of the queue that are simultaneously passed to the encoder. Random linear coding is
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performed as described in Chapter 1, where each of the k data packets are added into

the modulo-2 sum with probability 1/2. The source node generates a new random

linear combination in each time slot and transmits it over the channel. Let random

variable N
(m)
k denote the number of coded packets needed at destination m so that

decoding can take place, i.e., so that there are exactly k linearly independent coded

packets among the N
(m)
k . As the random linear combinations are generated by the

same random distribution, N
(m)
k are identically distributed with respect to m, and

we refer to this commonly-distributed random variable as Nk. Although N
(m)
k follow

the same distribution, each destination may receive a different set of coded packets

according to the realization of their independent channels. Because the coded pack-

ets are generated and transmitted by the same source to all M destinations, N
(m)
k

are correlated with respect to m. When a destination node has received Nk coded

packets, decoding is performed to uncover the original k data packets. We assume

that decoding occurs instantaneously and simultaneously on the k data packets.

Subsequently, an error-free acknowledgement message is instantaneously sent from

the destination to the source. Once the source has received an acknowledgement

message from all M destinations, the service of the k packets is complete and they

are removed from the front of the queue. The source then proceeds with encoding

and transmission of the next set of data packets in the front of its buffer.

For random linear coding of randomly arriving packets, there are multiple

strategies which might be employed. One strategy is to fix the number of packets

used in encoding, or to fix the value of k as k = K. In this strategy, we enforce

encoding over groups of exactly K, meaning that if there are fewer than K packets
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in the queue, then those packets must wait for more packets to arrive before encod-

ing and transmission can begin. This strategy naturally leads to a delay penalty

for lightly loaded systems in which packets arrive infrequently (i.e., small λ). Al-

ternatively, the coding scheme could adapt to the amount of traffic buffered at the

transmitting node by accepting k packets into the encoder when the channel be-

comes free, where k is a variable taking values between 1 and the upper limit of K.

This type of strategy is proposed and investigated in [38]. In our work, we analyze

both of these strategies using the model of a bulk-service queue. First, however, we

analyze the pgf of the service time for random linear coding over k packets, which

is used in the analysis for both strategies.

4.3.1 Service time

Let T̃
(m)
k denote the service time to destination m for random linear coding

of k data packets, and let Bk,m(z) denote the corresponding pgf. The service time

constitutes the total number of slots that elapse from the initiation of service, when

the k data packets are passed to the encoder to begin encoding and transmission, to

the time that an acknowledgement message is sent by destination m. The function

Bk,m(z) will be given by a composite function of the distribution for success on the

channel and the distribution of Nk. First, consider the time that elapses between

two consecutive successful receptions at destination m of coded packets. Accord-

ing to our channel model, this time will be geometrically distributed with success

probability q(m) in each slot. The pgf for this geometric random variable, which we
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denote Γm(z), is given by

Γm(z) =
q(m)z

1 − z(1 − q(m))
. (4.4)

The time periods that elapse between reception at destination m of consecutive

coded packets will be independent, identically distributed according to Γm(z). Since

the destination must receive Nk such coded packets, the service time will be given

by the sum of Nk independent random variables distributed according to Γm(z).

Letting FNk
(z) denote the pgf of Nk when k data packets are used in encoding, the

pgf Bk,m(z) can be shown (see, e.g., [11]) to be given by

Bk,m(z) = FNk
(Γm(z)). (4.5)

The distribution of Nk reflects the random linear coding, and as described in

Chapter 1, is given by the probability that a random u-ary matrix is full-rank. Let

FNk
(n) and fNk

(n) denote the cdf and pdf, respectively, of Nk. We have

FNk
(n) =






∏k−1
i=0 (1 − u−n+i), n ≥ k

0, n < k

(4.6)

and

fNk
(n) = FNk

(n) − FNk
(n − 1). (4.7)

We are now prepared to write an expression for the service time pgf Bk,m(z) for

random linear coding. Using the expression in (4.5), we can write Bk,m(z) as follows.

Bk,m(z) =

∞∑

n=k

fNk
(n)

(
q(m)z

1 − z(1 − q(m))

)n

. (4.8)

Note that by evaluating d
dz

Bk,m(z)|z=1 from the above expression, we can obtain the

expected service time to destination m for a group of k packets, which is E[Nk]/q
(m).
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4.3.2 Fixed expected coding rate

We first analyze a scheme whereby the number of data packets involved in

random linear coding is a fixed parameter k = K. If there are fewer than K data

packets in the buffer, then those packets must await the arrival of additional packets

before encoding and transmission can begin. Once there are K data packets in the

buffer, the first K packets are simultaneously passed to the encoder. We analyze this

scheme as a bulk-service queue with fixed capacity, where the term “fixed capacity”

refers to the fact that the service time consists of a single distribution corresponding

to k = K.

This queueing system can be analyzed using the method of stages approach

described in [11]. In this approach, the arrival process is said to involve K stages,

where each stage corresponds to the arrival of one of the K packets involved in

random linear coding. This approach leads to the Erlangian distribution [11] for

continuous-time queues with an exponential distribution on the interarrival times

for individual packets.

As stated previously, data packets arrive to the source according to a Bernoulli

process with rate λ packets/slot. Accordingly, the time that elapses between arrivals

of individual data packets is geometrically distributed. Let Xi denote the time in

slots between the arrival of the i − 1st and the ith packet in the buffer. The pmf of

Xi is given by

ai(x) = Pr{Xi = x} = λ(1 − λ)x−1, x ≥ 1 (4.9)
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and the pgf is given by

Ai(z) =
λz

1 − z(1 − λ)
. (4.10)

In applying the method of stages, we let X denote the effective interarrival

time, which is essentially the time in slots between the arrival of every Kth packet.

Thus X is given by the sum of K iid random variables distributed as Xi. The pgf

of X, which we denote A(z), can be expressed as

A(z) = (Ai(z))K =

(
λz

1 − z(1 − λ)

)K

. (4.11)

By taking derivatives of A(z) with respect to z and evaluating at z = 1, we can find

the mean and variance of the effective interarrival time as given below.

E[X] =
K

λ
, σ2

a = V ar[X] =
K(1 − λ)

λ2
(4.12)

The service process characterizes the time that elapses between the Kth data

packet entering the encoder and receipt at the source of acknowledgement messages

from all M destinations. Let T̃K denote the service time, or the number of slots

needed for all M destinations to receive NK coded packets. Furthermore, let T̃
(m)
K

denote the number of slots needed for destination m, m = 1, 2, . . . , M , to receive

NK coded packets. Then we have

T̃K = max
m

T̃
(m)
K . (4.13)

Equation (4.13) accounts for the multicast nature of the transmission from the

source. As shown in the previous section, the distribution of T̃
(m)
K is given by the

pgf BK,m(z) in Eqn. (4.8). The pmf of T̃
(m)
K , which we denote bK,m(t), is found by
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taking an inverse z-transform and is given by

bK,m(t) =





∑∞
n=K fNk

(n)αn(q(m))n(1 − q(m))t−n, t ≥ K

0, t < K

(4.14)

where

αn =
(t−1)(t−2) . . . (t−(n−1))

(n − 1)!
. (4.15)

We will make use of bK,m(t) as shown above in our numerical computations. Finally,

we can approximate the distribution of T̃K = maxm T̃
(m)
K using the distribution of

T̃
(m)
K . Letting BK(t) denote the cdf of T̃K , we have

BK(t) ≈ Pr{T̃ (1)
K ≤ t} × Pr{T̃ (2)

K ≤ t} × . . . × Pr{T̃ (M)
K ≤ t}. (4.16)

The above expression is an approximation, and not an equality, since T
(m)
K are not

independent - due to the correlation of N
(m)
k with respect to m. The mean and

variance of T̃K , which we denote E[T̃K ] and σ2
b respectively, can be approximated

from BK(t) as expressed above and are used in analyzing the stability and delay.

We next consider the conditions for stability of the queue, or more formally,

the conditions for which the Markov chain representing the waiting time in the queue

is ergodic. We define the traffic intensity ρ2 as

ρ2 =
λE[T̃K ]

K
. (4.17)

For a standard queue, the queue is stable if and only if ρ2 < 1 [11]. If this condition

is not satisfied, then the delay will grow without bound.

In examining the delay, we note that the interarrival and service time distri-

butions in the queueing model developed above do not allow for the application of
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standard delay results, such as the delay for the M/G/1 queue [11]. Instead, we will

make an analytical approximation to the delay based on the mean and variances of

the interarrival and service times. In doing so, we note that the delay will consist

of two terms: the service time and the waiting time. The expected service time is

given by E[T̃K ] and is constant over all arrival rates λ. The waiting time of a packet

can be attributed to two phenomena: the time spent waiting to reach the front of

the queue while other groups of K packets are being served, and the time spent

waiting for additional packets to arrive to form a group of K packets for encoding

and transmission.

For the time spent waiting to reach the front of the queue, we use the heavy

traffic approximation provided for continuous-time systems, which is given in [42]

by

σ2
a + σ2

b

2E[X](1 − ρ2)
. (4.18)

This quantity will be relatively small for small values of λ but will be the dominant

term as λ increases, approaching infinity as ρ2 → 1. For the time spent waiting

for additional packets to arrive, we note that on average, a given packet will need

to wait for (K − 1)/2 additional packets to arrive, which will require a waiting

time of K−1
2λ

. This quantity will approach infinity as λ → 0 but will diminish as λ

increases. Our delay approximation assumes that the waiting time will be given by

the maximum of the two quantities described above. Thus, our approximation for

the average delay is given by

D2 ≈ E[T̃K ] + max

(
σ2

a + σ2
b

2E[X](1 − ρ2)
,
K − 1

2λ

)
. (4.19)
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Figure 4.3: The maximum stable arrival rate K/E[T̃K ] for random linear coding over
K packets (dashed line) and retransmissions (solid line) for four different channel
models and transmission to M=3 destination nodes.

We now present some numerical examples of throughput and delay perfor-

mance resulting from this bulk-queueing model for random linear coding. For these

numerical results we have computed probability distributions, including fNK
(n) and

bK,m(t), to within 10−5 of the total probability mass.

The maximum stable arrival rates for random linear coding and retransmis-

sions are compared in Fig. 4.3 for M = 3 and four different sets of reception

probabilities (q(1), q(2), q(3)). The maximum stable arrival rate corresponds to the

condition ρ2 < 1 and is given by K/E[T̃K ]. These results indicate that when one of

the destinations has a poor channel (q(3)=0.3) there is little or no benefit of random

linear coding over retransmissions in terms of the stable arrival rate. Also, even for

relatively good channels, the random linear coding scheme does not unconditionally

outperform the retransmission scheme: if the value of K is not sufficiently large,

then the retransmission scheme can support higher average arrival rates.

The effect of the number of destination nodes M on the stable arrival rate is
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Figure 4.4: The maximum stable arrival rates for random linear coding over K pack-
ets (dashed line) and retransmissions (solid line) for channels with q(m) = 0.8, m =
1, 2, . . . , M and different numbers of destinations.

shown in Fig. 4.4. These results are computed for relatively good channels with

q(m) = 0.8, m = 1, 2, . . . , M , and random linear coding nearly always outperforms

retransmissions. The arrival rate that the source can tolerate while maintaining a

stable queue is higher when the source multicasts to fewer destinations. Additionally,

we observe that random linear coding provides larger gains over retransmissions

when the source multicasts to more destination nodes.

The delay performance of random linear coding is compared with retransmis-

sions in Fig. 4.5 for a channel with (q(1), q(2), q(3)) = (0.9, 0.9, 0.9). In addition to

computing D2 and D1, we have performed and plotted the results of a Monte Carlo

simulation of the random linear coding scheme over 20,000 slots in order to com-

pare the outcome with our approximation. Our approximation closely matches the

simulation results for small values of λ, however, the two outcomes differ when the

queues saturate. We note that, in contrast to typical queueing delay results, the

delay for random linear coding is not a monotonic increasing function. The behavior
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Figure 4.5: Delay versus arrival rate λ for retransmissions (solid line), the random
linear coding approximation (dotted line), and the random linear coding simulation
(o,+). Random linear coding is performed over K = 10 (o) and K = 40 (+)
packets. The results are for transmission to M=3 destinations with (q(1), q(2), q(3)) =
(0.9, 0.9, 0.9).

of the random linear coding delay for λ → 0 is due to the time spent waiting for

additional packets to arrive in order to form a group of K packets for encoding and

transmission.

For random linear coding over K = 10 packets, the delay is higher than the

retransmission delay for all values of λ. The fact that the random linear coding

scheme with K = 10 saturates sooner than the retransmission scheme reflects the

result shown in Figure 4.3. Thus, for M = 3, K = 10, and this particular channel

model, random linear coding offers no benefit over retransmissions in terms of neither

stable throughput nor delay. The random linear coding scheme over K = 40 packets

can tolerate higher values of λ than the retransmissions scheme, however, for small

values of λ, the random linear coding scheme with K = 40 provides significantly

higher delay than retransmissions. This result points to a tradeoff between the

stable throughput and the delay. Clearly there is a delay penalty for lightly loaded

systems due to fixing the expected coding rate.
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4.3.3 Variable expected coding rate adapted to traffic load

We now analyze a scheme whereby the expected coding rate is a variable that

adapts the traffic load. In other words, k, the number of packets involved in forming

a random linear combination, is a variable that takes values between 1 and K. The

chosen value of k is dependent upon the number of packets waiting in the queue

at the time when the service of a previous group of packets is completed. Thus, if

there is one packet in the queue when the channel becomes free, then k = 1 and

one packet is transmitted over the channel. If there are two packets in the queue

when the channel becomes free, then k = 2 and encoded versions of two packets

are transmitted over the channel, and so on. If there are K or more packets in the

queue when the channel becomes free, then the K packets at the front of the queue

are used in encoding and transmission. In the queueing literature, this policy is

referred to as a bulk-service queue with variable capacity, where the term “variable-

capacity” refers to the property that the service time distribution varies according

to the value of k. For analytical tractability, we analyze this scheme in the simplified

case of M = 1, or unicast transmission. We denote the channel reception probability

q(1) as q.

For k = 1 packet in service, encoding is not performed, and instead the packet

is retransmitted until received. In this case the service time distribution is geometric

with success probability q in each slot. The service time pgf is given by

B1(z) =
qz

1−z(1−q)
. (4.20)

For 2 ≤ k ≤ K, the encoder forms random linear combinations of the k packets.
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The service time distribution follows the pgf Bk,m(z) in Eqn. 4.8 for 2 ≤ k ≤ K.

Since we now consider only M = 1 destination node, we simply refer to this pgf as

Bk(z).

The pmf fNk
(n) appears in the expression for Bk(z), and the finite product

in (4.6) is difficult to deal with analytically. We would instead like to express the

finite product as a finite sum. For this purpose, we can view (4.6) as a polynomial

and apply Viète’s formulas to obtain

k−1∏

i=0

(1 − u−n+i) = 1 +

k∑

j=1

(−1)jα(j, k)u−nj, (4.21)

where, for 1 ≤ j ≤ k − 1,

α(j, k) =

k−j∑

i1=0

ui1

k−j+1∑

i2=i1+1

ui2 . . .
k−1∑

ij=ij−1+1

uij , (4.22)

and

α(k, k) = u
1
2
k(k−1). (4.23)

The pmf of Nk can be written as follows.

fNk
(n) =





0, n < k

1 +
k∑

j=1

(−1)jα(j, k)u−kj, n = k

k∑
j=1

(−1)jα(j, k)u−nj(1 − uj), n > k

(4.24)

From this expression for fNk
(n), we can write

Bk(z) =

(
qz

1−z(1−q)

)k
(

1+

k∑

j=1

(−1)jα(j, k)u−jk

)

+

[(
qz

1−z(1−q)

)k+1 k∑

j=1

(−1)jα(j, k)u−j(k+1) (1−uj)(1−z(1−q))

1−z(1−q+qu−j)

]
. (4.25)
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We now apply the techniques in [43] to derive the distribution of the number

of packets in the system in the steady-state. Let random variable St denote the

number of packets in the system immediately after the completion of service and

departure of the tth group of packets. Precisely, we consider the number in the

system at the boundary of a slot where a service of a group of packets has just been

completed. The process {St, t ≥ 0} forms an irreducible, aperiodic Markov chain.

Let Pk denote the steady-state probability of k packets in the system immediately

after a departure instant.

Pk = lim
t→∞

Pr(St = k), k = 0, 1, 2, . . . (4.26)

The existence of the limit corresponds to stability of the queue, which as discussed

in [43], holds as long as the arrival rate λ is less than K times the service rate

for a group of K packets. In our random linear coding system this corresponds to

λ < qK/E[NK ]. Note that this condition is equivalent to ρ2 < 1 for M = 1, where

ρ2 is the traffic intensity for random linear coding with fixed expected coding rate,

as defined in Eqn. (4.17). As such, the scheme currently under consideration, in

which the coding rate is adapted to traffic load, supports the same maximum stable

arrival rate as the scheme for which the expected coding rate is fixed. Then the

results in Figs. 4.3 and 4.4 apply to the current scheme as well.

Assuming that the stability condition holds, we derive the pgf of Pk, which we

denote P (z). Since St forms a Markov chain, we can use the transition probabilities

of the Markov chain to find P (z). The transition probabilities will depend on the

length of the service period, given by Bk(z), as well as the number of arrivals that
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occur during the service period. We define the random variable βk,j, 1 ≤ k ≤ K as

follows.

βk,j = Pr(j packets arrive during service period ∼ Bk(z)) (4.27)

Furthermore, we make the assumption that if there are 0 packets in the queue when

the channel becomes free, then there is a pause in service, where the duration of the

pause is a random variable distributed according to B1(z). Following the pause, the

channel becomes free again, and the next service can be initiated. Thus we define

a service time distribution of zero packets as B0(z) = B1(z). This assumption

ensures the Markovian property of St and allows us to easily write the transition

probabilities, which we denote Pij, as follows.

Pij =





β1,j, i = 0, 1

β2,j, i = 2

...
...

βK−1,j, i = K − 1

βK,j−i+K, K ≤ i ≤ j + K

0, i > j + K

(4.28)

We can derive the pgf of the number in the system as P (z) =
∑∞

j=0 Pjz
j by

applying the balance equations Pj =
∑∞

i=0 PiPij. In doing so, we encounter the need

to find the pgf of βk,j. This is done by conditioning on the length of the service time
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T̃k as follows.

βk,j =

∞∑

t=1

Pr(j packets arrive in t slots)Pr(T̃k = t)

(a)
=

∞∑

t=1

(
t

j

)
λj(1 − λ)t−jPr(T̃k = t), j ≤ t

In the expression above, (a) follows from the assumption that the arrivals follow a

Bernoulli process of rate λ. The pgf of βk,j is given by

∞∑

j=0

βk,jz
j = Bk(λz + 1 − λ) (4.29)

Thus Bk(λz + 1− λ) expresses the distribution of the number of arrivals that occur

during the service of a group of k packets. The distribution of the number in the

system immediately after a departure is expressed as follows.

P (z) =

K−1∑
k=0

Pk

(
zKBk(λz+1−λ)−zkBK(λz+1−λ)

)

zK−BK(λz+1−λ)
. (4.30)

The expression (4.30) contains K unknown constants Pk, 0 ≤ k ≤ K − 1.

These constants can be found in the following manner. Let the numerator and

denominator in (4.30) be given by N(z) and D(z), i.e., P (z) = N(z)/D(z). It can

be shown by Rouché’s theorem [43] that the denominator D(z) has K − 1 zeros

inside the unit circle. Let zj, j = 1, 2, . . .K − 1 denote these zeros, i.e., D(zj) = 0.

The zeros zj can be computed numerically. Next, since the pgf P (z) is an analytic

function, the numerator N(z) evaluated at zj must also be equal to zero. We can set

up a system of K − 1 equations in the K unknowns Pk by the condition N(zj) = 0,

j = 1, 2, . . .K − 1 [44]. An additional equation is given by the condition P (1) = 1,

which holds since P (z) is a pgf. Thus we have a system of K equations in K

unknowns and can solve for the constants Pk numerically.
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We can obtain the expected value of the number in the system immediately

after a departure by evaluating d
dz

P (z)|z=1. This results in the expression

f1g2 − f2g1

2f 2
1

(4.31)

where

f1 = K − λE[T̃K ] (4.32)

f2 = K(K − 1) − λ2E[T̃K(T̃K − 1)] (4.33)

g1 =
K−1∑

k=0

Pk

(
K + λE[T̃k] − k − λE[T̃K ]

)
(4.34)

g2 =
K−1∑

k=0

Pk

(
K(K − 1) + 2KλE[T̃k] + λ2E[T̃k(T̃k − 1)] − k(k − 1)

−2kλE[T̃K ] − λ2E[T̃K(T̃K − 1)]
)

, (4.35)

and the moments of T̃k can be obtained from (4.25) and (4.20). Note that the

distribution P (z) provides the number in the system immediately after a departure

and is not necessarily the same as the number in the system at an arbitrary point

in time. However, we use the expected value in (4.31) as an approximation to the

number in the system at an arbitrary point in time. We then apply Little’s result

[11] to obtain an approximation for the average time a packet spends in the system,

which we refer to as average delay D3. The average delay is given by

D3 =
1

λ

f1g2 − f2g1

2f 2
1

. (4.36)

The average delay D3 as given in (4.36) is computed and plotted as a function

of arrival rate for two different values of q = q(1) in Figs. 4.6 and 4.7. As λ → 0,
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Figure 4.6: Average delay D3 versus arrival rate λ for M = 1 and q(1) = 0.5.

the system is nearly empty. The few packets that arrive do not experience any

waiting time in the queue and are immediately transmitted over the channel with

a service time distributed as B1(z) for both the random linear coding and retrans-

mission schemes. In this case, the delay for all schemes is 1/q(1). As the arrival

rate λ increases, the random linear coding scheme provides the same delay as the

retransmission scheme, and random linear coding performs the same regardless of

the value of K. This is due to the fact that because the system is lightly loaded,

the value of k rarely takes its maximum value K. In Fig. 4.7, at values around

λ = 0.5, the retransmission scheme appears to suffer higher delay than the random

linear coding schemes. We believe that this behavior is due to the fact that D3 is

an approximation and tends to underestimate the average delay.

As λ continues to increase, we see that the random linear coding scheme satu-

rates sooner than the retransmission scheme. This is very different from the perfor-

mance shown previously, where random linear coding provides higher stable arrival
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Figure 4.7: Average delay D3 versus arrival rate λ for M = 1 and q(1) = 0.9.

rates than retransmissions, and is due to the fact that we consider unicast trans-

mission, M = 1. As K increases, the maximum stable arrival rate of random linear

coding approaches the maximum stable arrival rate of retransmissions. This is due

to the fact that as K increases, K/E[NK ] → 1, so the stability condition for ran-

dom linear coding, given by λ < q(1)K/E[NK ], approaches the stability condition

for retransmissions, which is given by λ < q(1).

4.4 Discussion

In this chapter we examined the delay involved in random linear coding of

randomly arriving data packets. We placed random linear coding into a queueing

framework by considering bulk-service queues, where packets in the queue are ser-

viced and removed from the queue in groups. This queueing framework naturally

leads to a characterization of the delay.

We considered two different strategies for random linear coding. In the first
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strategy, the number of packets used in random linear coding, or the expected coding

rate, is a fixed parameter, meaning that an additional delay may be incurred in

waiting for enough packets to arrive before encoding and transmission can begin. In

the second strategy, the number of packets used in random linear coding is a variable,

and adapts to the number of packets waiting in the queue when the encoder and

channel become free. If this adaptive coding scheme uses parameter K as an upper

bound on the number of packets used in coding, and that same parameter K is used

in the fixed expected coding rate scheme, then the two schemes support the same

stable throughput. In terms of delay, the fixed expected coding rate scheme incurs

a significant delay penalty for lightly-loaded systems. However, the adaptive coding

rate scheme overcomes this difficulty, and the delay performance of random linear

coding is superior to a retransmission scheme.

In conclusion, the throughput benefits offered by random linear coding can

lead to a degradation in terms of delay, and this degradation will result if the

expected coding rate is fixed. However, if the coding rate is adapted to the traffic

load, then random linear coding offers benefits in terms of both throughput and

delay. A primary consideration in designing practical systems must be the additional

complexity and/or memory requirements for an adaptive coding scheme, which must

be weighed with the delay benefits it may offer.
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Chapter 5

Packet length, overhead, and effects of the wireless medium

5.1 Background

In previous chapters we focused on the throughput and delay performance of

random coding while treating the wireless channel as an erasure channel with fixed,

arbitrary erasure probability. We treated a data packet as a fixed-length sequence of

bits without regard for its information content. Additionally, we have disregarded

in our analysis the need to transmit overhead information containing the coefficients

of the random code. In this chapter we revisit the performance of random coding

for multicast transmission and specifically account for the packet length, overhead,

and physical effects of the wireless channel.

Part of the motivation for the problem we describe below is to develop a

wireless channel model within the framework of random coding of packets in order

to better characterize performance. The notion of cross-layer design in wireless

networks emphasizes this approach. Indeed, the physical behavior of the wireless

channel has profound effects on data traversing the network in the form of packets.

The analysis we present below demonstrates specific ways in which the physical

medium impacts random coding of packets.

Our motivation also stems from interest in applying to wireless networks the

technique of network coding, where packets are coded at bottleneck links in a mul-
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tihop network [1, 2]. The random linear coding we consider throughout this thesis

can be viewed as a localized (single-hop) version of random network coding [8]. It

has been shown that by applying network coding for multicast transmission in a

wired network, it is possible to achieve the maximum flow capacity in the limit

as the symbol alphabet size (or field size) approaches infinity [1, 2]. For random

network coding, the overhead inherent in communicating the coding coefficients be-

comes negligible only as the number of data symbols in the packet grows large. The

“length” or information content of a transmitted packet (i.e., the number of bits

conveyed by the packet) depends on both the symbol alphabet and the number of

symbols per packet. From the previous works listed above, it is clear that transmit-

ting sufficiently long packets is crucial to approaching the maximum flow capacity

and to allowing random coding to operate with low overhead.

However, the long packets needed for network coding are more susceptible to

noise, interference, congestion, and other adverse channel effects. In particular, we

cite the following reasons that the erasure probability will increase with the length

of the packet.

• If we try to fit more bits into the channel using modulation, then for fixed

transmission power, points in the signal constellation will move closer together,

making them more susceptible to noise and errors more likely.

• If we try to fit more bits into the channel by decreasing symbol duration, then

we are constrained by bandwidth, a carefully-controlled resource in wireless

systems.
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• Longer packets take up more space in memory, leading to an increase in the

chance of buffer overflows and dropped packets.

In this chapter, we model the erasure probability as a function of the packet length

and investigate the implications on performance of random coding for multicast.

Our emphasis will be on a wireless channel with a fixed bandwidth, for which we

will associate erasure probability with the probability of symbol error for a given

modulation scheme. We also scale the throughput to account for the overhead

needed to perform random coding. We investigate the effects of packet length and

overhead for two different channel models: a time-invariant channel and a time-

varying channel.

5.2 Model

We consider the following setting. One source node will multicast data to M

destination nodes. The channel from the source node is identically distributed (but

not necessarily independent) with respect to the destination nodes. The channel

is slotted but otherwise undefined for now; we will consider a time-invariant and

time-varying channel model, which are clearly defined in the following sections. The

source node has K units of information {s1, s2, . . . , sK} that it wants to transmit.

We will refer to each of these information units as data packets and let each packet

be given by a vector of n u-ary symbols, where u is the symbol alphabet (the size

of a finite field) and n is the number of symbols per packet. We consider values of

u which are powers of 2. The length, or information content, of a packet is given by
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n log2 u bits.

The source generates random linear combinations by forming the sum
∑K

i=1 aisi,

where ai are chosen randomly and uniformly from the set {0, 1, 2, . . . , u−1} and
∑

denote addition in the finite field Fu. Note that the resulting random linear com-

bination is a packet with length n log2 u bits. When random linear combinations

are formed, if the coefficients are all zero, i.e., if ai = 0 for all i = 1, . . . , K, then

the source throws out that realization of ai and generates a new realization. With

each random linear combination transmitted, the source appends a packet header

identifying ai, which requires an additional K log2 u bits of overhead with every

n log2 u bits of data transmitted. Once a random linear combination is generated

and transmitted, it is discarded and a new random linear combination is generated

for the next transmission. A receiver will collect these random linear combinations

until it has received enough to decode; equivalently, the transmission of random

linear combinations will continue until all M destinations have received K linearly-

independent random linear combinations. Decoding will be performed by Gaussian

elimination to recover the original K data packets.

Let T̃
(m)
K denote the number of slots needed for destination m to receive K

linearly-independent random linear combinations, i.e., for destination m to be able to

decode. The distribution of T̃
(m)
K will depend on the channel model, which is clearly

defined in two separate cases below. As we assume that the channels are identically

distributed with respect to destinations, T̃
(m)
K will be identically distributed with

respect to m. The total time needed to complete transmission to all M destinations

is given by T̃K = maxm T̃
(m)
K . The average number of data packets received per
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transmission is given by the ratio K/E[T̃K ]. We account for the overhead by scaling

the number of packets received per transmission by n/(n + K), which is the ratio

of number of information symbols to the total number of symbols (information plus

overhead) sent with each transmission. We define throughput S as the effective

portion of each transmission that contains message information; S is a measure of

throughput in packets per transmission and takes values between 0 and 1.

S =
K

E[T̃K ]

n

n + K
=

K

E[maxm T̃
(m)
K ]

n

n + K
packets/transmission (5.1)

The difficulty in evaluating the throughput S is in solving for the expected maximum

E[maxm T̃
(m)
K ], particularly because T̃

(m)
K are correlated random variables. To deal

with this difficulty, we cite the following lemma from [45].

Lemma 12. Suppose X1, . . . , XM are identically distributed, but not necessarily

independent random variables. For any t > 0,

E[max(X1, . . . , XM)] ≤ 1

t

(
ln M + ln E[etX1 ]

)
. (5.2)

By applying Lemma 12 to our expression for the throughput in 5.1, we obtain

a lower bound on the effective throughput as described in the following theorem.

Theorem 13. The effective multicast throughput S in packets per transmission for

random linear coding over groups of K packets is lower bounded, for any t > 0, as

S ≥ tK

ln M + lnE[et eT ]

n

n + K
(5.3)

where random variable T̃ denotes the number of slots needed for successful recovery of

the K packets at one of the M destinations and n denotes the number of information

symbols per packet.
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Next we consider two particular channel models and in each case, we describe

E[et eT ], which allows us to characterize the throughput.

5.3 A time-invariant channel

In this section we assume that the behavior of the wireless channel to each of

the M destination nodes is invariant with respect to time. In each time slot, we let

q(n, u) denote the probability that a transmitted packet (random linear combina-

tion) is correctly received. The channel is time-invariant in the sense that q(n, u)

takes the same value in every time slot. As discussed above, for a realistic wireless

channel, the probability that a transmitted packet is dropped must increase with

the length of the packet in bits. As such, q(n, u) is decreasing in the symbols per

packet n and the alphabet size u. For this time-invariant channel, the following

result characterizes E[et eT ].

Theorem 14. For a time-invariant channel with erasure probability q(n, u) in each

slot and random linear coding over K packets, the moment generating function of

the number of slots needed for a destination node to recover the original K packets

is given by

E[et eT ] =

K−1∏

j=0

q(n, u)
(
1 − u−K(uj − 1)

)

e−t − 1 + (1 − u−K(uj − 1)) q(n, u)
(5.4)

Proof. Let Yj, j = 0, 1, . . . , K − 1 denote the number of slots needed for the des-

tination to receive a linearly-independent random linear combination given that j

linearly-independent random linear combinations have already been received at the
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destination. Then Yj is geometrically distributed with parameter (1 − u−K(uj −

1))q(n, u) since there are uj −1 possible ways to generate a new random linear com-

bination that is linearly dependent on the j random linear combinations that have

already been received. Furthermore, Yj, j = 0, 1, . . . , K − 1 are independent. The

total time needed for a destination to receive K linearly independent random linear

combinations is given by T̃ = Y0 + Y1 + . . . + YK−1. Then we have

E[et eT ] = E[et(Y0+Y1+...+YK−1)] (5.5)

= E[etY0etY1 × . . . × etYK−1 ] (5.6)

(a)
=

K−1∏

j=0

E[etYj ] (5.7)

(b)
=

K−1∏

j=0

q(n, u)
(
1 − u−K(uj − 1)

)

e−t − 1 + (1 − u−K(uj − 1)) q(n, u)
(5.8)

where equality (a) is due to independence and (b) follows from the moment gener-

ating function of a geometric random variable.

We obtain a lower bound on the effective throughput for the time invariant

channel by applying the expression for E[et eT ] given in Theorem 14 to the bound

provided in Theorem 13. Note that in order for E[et eT ] to be a positive quantity, we

require that t < − ln(1 − q(n, u)(1 − u−1 + u−K)) in addition to t > 0 as stated in

Theorem 13.

We now describe the means by which q(n, u) is characterized. Let us assume

that there is no channel coding or redundancy among the n symbols in a packet.

In other words, {s1, s2, . . . , sK} are uncoded information symbols. Then a random

linear combination is received without error only if all n symbols are received without
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Figure 5.1: Lower bounds on the throughput S (solid line) and data rate R (dashed
line) versus symbols per packet n for a time-invariant channel. Multicast transmis-
sion to M = 10 destination nodes with alphabet u = 8, QAM modulation, and
SNR/bit 3.5 dB. Random linear coding is performed over K = 80 packets.

error. Then

q(n, u) = (1 − Pu)
n. (5.9)

where Pu denotes the error probability for a u-ary symbol transmitted over the chan-

nel. We note that Pu is independent of n but depends on u as well as features of

the channel such as pathloss and resulting signal-to-noise ratio (SNR). We will con-

sider a wireless channel of limited bandwidth, for which modulation techniques such

as pulse amplitude modulation (PAM), phase shift keying (PSK), and quadrature

amplitude modulation (QAM) are appropriate. For these modulation techniques,

Pu → 1 as u → ∞ [46], which implies that for fixed n, q(n, u) → 0 as u → ∞.

Furthermore, it is clear from 5.9 that q(n, u) approaches zero exponentially fast as

n increases.

As a numerical example, we have plotted the lower bounds on the through-
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Figure 5.2: Lower bounds on the throughput S (solid line) and data rate R (dashed
line) versus alphabet size u for a time-invariant channel. Multicast transmission to
M = 10 destination nodes with n = 250 symbols per packet, QAM modulation, and
SNR/bit 3.5 dB. Random linear coding is performed over K = 80 packets.

put in packets per transmission S and on the data rate R = Sn log2 u in bits per

transmission for QAM modulation over an additive white Gaussian noise (AWGN)

channel. In this case the symbol error probability for the optimum detector is ap-

proximated by [46]

Pu ≈ 1 −
(

1 − 2

(
1 − 1√

u

)
Q

(
3γb log2 u

u − 1

))2

(5.10)

where γb is the SNR per bit and Q is the complementary cumulative distribution

function for the Gaussian distribution. The above expression for Pu holds with

equality for log2 u even. For these results the value of t in Theorems 13 and 14 has

been numerically optimized subject to the criteria 0 < t < − ln(1−q(n, u)(1−u−1+

u−K)). Example results are shown in three different forms. In Figure 5.1, we have

displayed the throughput as a function of n for fixed values of u and K. Figure
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Figure 5.3: Lower bounds on the throughput S (solid line) and data rate R (dashed
line) versus K for a time-invariant channel. Multicast transmission to M = 10
destination nodes with n = 250 symbols per packet, QAM modulation, alphabet
size u = 8, and SNR/bit 3.5 dB.

5.2 shows throughput as a function of the alphabet size u when n and K are fixed.

Finally, Figure 5.3 displays the throughput as a function of K for fixed n and u.

In all three cases, we see that the throughput and data rate are concave functions,

admitting optimum values for n, u, and K. We note that if any one of n, u, or K

grows large as the other two values are fixed, the throughput approaches zero.

5.4 A time-varying channel

In this section we consider the multicast throughput performance of random

coding over a channel for which the probability of reception q(n, u) varies in time.

We assume that the length or information content of a packet, given by the symbols

per packet n and the alphabet size u, is fixed. Thus for a channel of fixed bandwidth,
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Figure 5.4: Packet erasure version of the Gilbert-Elliot channel model. The proba-
bility of packet reception is denoted qG in state G and qB in state B.

the duration of the time slot needed to transmit a packet is fixed. We further assume

that the channel varies slowly with respect to the packet duration; equivalently, the

coherence time of the channel is larger than the packet duration. This assumption

is manifested by assuming that the reception probability q(n, u) is fixed over a time

slot. However the probability q(n, u) will vary from slot to slot.

We will represent a time-varying channel by a packet-erasure version of the

Gilbert-Elliot model [47]. We assume that in any time slot, the channel is in one of

two possible states S: it is either in a “good” state or in a “bad” state. Thus the

state variable S takes one of two possible values, S ∈ {G, B}. When in state G,

a transmitted packet is correctly received with probability qG(n, u); when in state

B, a transmitted packet is correctly received with probability qB(n, u). As stated

above, we assume that n and u are fixed and simplify notation by denoting qG(n, u)

as simply qG and qB(n, u) as simply qB. The state S of the channel evolves according

to a Markov chain with transition probabilities g and b as shown in Fig. 5.4. We

assume that the channels to each of the M destinations evolve according to the

Gilbert-Elliot model with identical parameters qG, qB, g, and b.

To describe the multicast throughput of the random coding scheme over this

time-varying channel, we develop techniques to compute E[et eT ] for each of the M
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pGj = 1−(1−u−K(uj−1))qG

pBj = 1−(1−u−K(uj−1))qB

bpGj

gpBj

(1−b)pGj (1−g)pBj

(G, j) (B, j)

(G, j+1) (B, j+1)

b(1−pGj)
g(1−pBj)

(1−b)(1−pGj) (1−g)(1−pBj)

Figure 5.5: Markov chain model representing the process of transmission to one
destination over the time-varying channel.

destination nodes and then apply Theorem 13. If we focus on a single destination

node, the reception process can be represented by the augmented Markov chain

shown in Fig. 5.5. The state of the chain is given by the pair (S, j), where S ∈

{G, B} denotes the channel state, and j ∈ {0, 1, . . . , K} denotes the number of

linearly independent packets the destination has received. The parameter K denotes

the number of packets involved in forming random linear combinations. The Markov

chain consists of 2(K + 1) states. The states (G, K) and (B, K) are absorbing

states since the original K packets can be recovered from either of those states.

The transition probabilities of the Markov chain are as shown in Fig. 5.5. The

total transmission time T̃ corresponds to the number of slots needed to reach state

(S, K) from state (S, 0). We make use of the following general result on the moment

generating function of the hitting time for a discrete-time Markov chain in order to

determine E[et eT ].
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Theorem 15. For a Markov chain with state space {1, 2, . . . , n} and transition prob-

ability matrix P, let λi denote the eigenvalues of P and Ti denote the time needed to

reach state n from state i, i ∈ {1, . . . , n−1}. For all t /∈ {− log(λi)|λi is real and positive}

E[etTi ] = 1 + (et − 1)[(I− etP)−1g]i (5.11)

where [v]i denotes the ith element of v and g is a column vector with g(n) = 0 and

g(i) = 1 for i ∈ {1, . . . , n − 1}.

Proof. In terms of the transition probability matrix P, we can express the distribu-

tion of Ti as follows.

Pr(Ti=j) = Pr(transition i to n in j steps)−Pr(transition i to n in j−1 steps)

= 1 − [Pjg]i − (1 − [Pj−1g]i)

= [Pj−1g]i − [Pjg]i (5.12)

Then the moment generating function is given by

E[etTi ] =

∞∑

j=1

etjPr(Ti = j)

=
∞∑

j=1

etj [Pj−1g]i −
∞∑

j=1

etj [Pjg]i

=

∞∑

j=0

et(j+1)[Pjg]i + 1 −
∞∑

j=0

etj [Pjg]i

= 1 +
∞∑

j=0

(
et(j+1) − etj

)
[Pjg]i

= 1 +
(
et − 1

) ∞∑

j=0

[etjPjg]i. (5.13)
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Next, let z(t) =
∑∞

j=0(e
tP)jg. For z(t) the following holds.

z(t) =
∞∑

j=0

(etP)jg

= g + etP

∞∑

j=0

(etP)jg

= g + etPz(t) (5.14)

Then (I − etP)z(t) = g. For any t such that t /∈ {− log(λi)|λi is real and positive},

the matrix inverse (I − etP)−1 exists. In this case z(t) = (I − etP)−1g and the

moment generating function is given by

E[etTi ] = 1 +
(
et − 1

) ∞∑

j=0

[etjPjg]i

= 1 +
(
et − 1

)
[

∞∑

j=0

etjPjg

]

i

= 1 +
(
et − 1

) [
(I − etP)−1g

]
i
. (5.15)

We apply Theorem 15 to determine E[et eT ] for random coding over the time-

varying channel in the following way. We assume that qB = 0, so that a packet

can only be received when the channel is in state G. This assumption ensures

that the reception process always initiates in state (G, 0). The generating function

E[et eT ] is given by the time to reach state (G, K) from state (G, 0). We let P

denote the 2(K + 1) × 2(K + 1) transition matrix of the Markov chain shown in

Fig. 5.5. We make use of the column vector g whose elements are all 1 except

for the elements corresponding to states (G, K) and (B, K), where g takes value 0.

By making use of Theorem 15, we find E[et eT ] of the time needed for a destination
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node to receive K linearly independent coded packets. We then apply Theorem 13

to determine the multicast throughput. This computation can be done numerically

and the value of t in Theorem 13 is optimized numerically subject to t > 0 and

t /∈ {− log(λi)|λi is real and positive}.

We compare the resulting bound on the effective multicast throughput for our

time-varying channel with the corresponding bound for an equivalent time-invariant

channel with reception probability

q =
g

g + b
qG +

b

b + g
qB. (5.16)

An example of the results is shown in Fig. 5.6, which plots the effective multicast

throughput versus K for three different time-varying channels (given by three dif-

ferent pairs (g, b)) and their equivalent time-invariant channel. We have assumed

a fixed value of qG(n, u), given by QAM modulation over an AWGN noise channel

as shown in Equations 5.9 and 5.10, and qB(n, u) = 0. In these results, the effec-

tive throughput for the time-varying channel is smaller than the throughput for the

equivalent time-invariant channel, indicating the extent to which the variation in

the channel causes a degradation in performance.

5.5 Discussion

In this chapter, we explored the multicast throughput performance of random

coding while taking account of the packet length, overhead, and physical effects of

the wireless medium. We modeled the erasure probability as an increasing function

of the packet length, given by the symbols per packet n and the symbol alphabet u.
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Figure 5.6: Lower bounds on the throughput S versus K for a time-varying channel.
Multicast transmission to M = 10 destination nodes with n = 250 symbols per
packet, QAM modulation, alphabet size u = 8, and SNR/bit 3.5 dB in the good
state and −∞ dB in the bad state. The dotted line shows throughput over a time-
varying channel with given g and b values and the solid line shows throughput over
the equivalent time-invariant channel.

Our results clearly indicate a tradeoff between the packet length and the throughput.

As the number of symbols per packet n grows large, the effect of overhead becomes

negligible, but the erasure probability grows and the transmissions are more likely

to fail. Alternatively, as n approaches zero, transmissions are more likely to succeed,

but the number of information symbols becomes negligible compared to the overhead

symbols. In a similar manner, as the alphabet size u grows, the random linear

coding becomes more efficient in the sense that the random coefficients ai approach

real numbers, for which we need only K random linear combinations in order to

decode. However, a large alphabet size causes the erasure probability to increase

and transmissions are likely to be unsuccessful.

We have also explored the effective throughput as a function of K, the number
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of packets involved in random linear coding. In contrast to our observations in

Chapters 2 and 3, where we saw that the throughput increases with K, in this

chapter we showed that when accounting for the overhead required for random

coding, the throughput becomes a concave function of K.

Our results characterize the effective multicast throughput for both a time-

invariant and a time-varying channel. For our packet erasure Gilbert-Elliot channel,

we have quantified the degradation in throughput due to the time-varying nature

of the channel. In all cases, we observed that the throughput is a concave function

of n, u, and K. As such, system design for wireless multicast with random coding

should involve the choice of the throughput-optimal n, u, and K.

We have argued in this chapter that for a practical channel, the erasure proba-

bility is an increasing function of the symbols per packet n and the symbol alphabet

u. We considered as an example a simple case in which there is no error-control cod-

ing performed among the symbols in the packet prior to the random linear coding

performed over multiple packets. In this example, all n symbols in the packet must

be received without error and it’s clear that the erasure probability approaches one

exponentially fast as n increases. Alternatively, we could consider a concatenated

coding approach, such as the one in [48], where error-correcting codes are applied to

the symbols within a data packet before random linear coding is applied over multi-

ple packets. In this case, the packet erasure probability will still approach one as n

increases, albeit at a slower rate due to the error-correcting code. In this case, the

behavior of the channel could be used to determine which of the two levels of coding

should introduce more redundancy in order to maximize the overall throughput of
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the system.

Finally, our emphasis in this chapter on the multicast throughput performance

as a function of the packet length has implications for network coding in multihop

networks. We have shown that when accounting for overhead and the physical

effects of the channel, over a single hop, the throughput approaches zero as either the

symbols per packet n or the alphabet size u increases. This behavior has implications

for a number of previous results, including [37, 49, 50], which consider network

coding over a network of erasure links and analyze performance in the limit as the

packet length grows without bound. Our results suggest a need to further examine

the performance of network coding for finite-length packets.
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Chapter 6

Conclusion

6.1 Summary of contributions

We first analyzed the multicast throughput in a random access network of

finitely many nodes, each of which serves as either a source node or a destination

node. We quantified the Shannon capacity region as well as the stable throughput

and the saturated throughput for retransmissions and random linear coding. Our

results indicate the extent to which the random linear coding scheme can outperform

the retransmission scheme. We showed that for multicast transmission, the stable

throughput region does not coincide with the Shannon capacity region; this result

stands in stark contrast to a longstanding conjecture that the stable throughput

and capacity regions coincide for unicast transmission. Finally, we provided inner

and outer bounds on the stable multicast throughput for arbitrarily (but finitely)

many source nodes; the saturated throughput was shown to fall between the inner

and outer bounds. These contributions are described in Chapter 2 and appear in

our published works [51, 52, 53, 54].

Next, we considered a random access network of general topology in which each

node can act as a receiver or a sender for multiple multicast flows. We examined

the multicast throughput both from the perspective of the receiver (non-guaranteed

multicast) and from the perspective of the transmitter (guaranteed multicast). In
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both cases, we quantified the throughput and presented schemes for nodes in the

network to compute their random access transmission probabilities in such a way as

to maximize a weighted proportional fairness objective function of the throughput.

Our approach to the guaranteed multicast problem involved the use of random cod-

ing. Chapter 3 describes our contribution to this problem, which has been published

in [55].

We then turned our focus to the queueing delay performance of random linear

coding. We proposed that random coding of packets be modeled as a bulk-service

queueing system, where packets are served and depart the queue in groups. In the

bulk-queueing framework, we analyzed two different random linear coding schemes.

The first scheme involved a fixed expected coding rate (or fixed number of packets

used in coding), which led to a delay penalty for lightly-loaded systems. The second

scheme adapted to the traffic load by allowing for a variable number of packets used

in coding, thereby removing the delay penalty at low loads. These contributions are

presented in Chapter 4 and in [56, 57].

Finally, we returned to the question of multicast throughput and addressed

the effects of packet length, overhead, and the time-varying nature of the wireless

channel. We presented a packet erasure model for which the erasure probability

increases as a function of the packet length, given by the number of symbols per

packet and the symbol alphabet. We showed how the modulation scheme and noise

level of the channel could be accounted for in the erasure probability. We also

quantified the performance of random linear coding over a time-varying channel,

which was modeled by a packet-erasure channel for which the erasure probability
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transitions between ‘good’ and ‘bad’ states. These results appear in Chapter 5 and

portions of this work have been published in [58, 59].

6.2 Additional contributions and collaborations

In addition to the work presented in this dissertation, we have made contribu-

tions to other problems involving multicast transmission. In [60, 61], we presented

results on the information-theoretic feedback capacity of the compound channel.

The compound channel can represent either multicast transmission or channel un-

certainty. Our contributions to this problem include a derivation of the feedback ca-

pacity for a compound channel with memory. Furthermore, in [62], we contributed

to a study of the stable throughput for random linear coding over packets from

disparate multicast sessions, or inter-session coding. We showed that there are in-

stances in which inter-session coding, which involves destination nodes recovering

data that is not intended for them, outperforms a retransmission scheme. This

work provides a simple example demonstrating that the back-pressure algorithm

[63], which is optimal for store-and-forward networks, can be inferior to a coding

approach for multicast transmission.

6.3 Future work

The work outlined in this dissertation has provided valuable theoretical analy-

sis and useful design techniques for multicasting in wireless networks. There remain

a number of open questions in this arena of research, and we conclude by describing
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two of them.

The use of feedback in wireless multicast transmission requires further research

both from a theoretical and a practical perspective. In this dissertation, we have

assumed that instantaneous, error-free feedback can be sent from the destination

nodes to the source node, and this assumption is key to implementing the retrans-

mission and random coding schemes for reliable multicast. In reality, a feedback

link may be difficult to establish (e.g., in satellite broadcast) and may be prone to

errors and delay. The use of feedback in multicast communication presents a par-

ticularly challenging problem: requiring feedback from all destinations would result

in a ”feedback flood.” Important avenues of future research include determining the

loss in multicast data rate due to the failure of a particular destination node to send

feedback as well as proposing scalable feedback schemes that allow a destination

node to determine in a distributed way whether or not to send feedback.

The benefit of network coding in wireless multihop networks is another open

area of research. It has been shown that the optimal (maximum flow) multicast

throughput in a wired network can be obtained by use of network coding in the

limit as the packet length grows to infinity. As we have demonstrated in Chapter 5,

for a practical channel, particularly a wireless channel, the transmission of infinitely

long packets is infeasible and would lead to a throughput of zero. Open questions

remain as to the throughput benefit of network coding for finite-length packets

and channels with error. The overhead required for random network coding is an

important feature; we have taken the first steps in accounting for it, and important

open questions on this issue remain.
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Appendix A

Markov chain model for random linear coding

In the Markov chain analysis of random linear coding presented in Chapter

2, the state (i, j, k) represents i linearly independent coded packets received at des-

tination 1, j linearly independent coded packets received at destination 2, and k

linearly independent coded packets that have been received at both destinations,

k ≤ min(i, j). When source 2 is backlogged, the non-zero transition probabilities

for source 1 are given as follows for i, j = 0, 1, . . . , K.

• (i, j, k) → (i, j, k) :

p1+p1

[
p2

{
(1−q

(1)
1|1)(1−q

(2)
1|1)+(1−q

(1)
1|1)q

(2)
1|1u

j−K+q
(1)
1|1(1 − q

(2)
1|1)u

i−K+q
(1)
1|1q

(2)
1|1u

k−K
}

+p2

{
(1−q

(1)
1|1,2)(1−q

(2)
1|1,2)+(1−q

(1)
1|1,2)q

(2)
1|1,2u

j−K+q
(1)
1|1,2(1 − q

(2)
1|1,2)u

i−K+q
(1)
1|1,2q

(2)
1|1,2u

k−K
}]

• (i, j, k) → (i + 1, j, k) :

p1

[
p2

{
q
(1)
1|1(1 − q

(2)
1|1)(1−ui−K) + q

(1)
1|1q

(2)
1|1(u

j − uk)u−K
}

+p2

{
q
(1)
1|1,2(1 − q

(2)
1|1,2)(1−ui−K) + q

(1)
1|1,2q

(2)
1|1,2(u

j − uk)u−K
}]

130



• (i, j, k) → (i, j + 1, k) :

p1

[
p2

{
(1 − q

(1)
1|1)q

(2)
1|1(1−uj−K) + q

(1)
1|1q

(2)
1|1(u

i − uk)u−K
}

+p2

{
(1 − q

(1)
1|1,2)q

(2)
1|1,2(1−uj−K) + q

(1)
1|1,2q

(2)
1|1,2(u

i − uk)u−K
}]

• (i, j, k) → (i + 1, j + 1, k + 1) :

p1

[
p2

{
q
(1)
1|1q

(2)
1|1(1−(ui + uj − uk)u−K)

}
+p2

{
q
(1)
1|1,2q

(2)
1|1,2(1−(ui + uj − uk)u−K)

}]

• (i, K, k) → (i, K, k) : p1+p1

[
p2

{
(1−q

(1)
1|1)+q

(1)
1|1u

i−K
}

+p2

{
(1−q

(1)
1|1,2)+q

(1)
1|1,2u

i−K
}]

• (i, K, k) → (i + 1, K, k) :

p1

[
p2

{
q
(1)
1|1(1−(ui + K − k)u−K)

}
+p2

{
q
(1)
1|1,2(1−(ui + K − k)u−K)

}]

• (i, K, k) → (i+1, K, k+1) : p1

[
p2

{
q
(1)
1|1(K − k)u−K

}
+p2

{
q
(1)
1|1,2(K − k)u−K

}]

• (K, j, k) → (K, j, k) : p1+p1

[
p2

{
(1−q

(2)
1|1)+q

(2)
1|1u

j−K
}

+p2

{
(1−q

(2)
1|1,2)+q

(2)
1|1,2u

j−K
}]

• (K, j, k) → (K, j+1, k) :

p1

[
p2

{
q
(2)
1|1(1−(uj + K − k)u−K)

}
+p2

{
q
(2)
1|1,2(1−(uj + K − k)u−K)

}]
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• (K, j, k) → (K, j+1, k+1) : p1

[
p2

{
q
(2)
1|1(K − k)u−K

}
+p2

{
q
(2)
1|1,2(K − k)u−K

}]
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