Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Similarity Classification and Retrieval in Cancer Images and Informatics

    Thumbnail
    View/Open
    umi-umd-5342.pdf (3.961Mb)
    No. of downloads: 607

    Date
    2008-04-26
    Author
    Tahmoush, David Alan
    Advisor
    Samet, Hanan
    Metadata
    Show full item record
    Abstract
    Techniques in image similarity, classification, and retrieval of breast cancer images and informatics are presented in this thesis. Breast cancer images in the mammogram modality have a lot of non-cancerous structures that are similar to cancer, which makes them especially difficult to work with. Only the cancerous part of the image is relevant, so the techniques must learn to recognize cancer in noisy mammograms and extract features from that cancer to classify or retrieve similar images. There are also many types or classes of cancer with different characteristics over which the system must work. Mammograms come in sets of four, two images of each breast, which enables comparison of the left and right breast images to help determine relevant features and remove irrelevant features. Image feature comparisons are used to create a similarity function that works well in the high-dimensional space of image features. The similarity function is learned on an underlying clustering and then integrated to produce an agglomeration that is relevant to the images. This technique diagnoses breast cancer more accurately than commercial systems and other published results. In order to collect new data and capture the medical diagnosis used to create and improve these methods, as well as develop relevant feedback, an innovative image retrieval, diagnosis capture, and multiple image viewing tool is presented to fulfill the needs of radiologists. Additionally, retrieval and classification of prostate cancer data is improved using new high-dimensional techniques like dimensionally-limited distance functions and dimensional choice.
    URI
    http://hdl.handle.net/1903/8163
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility