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Techniques in image similarity, classification, and retrieval of breast cancer images 

and informatics are presented in this thesis.  Breast cancer images in the mammogram 

modality have a lot of non-cancerous structures that are similar to cancer, which makes 

them especially difficult to work with. Only the cancerous part of the image is relevant, 

so the techniques must learn to recognize cancer in noisy mammograms and extract 

features from that cancer to classify or retrieve similar images. There are also many types 

or classes of cancer with different characteristics over which the system must work.  

Mammograms come in sets of four, two images of each breast, which enables 

comparison of the left and right breast images to help determine relevant features and 

remove irrelevant features. Image feature comparisons are used to create a similarity 

function that works well in the high-dimensional space of image features. The similarity 

function is learned on an underlying clustering and then integrated to produce an 

agglomeration that is relevant to the images.  This technique diagnoses breast cancer 

more accurately than commercial systems and other published results.  In order to collect 

new data and capture the medical diagnosis used to create and improve these methods, as 

well as develop relevant feedback, an innovative image retrieval, diagnosis capture, and 



 

 

multiple image viewing tool is presented to fulfill the needs of radiologists.  Additionally, 

retrieval and classification of prostate cancer data is improved using new high-

dimensional techniques like dimensionally-limited distance functions and dimensional 

choice. 
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1 Introduction 
 

A technique that radiologists use to diagnose breast cancer involves first finding 

suspicious sites in the mammograms and then comparing the left and right breasts to 

reduce the number of false positives. The symmetry of the human body is utilized to 

increase the accuracy of the diagnosis through visual registration of the mammograms. 

This technique is emulated by combining both computer vision and learning 

techniques, attempting to capture the diagnosis of the radiologist.  Therefore this thesis is 

motivated not only by computer science theory and technique, but also by domain-

specific knowledge and theory. These ideas were verified through a simple approach that 

has been completed with surprisingly good results at diagnosing breast cancer that is 

described in Chapter 3. It is hoped that this thesis will improve techniques in image 

similarity and CBIR, as well as provide insights into medical imaging and especially into 

the imaging of breast cancer.  

Breast cancer remains a leading cause of cancer deaths among women in many parts 

of the world. In the United States alone, over forty thousand women die of the disease 

each year [5]. Mammography is currently the most effective method for early detection of 

breast cancer [77], and example mammograms are shown in Figure 1. For two-thirds of 

the women whose initial diagnosis of their mammogram is negative but who actually 

have breast cancer, the cancer is evident upon a second diagnosis of their mammogram 

[77]. Computer-aided detection (CAD) of mammograms could be used to avoid these 

missed diagnoses, and has been shown to increase the number of cancers detected by 

more than nineteen percent [41], so there is hope that improving techniques in 
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computerized detection of breast cancer could significantly improve the lives of women 

across the globe. Asymmetry, which consists of a comparison of the left and right breast 

images [39], is a technique that has been neglected in CAD but could be used to 

significantly improve the results. An automated prescreening system only classifies a 

mammogram as either normal or suspicious, while CAD picks out specific points as 

cancerous [12]. One of the most challenging problems with prescreening is the lack of 

sensitive algorithms for the detection of asymmetry [11]. Image similarity methods can 

capture the asymmetry properties, and then improve both CAD and prescreening of 

breast cancer.  

Contextual and spatial comparisons can be combined to determine image similarity, 

which has been often utilized for content-based image retrieval (CBIR) from image 

databases [34, 45, 49, 103]. Medical image databases have also used image similarity, 

ranging from rule-based systems for chest radiographs [107] to anatomical structure 

matching for 3-D MR images [50] to learning techniques [48]. However, the focus is 

often on the non-cancerous structures, while it is the cancerous structures that are of 

principle interest. This thesis applies image similarity concepts to the problem of 

detecting breast cancer in mammograms and CBIR.   

Detecting breast cancer in mammograms is challenging because the cancerous 

structures have many features in common with normal breast tissue. This means that a 

high number of false positives or false negatives are possible. Asymmetry can be used to 

help reduce the number of false positives so that true positives are more obvious. 

Previous work utilizing asymmetry has used wavelets or structural clues to detect 

asymmetry with correct results as often as 77% of the time [39, 83]. Additional work has 
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focused on bilateral or temporal subtraction, which is the attempt to subtract one breast 

image from the other [114, 123]. This approach is hampered by the necessity of exact 

registration and the natural asymmetry of the breasts. Bilateral subtraction tries to utilize 

the multiple images taken with the same machine by the same technician and analyzed 

using the same process in an effort to reduce the systematic differences that can be 

introduced. Developing ways to better utilize asymmetry is consistent with a philosophy 

of trying to use methods that can capture measures deemed important by doctors thereby 

building upon their knowledge base, instead of trying to supplant it.  However, measuring 

asymmetry involves registration and comparing multiple images, and thus it is a more 

complicated process.   

Registration is the matching of points, pixels, or structures in one image to another 

image. Registration of mammograms is difficult because mammograms are projections of 

compressed three-dimensional structures.  Primary sources of misregistration are 

differences in positioning and compression, which manifests itself in visually different 

images. The problem is more complex because the breast is elastic and subject to 

compression.  Additional sources of difficulties include the lack of clearly defined 

landmarks and the normal variations between breasts. Strictly speaking, precise 

mammogram registration is intractable. However, an approximate solution is possible 

[110]. Warping techniques have been used [96], as well as statistical models [121] or 

mutual information as a basis for registration [115]. The technique used in this thesis 

learns image comparison models based upon clustering that encapsulate an approximate 

registration and uses them to compare the mammograms of the left and right breasts. This 
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method also avoids direct registration by applying a similarity technique to measure the 

image similarity and build a CBIR system. 

     

  (a)                             (b)                            (c)                           (d) 

Figure 1: The typical set of four images that make up a mammogram, the 

side view of the left breast in (a), the side view of the right breast in (b), the 

top view of the left breast in (c), the top view of the right breast in (d). The 

cancerous areas are outlined in red. Since the images come in sets, the non-

cancerous cases are examples of similar images, while the cancerous cases are 

examples of dissimilar images, and these examples can be used to determine 

image similarity. Note that the textures of the cancer are very similar to non-

cancerous areas, which is why image comparisons are so important in the 

analysis of mammograms. Also note that the cancer is apparent in both 

images of the same breast, which provides additional information for the 

analysis. This image set was correctly classified by the method described in 

Chapter 3.     

In order to create an effective CBIR and cancer diagnosis technique for breast cancer 

images, methods are needed to efficiently retrieve data based on similarity to a given 



5 

 

exemplar or set of exemplars. The retrieval is generally in response to queries such as the 

following: 

 

1. Finding objects having particular feature values (point queries). 

2. Finding objects whose feature values fall within a given range or where the 

distance from some query object falls into a certain range (range queries). 

3. Finding objects whose features have values similar to those of a given query 

object or set of query objects (nearest neighbor queries). 

4. Finding pairs of objects from the same set or different sets which are sufficiently 

similar to each other (‘all closest pairs’ queries). This is also a variant of a more 

general query commonly known as a spatial join query. 

 

These queries are collectively referred to as similarity retrieval, and supporting them 

is the subject of this proposal. Of these queries, the nearest neighbor query is particularly 

important, and it is the one that is emphasized.  An apparently straightforward solution to 

finding the nearest neighbor is to compute a Voronoi diagram for the data points (i.e., a 

partition of the space into regions where all points in the region are closer to the region’s 

associated data point than to any other data point), and then locate the Voronoi region 

corresponding to the query point. The problem with this solution is that the combinatorial 

complexity of the search process in high dimensions, expressed in terms of the number of 

objects, is prohibitive thereby making it virtually impossible to store the Voronoi diagram 

which renders its applicability moot. 
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                                                     (a)                                                                          (b)                                      

Figure 2: A probability density function (analogous to a histogram) of the 

distances d(p,x) with the shaded area corresponding to |d(q,p)-d(p,x)|/εεεε.  (a) 

indicates a density function where the distance values have a small variation, 

while (b) indicates a more uniform distribution of distance values thereby 

resulting in a more effective use of the triangle inequality to prune objects 

from consideration as satisfying the range search query. 

  The problem described above is typical of the issues that must be faced when 

dealing with high-dimensional data. Generally speaking, multidimensional problems such 

as these queries become increasingly more difficult to solve as the dimensionality 

increases. The difficulties that are encountered are attributed to the curse of 

dimensionality which surfaces in a number of different forms. In essence, the term was 

coined by Bellman [20] to indicate that the number of samples needed to estimate an 

arbitrary function with a given level of accuracy grows exponentially with the number of 

variables (i.e., dimensions) that comprise it. For similarity searching (i.e., finding nearest 

neighbors), this means that the number of objects (i.e., points) in the data set that need to 
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be examined in deriving the estimate (i.e., the nearest neighbor) grows exponentially with 

the underlying dimension. 

  The curse of dimensionality has a direct bearing on similarity retrieval in high 

dimensions in the sense that it raises the issue of whether or not nearest neighbor 

searching is even meaningful in such an environment.  In particular, it has been shown 

that for data and queries drawn from a uniform distribution, the distance to the nearest 

neighbor and the distance to the farthest neighbor tend to converge as the dimension 

increases [38].  This is why dimension reduction is an important issue in classification.  

  Assuming that the distance d is a distance metric (which is the case for the 

commonly used Minkowski metric Lp), and hence that the triangle inequality holds, an 

alternative way of understanding the ramifications of the curse of dimensionality is to 

observe that when dealing with high-dimensional data, the probability density function 

(analogous to a histogram) of the distances of the various elements is more concentrated 

and has a larger mean value.  This means that similarity searching algorithms will have to 

perform more work.  In the worst case, for an arbitrary object x, there is the situation 

where d(x,x)=0 and d(x,y)=1 for all y x, which means that a similarity query must 

compare the query object with every object of the set.  One way to see why more 

concentrated probability densities lead to more complex similarity searching is to observe 

that this means that the triangle inequality cannot be used so often to eliminate objects 

from consideration.  In particular, the triangle inequality implies that every element x 

such that |d(q,p)-d(p,x)|> ε cannot be at a distance of ε or less from q (i.e., from d(q,p) < 

d(p,x)+d(q,x)).  For the probability density function of d(p,x), when ε is small while the 

probability density function is large at d(p,q), then the probability of eliminating an 
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element from consideration via the use of the triangle inequality is the remaining area 

under the curve, which is quite small (see Figure 2a in contrast to Figure 2b where the 

density function of the distances is more uniform). 

The high dimensionality of the data also has an effect on the search process which is 

aided by the presence of indexes.  In particular, for uniformly distributed high-

dimensional data, most of the data lies near the boundary of the underlying space (e.g., 

[15]) and thus most indexes result in visiting all of the index blocks.  This has led to the 

use of methods based on a sequential scan (e.g., [16, 38, 112]).  However, these methods 

also make use of a variant of an index in the sense that they resort to the use a 

compressed index on the data to speed up the sequential scan. 

 A number of methods have been proposed to overcome the curse of dimensionality.  

One approach is to observe that the data is rarely uniformly distributed which leads to 

pointing out that some dimensions are more significant than others thereby focusing on 

them (e.g., [44, 55, 66]).  Such methods are also known as dimension-reduction 

techniques and some examples include SVD [47] and the Discrete Fourier Transform 

(DFT) [43].  The traditional and the state-of-the-art dimensionality reduction methods can 

be generally classified into feature extraction [78, 80, 86] and feature selection [19, 29, 

120] approaches. In general, feature extraction approaches are more effective than the 

feature selection techniques [32, 111, 117] and they have shown to be very effective for 

real-world dimensionality reduction problems [37, 60, 78, 80].  Many scalable online FE 

algorithms have been proposed.  Incremental PCA (IPCA) [7, 81] is a well-studied 

incremental learning algorithm. The latest version of IPCA is called Candid Covariance-

free Incremental Principal Component Analysis (CCIPCA) [113]. However, IPCA 
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ignores the valuable label information of data and is not optimal for general classification 

tasks. The Incremental Linear Discriminant Analysis (ILDA) [56] algorithm has also 

been proposed recently. Another feature extraction algorithm is called Incremental 

Maximum Margin Criterion (IMMC) [116]. 

 The above discussion about the effects of the curse of dimensionality implicitly 

assumed that the data lies in a vector space. In other words, is is based on the premise that 

the features that describe the objects (and hence the dimensionality of the underlying 

feature space) are known. In fact, it is often quite difficult to identify the features and in 

such a case the only available information is a distance function d that indicates the 

degree of similarity (or dis-similarity) between all pairs of objects, given a set of N 

objects. Usually d is required to obey the triangle inequality, be non-negative, and be 

symmetric, in which case it is known as a metric and also referred to as a distance metric. 

Some examples of distance functions that are distance metrics include edit distances such 

as the Levenshtein [76] and Hamming [51] distances for strings and the Hausdorff 

distance for images (e.g., [65]. There are two ways of performing similarity retrieval 

using such data. The first is to embed the data in a vector space using an embedding 

method such as FastMap [35], SparseMap [64], etc. [59], and then apply one of the 

classical spatial indexing methods similar to what is done in dimension reduction. The 

second is to use a distance-based index [58] such as a vp-tree [108, 122], mvp-tree [22], 

gh-tree [108], GNAT [23], M-tree [27], sa-tree [84], kNN graph [100], etc. 

The rest of this thesis is organized as follows. Chapter 2 describes ultrasound and 

feature extraction from ultrasound images, as well as mammogram images and feature 

extraction from mammograms.  Chapter 3 details a supervised k-means approach taken as 
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an initial data exploration and classification approach, and the development of a 

similarity function.  Chapter 4 describes the medical image database capabilities and 

techniques. The some work on content-based image retrieval of medical images are in 

Chapter 5.  Appendix A contains a selection of relevant Mammographic images.   
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2 Data and Image Description 
 

This Chapter gives a brief introduction to various data types and images used in this 

thesis.    

2.1 Ultrasound 

Ultrasound, also known as sonography, is an imaging method in which high-

frequency sound waves are used to outline a part of the body. High-frequency sound 

waves are transmitted through the area of the body being studied and the sound wave 

echoes are picked up and translated by a computer into an image. Breast ultrasound is 

sometimes used to evaluate breast problems that are found during a screening or 

diagnostic mammogram or on physical exam, but it is not yet routinely used for 

screening.  Ultrasound may be a helpful addition to mammography when screening 

women with dense breast tissue, which is difficult to evaluate by mammogram. 

Ultrasound is useful for evaluating some breast masses and can determine if a suspicious 

area is a cyst without placing a needle into it to aspirate fluid.  

This thesis builds upon the experience of doctors by capturing the most relevant 

medical criteria for a particular imaging type, which for ultrasound are shape type, 

margin type, and width-to-anteroposterior (AP) dimension ratio [91].  Examples are in 

Figure 3. Other criteria from the literature like the Stavros Criteria [40, 106] include 

posterior echoes (enhanced, unaffected, or decreased), echogenicity (intensity of internal 

echoes), echotexture (homogeneity of internal echoes), the presence of calcifications, the 

presence of lateral edge refraction, and presence of a pseudocapsule. These may be 
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included, but have not been shown to be as important as the characteristics of shape, 

margin, and width-to-AP ratio [91]. 

          

                                          (a)                                                                          (b)                                      

Figure 3: Ultrasound images of two different cancers. These have had their 

margin, or boundary, determined by a collaborator. The white dots are edges 

that have been detected, and the red line is a boundary that has been 

determined. Image (a) has a lobulated shape, while image (b) has a 

microlobulated margin. 

 

2.2 Mammograms 

 

 

A mammogram is an x-ray exam of the breast. It is used to detect and diagnose breast 

cancer, both in women who have no breast complaints or symptoms and in women who 

have breast symptoms (problems such as a lump, pain, or nipple discharge). The special 

type of x-ray machine used for the breasts is different than for other parts of the body and 

produces x-rays that do not penetrate tissue as easily as that used for routine chest films 
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or x-rays of the arms or legs, but gives a better image of variations in tissue density.  For 

a mammogram, the breast is squeezed between two plastic plates attached to the 

mammogram machine unit in order to spread the tissue apart. This squeezing or 

compression ensures that there will be very little movement, that the image is sharper, 

and that the exam can be done with a lower x-ray dose. However, it also makes 3-D 

reconstruction of the breast structure much more difficult. 

 Mammography produces a black and white image of the breast tissue on a large 

sheet of film as shown in Figure 4, which is interpreted by a radiologist, though modern 

mammography machines are digital. Radiologists have special training in diagnosing 

    

               (a)                                        (b)                                      (c)                                      (d) 

Figure 4: The typical set of four images that make up a mammogram, 

the side view of the left breast in (a), the side view of the right breast in (b), 

the top view of the left breast in (c), the top view of the right breast in (d). 

The cancerous areas are outlined in red. Comparing this mammograms set 

with Figure 1 shows some of the variation in the size and morphology of 

spiculated lesions.  This image set was correctly classified by the method 

described in Chapter 3.     
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diseases by looking at images of the inside of the body produced using x-rays, sound 

waves, magnetic fields and other methods. Reading mammograms can be challenging 

because the appearance of the breast on a mammogram varies a great deal from woman 

to woman. Some breast cancers produce changes in the mammogram that are difficult to 

notice and can be overlooked.  One of these types of cancers is spiculated lesions, which 

are highly malignant, and upon which this thesis focuses.  It is very important for the 

radiologist to have the x-ray films from previous mammograms and not just the report for 

comparison. This helps the radiologist find small changes and detect a cancer as early as 

possible. This type of multiple image comparison is incorporated into the image viewing 

tool that this thesis developed for radiologists. Simultaneous and independent zooming 

into the details of the images in allows better comparisons. 

 

     

               (a)                                        (b)                                      (c)                                      (d) 

Figure 5: The typical set of four images that make up a mammogram. 

Comparing this mammograms set with Figures 1 and 4 shows some of the 

variation in the size and morphology of spiculated lesions.  This image set was 

correctly classified by the method described in Chapter 3.     
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Figure 6: Mammographic images of microcalcifications. Clusters of 

microcalcifications can be indicative of malignant cancer. 

 

Breast cancer takes years to develop. Early in the disease, most breast cancers have 

none of the obvious symptoms like lumps. When breast cancer is detected in a localized 

stage when it has not spread to the lymph nodes, the five year survival rate is 98%. If the 

cancer has spread to the auxiliary lymph nodes, the rate drops to 80%. If the cancer has 

metastasized to distant organs such as the lungs, bone marrow, liver, or brain, the five-

year survival rate is only 26% [5]. A screening mammogram is an x-ray exam of the 

breast in a woman who has no symptoms, and example mammograms are shown in 

Figures 1, 4, and 5.  The goal of a screening mammogram is to find cancer when it is still 

too small to be felt by a woman or her doctor. Finding small breast cancers early by a 

screening mammogram greatly improves a woman’s chance for successful treatment. A 

screening mammogram usually takes two x-ray images of each breast. For some patients, 

more pictures may be needed to include as much breast tissue as possible.   
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                                          (a)                                                                          (b)                                      

Figure 7: A mammographic image of a circumscribed lesion is in (a). The 

ring structure is one of the key features that can be picked out of a 

mammogram. A mammographic image of a spiculated lesion is in (b). The bright 

center or core is one feature of these lesions, as well as the radiating lines which 

are called spiculations. 

Radiologists look for several types of features, one of which is calcifications. 

Calcifications are tiny mineral deposits within the breast tissue, which look like small 

white spots on the films. They may or may not be caused by cancer. There are two 

classifications of calcifications, macrocalcifications and microcalcifications. 

Macrocalcifications are larger calcium deposits that are most likely changes in the breasts 

caused by aging of the breast arteries, old injuries, or inflammation.  These deposits are 

related to noncancerous conditions and do not require a biopsy. Macrocalcifications are 

more serious, and are found in about half the women over fifty, and in one of ten women 

under fifty [5]. Microcalcifications are tiny specks of calcium in the breast and are shown 

in Figure 6. They may appear alone or in clusters, and clusters are more concerning. 
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Microcalcifications do not always mean that cancer is present. The shape and layout of 

microcalcifications help the radiologist judge how likely it is that cancer is present.  

A mass, which may occur with or without calcifications, is another important feature 

seen on mammograms.  A circumscribed and a spiculated mass are shown in Figure 7.  

There are many non-cancerous structures in the breast that can obscure masses and have 

similar textures to cancers.  As with calcifications, a mass can be caused by benign breast 

conditions or by breast cancer. Masses can be caused by many things, including cysts 

(non-cancerous, fluid-filled sacks) and non-cancerous solid tumors (such as 

fibroadenomas), but they could be cancer and usually should be biopsied if they are not 

cysts. A cyst cannot be diagnosed by physical exam alone, nor can it be diagnosed by a 

mammogram alone. To confirm that a mass is really a cyst, either breast ultrasound or 

removal of fluid with a needle (aspiration) is needed. If a mass is not a simple cyst (that 

is, if it is at least partly solid), then more imaging tests may be necessary. Some masses 

can be observed with periodic mammograms to look for changes in size or shape, while 

others may need a biopsy. The size, shape, and margins (outline or edges) of the mass 

help the radiologist to determine whether cancer may be present. Shapes or types of 

masses include round, lobulated, oval, irregular, architectural distortions, tubular, lymph 

nodes, asymmetric breast tissue, and focal asymmetric density, and most of these shapes 

are shown in Appendix A. Margins include spiculated, microlobulated, circumscribed, ill 

defined, and obscured. Many of these margins have been included in Appendix A. Prior 

mammograms may help show that a mass has not changed for many years, which would 

mean that the mass is likely a benign condition and a biopsy would not be needed. 

Having prior mammograms available to the radiologist is very important for diagnosis. 
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Breasts vary in density, which affects the appearance of the breast in mammograms.  

The American College of Radiology (ACR) Breast Imaging Reporting and Data System 

(BIRADS) characterizes these as ranging from 1-4, with 4 being the most dense.  A dense 

breast presents more non-cancerous structures on a mammogram that can obscure a mass.     

 

                      (a)                    (b)              (c)                (d) 

Figure 8: (a) Mammographic image of a spiculated lesion. (b) AFUM 

filter. (c) Cosine Gabor filter. (d) Combined filter.  

The majority of work on feature analysis of mammograms has been through CAD 

efforts, focusing on determining the contextual similarity to cancer and finding 

abnormalities in a local area of a single image [53, 95]. The primary methods used range 

from filters to wavelets to learning methods. In this context, filters are equivalent to 

shapes that are searched for in an image. Wavelets are the result of applying a transform 

to the image, and learning methods try to apply prior knowledge to combine a set of low-

level image features like pixel intensities into an accurate classification. Problems arise in 

using filter methods [53] because of the range of sizes and morphologies for breast 

cancer, as well as the difficulty in differentiating cancerous from non-cancerous 

structures. The size range problem has been addressed by using multi-scale models [95].  

Multiple types of filters must be used to handle the variation in the morphology of 

various cancers. Similar issues affect wavelet methods, although their use has led to 

reported good results [70] with the size range issue being improved through the use of a 
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wavelet pyramid [79]. Learning techniques have included support vector machines [25] 

and neural networks [70]. 

 

Figure 9. The distribution of the AFUM features on a mammogram.  The 

small circles are the feature positions and strengths, while the larger shape is 

a hand-drawn annotation by a radiologist of the cancer.  Note that the feature 

does find a cancer, but there are many false positives.   

 

Our analysis starts with CAD prompts to find the contextually similar suspicious 

points that could be cancers in the mammograms.  The CAD technique highlights the 

areas of the image that have bright cores, a characteristic of spiculated lesions shown in 

Figure 8a. The filter calculates the percent of the pixels in the outer ring that are less 
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bright than the least bright of the pixels in the inner disk to produce a suspiciousness 

value, and an example is given in Figure 8b. This suspiciousness value represents the 

degree to which the surrounding region of a point radially decreases in intensity, and is 

done over several sizes.  This results in focusing on the bright central core of the cancer 

and ignoring the radiating lines of spiculation. A second filter can be used to detect the 

radiating lines of spiculation, as shown in Figure 8c, but a combined filter shown in 

Figure 8d that detects both the cores and the spiculation could improve the performance, 

especially if the relative weighting of the measurements is learned on an appropriate data 

set. 

The CAD suspiciousness calculation is performed at each pixel location (x,y) in the 

images.   The minimum intensity Imin within r1 is found, and then the fraction of pixels 

between r1 and r2 with intensities less than Imin is calculated. This yields the fraction 

under the minimum (FUM) for one set of r1 and r2.  Keeping r1 - r2 = b constant and 

averaging the FUM over a range of r1 determines the average fraction under the 

minimum (AFUM) [45]. The AFUM is then considered to be a suspiciousness value, and 

represents the extent to which the surrounding region of a point radially decreases in 

intensity. The CAD prompt output is a set of these suspicious points that are above a 

certain threshold. Since this is done over a range of sizes, it can respond to cancers of 

different sizes. This focuses on the bright central core of the cancer and ignores the 

radiating lines of spiculation.  The distribution of these features on a mammogram is 

shown in Figure 9. 

Features with a high suspiciousness value have a higher chance of corresponding to 

an occurrence of cancer. The centroid of each local maxima in the filtered image is 



21 

 

initially marked as a candidate feature site with its suspiciousness value. This collection 

of sites is then sorted in decreasing order of suspicion.  All suspicious sites that are closer 

than 5mm from a more suspicious site are removed to prevent multiple reporting of the 

same site. This yields a set of potential feature sites that can be analyzed.   

A further improvement might be possible by first transforming the data before 

filtering, such as applying wavelet analysis to the images before simply thresholding or 

applying the filter. This has been successfully attempted previously [39] with good 

results. However, an optimal solution would first combine all of the various filtering and 

transform methods which create meaningful suspicious points, and then learn an effective 

analysis from them. This is similar to the effective combination of weak classifiers into a 

single strong classifier through ensemble learning methods like boosting, which has been 

successfully used before in tumor classification [30]. Many of the images like 

mammograms come in pairs, so they form a set that should be very similar. If one of the 

pair contains cancer and the other does not, then that pair should be different. Thus, the 

mammogram image set provides both positive and negative examples to build on. 

2.3 Proteomic Data 

 

Several additional data sets are on hand for use in this thesis.  These include 

proteomic patterns in serum on cancer types from ovarian to prostate cancer.  For the 

ovarian cancer data, the goal is to identify proteomic patterns in serum that distinguish 

ovarian cancer from non-cancer. This study is significant to women who have a high risk 

of ovarian cancer due to family or personal history of cancer. The proteomic spectra were 

generated by mass spectroscopy and the data set provided here is 6-19-02, which includes 
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91 controls (Normal) and 162 ovarian cancers. The raw spectral data of each sample 

contains the relative amplitude of the intensity at each molecular mass / charge (M/Z) 

identity. There are total 15154 M/Z identities, making the data sets very high-

dimensional. The intensity values were normalized according to the formula: NV = (V-

Min)/(Max-Min), where NV is the normalized value, V the raw value, Min the minimum 

intensity and Max the maximum intensity. The normalization is done over all the 253 

samples for all 15154 M/Z identities. After the normalization, each intensity value is 

within the range of 0 to 1.   
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3 Image Classification 

 

An effort was made to provide image classifications in order to develop a distance 

function for CBIR of medical images and to explore the properties of the dataset. This 

initial approach utilizes filtering followed by spatial symmetry analysis using a variant of 

k-means clustering to determine an overall measure of similarity by combining the 

contextual similarity of the filtering with the spatial similarity of the analysis. This can be 

a useful measure for diagnosing mammograms since only an overall determination of 

cancer or no cancer is required. A secondary goal of our work is to determine the 

importance of similarity or asymmetry in the computer analysis of mammograms.  Figure 

     

Figure 10: Mammograms of left and right breasts with cancerous area 

outlined. The similarity of texture between cancerous and normal tissue 

makes asymmetry an important tool in cancer detection. 
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10 shows why spatial asymmetry is important in finding cancers in mammograms since 

we see that the texture and appearance of cancer are both very similar to the texture and 

appearance of normal tissue in the breast. Our analysis starts with filtering to find the 

contextually similar suspicious points that could be cancers in the mammograms. The 

AFUM filter was used, which highlights the areas of the image that have bright cores, a 

characteristic of spiculated lesions, and is shown in Figure 8b. The filter results are used 

to rank the output and only the top thirty-two are kept. Although it may not be the 

optimal choice of filtering, the spatial analysis can be applied to any technique that can 

rank the suspiciousness of areas. The number of points returned by the filtering step is 

one of the variables that is learned in optimizing the analysis. Alternatively, a threshold 

on the suspiciousness value could have been used instead of taking the top few. However, 

the top few were chosen in order to try to be insensitive to image processing choices. The 

filter results varied significantly from image to image, which might have biased the 

analysis if thresholds were used. 

 

3.1 K-Means Clustering 

 

 

The K-means Algorithm [82] is one of the simplest unsupervised learning algorithms 

that solve the well known clustering problem. We used clustering as a basis for 

determining image similarity, but there were several changes that had to be made to the 

technique to adapt it to the application.  First, instead of utilizing cluster centers as the 

main descriptor of the clustering, we used both linear separators in the original feature 

space as well as hyper-volumes to describe the clusters.  Second, we adapted the 
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clustering method to use supervised learning instead of minimizing an objective function.  

Third, we incorporated the clusters into several distance functions, the parameters of 

which were learned simultaneously with the cluster definitions to produce an image 

similarity classification technique.  

The k-means procedure follows a simple and easy way to classify a given data set 

through a certain number of clusters (assume k clusters) fixed a priori. The main idea is 

to define k centroids, one for each cluster. The initial position of these centroids causes 

different results in the final clustering. The next step is to take each point belonging to a 

given data set and associate it to the nearest centroid, then recalculate k new centroids as 

barycenters of the clusters. After finding these k new centroids, a new binding has to be 

done between the same data set points and the nearest new centroid. The process iterates 

and the k centroids change their location step by step until no more changes are done. 

Finally, this algorithm aims at minimizing an objective function, in this case a squared 

error function. The design of the spatial analysis starts with a cluster determination. The 

procedure follows a simple way to classify a given data set through a fixed number of 

clusters (assume k clusters).  This algorithm aims at minimizing an objective function 

∑ ∑ −= k
j

n
i j

i
j cxJ )(  where cx j

i
j −)(  is a chosen distance measure (most often Euclidean) 

between the ith data point xj
(i)

 associated with the cluster j and the cluster center cj for 

cluster j.  J is an indicator of the distance of the n data points from their respective cluster 

centers.   

The algorithm is composed of the following steps:  

 

 

1. Place K points into the space represented by the objects that are being clustered. 

These points represent initial group centroids. 
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2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a 

separation of the objects into groups from which the metric to be minimized can 

be calculated. 

 

Although it can be proved that the procedure will always terminate, the k-means 

algorithm does not necessarily find the optimal configuration, corresponding to the global 

objective function minimum.  The algorithm is also significantly sensitive to the initial 

randomly selected cluster centers. The k-means algorithm can be run multiple times to 

reduce this effect.   

K-means is a simple algorithm that has been adapted to many problem domains. 

Unfortunately there is no general theoretical solution to find the optimal number of 

clusters for any given data set. A simple approach is to compare the results of multiple 

runs with different k classes and choose the best one according to a given criterion, but 

increasing k results in smaller error function values by definition, as well as an increasing 

risk of overfitting the data. This algorithm can be adjusted to work as a supervised 

technique for image similarity comparisons. 

 

3.2 K-Means Variants 

 

Our work utilizes a spatial symmetry analysis to determine an overall measure of 

similarity.  We start with CAD prompts, which are the potentially cancerous sites output 
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from a CAD system.  We combine the contextual similarity of the CAD prompts with the 

spatial similarity of the analysis. This can be a useful measure for classifying 

mammograms since only an overall determination is required. We believe that many of 

the techniques described here can also be adapted for use in CAD analysis. A secondary 

goal of our work is to determine the importance of similarity or asymmetry in the 

computer analysis of mammograms.  

Our analysis starts with CAD prompts to find the contextually similar suspicious 

points that could be cancers in the mammograms.  The CAD technique highlights the 

areas of the image that have bright cores, a characteristic of spiculated lesions. The filter 

calculates the percent of the pixels in the outer ring that are less bright than the least 

bright of the pixels in the inner disk to produce a suspiciousness value, and an example is 

given in Figure 8. This suspiciousness value represents the degree to which the 

surrounding region of a point radially decreases in intensity, and is done over several 

sizes.  This is focusing on the bright central core of the cancer and ignoring the radiating 

lines of spiculation. A second filter can be used to detect the radiating lines of 

spiculation, as shown in Figure 8, but a combined filter that detects both the cores and the 

spiculation should improve the performance, especially if the relative weighting of the 

measurements is learned on an appropriate data set. 

For diagnosing breast cancer, the importance of correct classification of the cancerous 

cases is much more important than the non-cancerous cases. To reflect this, the 

associated weighting of the cancerous cases was varied, and we evaluate the performance 

of various weightings. 
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                          (a)                                                          (b)                                                    (c) 

Figure 11: Clustering Techniques. The thick black lines in (a) and (b) are 

separators, while the small circles are the cluster centers.  The shaded region in 

(a) is the difference in the cluster areas between using the two separators to 

define the clustering and using the four cluster centers.  The separators in (b) 

are hierarchical, allowing a greater flexibility in the description of the clusters, 

while (c) shows the hierarchy of the separators.     

Several techniques were developed to aid in the development of an improved 

similarity function for the classification of medical images.  We used clustering as a basis 

for determining image similarity, but there were several changes that had to be made to 

the technique to adapt it to the application.  First, instead of utilizing cluster centers as the 

main descriptor of the clustering, we used both linear separators in the original feature 

space as well as hyper-volumes to describe the clusters.  Second, we adapted the 

clustering method to use supervised learning instead of minimizing an objective function.  

Third, we incorporated the clusters into several distance functions, the parameters of 

which were learned simultaneously with the cluster definitions to produce an image 

similarity classification technique.   
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Figure 12: Example Comparison. The features used in this comparison are 

the small circles. The clusters in this example are the large boxy shapes 

containing the points.  The large hand-drawn circle is the radiologist 

diagnosis of cancer.  This case was correctly diagnosed by both the space-

based and data-based techniques.   

Our work utilizes a spatial symmetry distance function to determine an overall 

measure of similarity.  The technique requires contextually significant features or 

probability densities which for this application are CAD prompts, the potentially 

cancerous sites output from a CAD system.  We combine the contextual similarity of the 

CAD prompts with the spatial similarity of the analysis.  The determination of features is 

discussed in Chapter 3, and an example image set is shown in Figure 1. A variety of 

similarity methods were explored, the most successful used a variant of clustering to 
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determine an overall measure of similarity by combining the contextual similarity of the 

features with the spatial similarity of the analysis.  We then use this measure for 

classification since only an overall determination is required. 

 

3.2.1 Separators and Hyper-Volumes 

 

The adaptation of clustering to use separators and hyper-volumes instead of cluster 

centers was motivated by a desire to minimize the number of parameters required in order 

to maximize the generalizability of the technique from the training data to the actual test 

data and thus to real applications.  Creating two clusters requires two d-dimensional 

cluster centers, or 2d parameters like P = (x1, y1, z1, x2, y2, z2), while using a separator 

plane requires a maximum of d parameters like P = (a, b, c) and can be described in as 

few as one parameter in special cases like P = (a).   

Four clusters can be described using as few as two separator planes as shown in 

Figure 11a, greatly reducing the number of parameters required to describe the clustering.  

However, eliminating parameters does change the final clustering so that it does not 

exactly match the clustering that would have been created with traditional cluster centers.  

This is the tradeoff between the number of parameters and the flexibility of the technique 

for breaking up the feature space.  The use of overlapping separators minimizes the 

parameters, but the use of hierarchical separators enables greater flexibility in the 

definition of the clusters as is shown in Figure 11b.   
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The use of separators or cluster centers both have the disadvantage of being space-

filling so that no part of the feature space can be eliminated from the analysis at the 

cluster level as well as not allowing overlapping of clusters.  However, using hyper-

volumes instead of separators does allow both overlapping of clusters and eliminating 

space at the cost of including additional parameters.  A simple hyper-volume is the 

hyper-sphere which requires d+1 parameters for a cluster center point and a radius.  An 

example of hyper-volumes is shown in Figure 12.     

These alternate definitions of clustering focus on increasing the flexibility of the 

clustering or on decreasing the required number of parameters.  An alternate clustering is 

shown in Figure 13 where the cluster is designed to avoid a noisy area on the images.  

The focus on decreasing the number of parameters is required for to improve the 

generalizability of the technique when using supervised learning, which is another 

adaptation we did to the clustering method that we describe next. 

 

Figure 13. The volumes in this case are non-space-filling 

and attempt to avoid a noisy area at the chest wall.   
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3.2.2 Supervised Clustering 

 

The second adaptation of the clustering method was the use of supervised learning to 

maximize the performance on a training set instead of minimizing an objective function. 

The error function that we minimize is ∑ −= j jjjj cPkgWE );,(τ  where jW  is the normalized 

weight of that particular case, jg and jk are the unregistered three-dimensional input 

features (sorted by one particular feature value for convenience), and );,( Pkg jjτ  is the 

classification function, P are the parameters of the classification, and cj is the correct 

classification of the image set j.  Note that this technique is being used on image sets, but 

can be used to compare arbitrary images. The parameters P  are learned in order to 

reduce the error function and includes the parameters of the clustering.  Varying the 

weights of the cancerous and non-cancerous cases allows tuning the performance to 

achieve fewer false negatives at the expense of higher false positives.  The learning was 

done using exhaustive search in order to guarantee that the result was not caught in a 

local minimum.   

Though the learning was finally done using exhaustive search, we did experiment 

with hierarchical learning.  This is where the first separator is learned, and then the 

subsequent separators are learned while only changing the parent separator by some fixed 

percentage and not affecting the grandparent.  This is shown in Figure 11b and 11c.  We 

also experimented with true hierarchical learning, where the parent is not allowed to vary, 

but this was found to be ineffective.  This has the effect of reducing the number of 
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degrees of freedom to learn by breaking the learning up into multiple levels.  The 

learning of one level is reduced to learning the two child separators and the minimized 

range of the parent separator, instead of learning the entire set of separators.  The 

inclusion of more separators is self-limiting if the separators are allowed to line up with 

the parent, thus not breaking up the space and indicating that the hierarchy should end at 

the parent for that volume of feature space.  The application did not require a large 

number of levels in the hierarchy, allowing the use of exhaustive search to verify the 

results of the hierarchical learning.      

 

3.2.3 Image Comparison Distance Functions Using Clusters 

 

The analysis for image comparison that we used performs a comparison of clusters of 

features in order to maintain both a contextual and spatial comparison while avoiding an 

exact registration. We experimented with two different models where the clusters are 

defined using separators and hyper-volumes.  We also experimented with a model that 

compares small clusters of features between images.  The hyper-volume image 

comparison can be seen in Figure 12, where the points are assigned to clusters that are 

defined by large volumes of feature space and have a set spatial relationship between 

each other. The feature-space hyper-volumes have a pre-set registration with the 

corresponding volumes in the other image. For simplicity, the volumes are assumed to be 

non-overlapping and space-filling, but this is not required.  Additionally, the volumes are 

assumed to contain the same hyper-volumes in the images of the left and right breasts out 
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of symmetry.  This reduces the number of parameters and increases the ability of the 

model to be generalized to a larger data set, based on the assumption that there are no 

important anatomical differences between the left and right breasts and that breast cancer 

is equally as likely to be in the left or right breast. 

In a hyper-volume image comparison, a hyper-volume is assigned all of the 

suspicious points in the space dA that the hyper-volume spans. The parameters of the 

hyper-volumes are learned through parametric learning, and any model can be used to 

characterize the hyper-volumes in feature space.  Exact registration of the suspicious 

points is avoided by using the volumes for the comparisons as they are registered with the 

corresponding volume in the other image.   

The feature space is broken up into volumes dA as shown in Figure 12.  The 

agglomerated distance D shown in Equation 1 is defined for the comparison of the two 

point feature sets, and the absolute value of the differences compared against an 

optimized threshold.  Since the features are point features, they are represented using the 

delta function δ and there is no weighting function.   

 

1) 

 

The point sets for the images are represented as {ai} and {bi} for images a and b 

respectively.  The summation over dA is done over all of the clusters which are 

represented by their hyper-volume dA.  The integration is done over the actual hyper-

volume dA of the cluster.  The summation over i is done over all of the features.  The 

multi-dimensional integral over feature space provides the agglomeration aspect of the 

|))()((|∑ ∫∫∫ ∑ −−−=
dA dA i

ii bfafdfD δδ
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distance metric.  The hyper-volumes dA provide the agglomeration and are learned along 

with a threshold in order to optimize the performance of the distance measure at 

classification.  This allows the distance metric to be easily adapted to different image 

types and imaging techniques, as well as providing a method for incorporating feedback 

into the distance metric.  This distance metric compares the distributions of spatially 

distributed point sets, and is sensitive to variations in the distribution for image 

comparison.  This is useful for applications such as determining the presence of cancer.  

There are several other variations to this distance metric that have been explored. 

A variation on this distance metric is shown in Equation 2 that learns a threshold for 

each cluster dA, which has the advantage of being able to emphasize the importance of 

some areas in the feature space over others.  This can be used to distinguish noisy areas 

where many spurious suspicious points are found from important areas where even small 

variations are indicative of a lack of similarity. This technique of learning important areas 

in images can be thought of as an image discovery technique. 

 

2)   

 

A more generalized form of the similarity distance metric is given by equation 3, 

where the delta function is not the required function and the number of features in each 

image is not required to be the same.  A natural choice for the function g is the 

probability density function; however, the function g can be determined to try to optimize 

the retrieval on the particular application.   

 

∫∫∫ ∑ −−−=
dA i
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3)   

 

We tested several variations on the image comparison ideas.  The simplest model 

utilizes only four parameters: three parameters for a separator and one parameter for a 

threshold and used Equation 1.  For diagnosing breast cancer, the importance of correct 

classification of the cancerous cases is much more important than the non-cancerous 

cases. To reflect this, the associated weighting of the cancerous cases was varied, and we 

evaluated the performance of various weightings.  The second model used the same four 

parameters and Equation 1, but weighted the learning to give greater weight to the 

performance on the cancerous cases over the performance on the non-cancerous cases.  

The third model used the parameters of the first, but also included an additional 

parameter that permits selection, so that cases that do not have a minimum number of 

features in each cluster are not analyzed.  The fourth model used seven parameters: six 

for two separators and one for a threshold, used Equation 1, and is shown in Figure 12.  

The fifth model used seven parameters as well: six for two separators and one threshold, 

but used Equation 2 with the same threshold for each cluster comparison.  These models 

were motivated by the observation that the cancer would change the distribution of the 

suspicious points, leading to an indication of cancer. An improvement to the method 

would be to adaptively determine the optimal number of volumes through a split-and-

merge type methodology [61]. 

 

|))()((| ∑ −−∑ ∫∫∫ ∑ −=
j

j
dA dA i
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Figure 14: Small Cluster Image Comparison. The suspicious points are 

the small circles, with the points on the left coming from the image of the left 

breast and the points on the right coming from the image of the right breast. 

The volumes are the larger circles.  This method searches for small clumps of 

suspicious points and then assigns a volume there, comparing the number of 

volumes in the two images.  

 

The third model that we tried does not set the number of clusters arbitrarily, but 

instead learns the number of clusters from the data and learns the best parameterization of 

the clusters.  These image comparisons search for small clumps of suspicious points and 

then assign a cluster there, as shown in Figure 14.  The maximum distance between 

feature points and the minimum features needed to define a volume are learned on a 

training set.  The clusters were also defined to be centered on a suspicious point because 

we believed that small clumps of suspicious points tended to form around the central 

cancer. This assumption may be incorrect, and freeing the cluster centers from that 
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constraint may improve the performance. Exact registration is avoided again by 

registering the clusters instead of the image or the suspicious points. Comparing the 

number of clusters in the right image versus the number of clusters in the left image 

provides a first cut at registering the clusters since a difference in the numbers of clusters 

implies that some volumes cannot be registered. Improving the cluster registration may 

improve the performance of the method. This image comparison was motivated by the 

data, where we observed a small volume of suspicious points at a cancer sites.  

Many approaches were attempted on this dataset.  One unsuccessful approach 

compared the variances of the distribution of suspicious points, while another used a 

Naive Bayes analysis, and these are compared along with wavelet methods and 

commercial techniques. 

 

3.3 K-Means Variants Evaluation 

 

The image comparisons were applied to the mediolateral oblique (MLO) 

mammogram views of both the left and right breast of patients that were diagnosed with 

cancer and patients that were diagnosed as normal, or free from cancer. The analysis was 

performed over test and training data sets, with cases that were roughly split between 

normal mammograms and mammograms with malignant spiculated lesions from the 

Digital Database for Screening Mammography [54]. The focus was on one type of breast 

cancer which creates spiculated lesions in the breasts. Spiculated lesions are defined as 

breast cancers with central areas that are usually irregular and with ill-defined borders. 
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Their sizes vary from a few millimeters to several centimeters in diameter and they are 

very difficult cancers to detect [79]. 

 

(a)                                    (c) 

 

(b)                                     (d) 

Figure 15: Comparison Data. The maxima in learning the two-cluster 

method with respect to one of the parameters, the y value of the second cluster 

are in (a) and the method is shown to generalize well from training to test data.  

The same information for the three-cluster method is shown in (b).  The 

performance relative to the number of suspicious points used in the two-cluster 

technique is in (c).  The performance of the three-cluster method on normals, or 

non-cancerous cases, is shown in (d).  

 

The training set had 39 non-cancerous cases and 37 cancerous cases, while the test set 

had 38 non-cancerous cases and 40 cancerous cases. The data is roughly spread across 

the density of the breasts and the subtlety of the cancer. The breast density and subtlety 

were specified by an expert radiologist. The subtlety of the cancer shows how difficult it 

is to determine that there is cancer. The training data set was used to determine optimal 
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parameters the volumes dA.  The inputs are the extracted CAD features for each image in 

the screening mammogram set, as shown in Figure 8.  The output is a classification as 

either cancerous or non-cancerous.  We used exhaustive search because we could, and 

require only a single stage.  These cases indicated that a difference in the clusters of one 

or more suspicious points indicated cancer in both the two and three cluster experiments.  

 

Figure 16. ROC curve demonstrating the effectiveness of this distance metric 

at diagnosing mammograms.   

The most successful approach that we have constructed so far defined the cluster 

volumes dA with the parameter set P = (x1 || y1 || z1, x2 || y2 || z2, t, n)  where the number 

of features used in the analysis is n and the threshold for the distance function is t.  The 

first parameter x1 || y1 || z1 chooses the best dimension and best position to break up the 

feature space into volumes, as does the second parameter x2 || y2 || z2. This analysis 

appears in Figure 12 and is called the “three-cluster” approach. This used an equal 
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weighting on the error function. Another successful approach used the parameter set P = 

(x1 || y1 || z1, t, n) but was heavily weighted towards correctly classifying the cancerous 

cases, and this will be called the “two-cluster weighted towards cancer” analysis. Yet 

another successful approach attempted to use automatic selection to classify only the 

cases that would be would be analyzed well. This approach used the parameter set P = 

(x1 || y1 || z1, t, n, s) where s is a required minimum occupancy of each cluster. This 

approach is called the “two-cluster with selection” approach.  One unsuccessful approach 

compared the variances of the distribution of suspicious points, while another used a 

Naïve Bayes analysis. 

 

3.4 K-Means Variant Results 

 

 

Our results are good on all cases of the test set, correctly classifying 80% for the two-

cluster as shown in Figure 15a, and 85% of the time for the three-cluster as shown in 

Figure 15b.  The data-defined cluster model results as shown in Figure 15c were not as 

good, but have the potential for improvement. The results are summarized in Table 1. 

However, it is much more important to correctly classify the cancerous cases, and by 

heavily weighting the importance of the cancerous cases, we correctly classified 97% of 

the cancerous cases with the two-cluster model.  

Neither the subtlety nor the density of the cancer had an effect on the results.  The 

data sets density and subtlety are shown in Appendix B for both the training set and test 

sets.  It would be possible to create a data set that is perfectly balanced in both density 

and subtlety if an infinite amount of analyzed images with the particular cancer were 
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available.  However, because we have only a limited number of cancerous images, there 

is some possibility that the imperfect distribution could affect the results of the analysis.   

The comparison with a commercial system shows that the results are surprisingly 

good.  Our method showed an improvement of 26% on the non-cancerous cases while 

matching the performance on cancerous cases with the R2 ImageChecker system [11]. 

The inclusion of additional factors other than asymmetry in the method should improve 

the results. However, the data sets used are different, as the R2 ImageChecker data 

contains all cancer types and our method has only the difficult to detect spiculated 

lesions.  The R2 ImageChecker data set also had a much higher proportion of non-

cancerous mammograms to cancerous cases.  Our performance is shown in Figure 16.  

One of the parameters that was learned was the optimal number of suspicious points 

to use in the analysis, and the results were always at or near the top of the range that we 

used, varying from 29 to 32 points depending on the model and weightings as shown in 

Figure 15d. This was surprising because the cancer was usually in the top sixteen if not 

the top eight points. However, the suspicious points do tend to cluster around a cancer, so 

including more suspicious points may create a greater distortion of the underlying 

distribution than fewer points. The learning algorithm does not get the number of points 

directly, only the cluster differences, so the inclusion of more points should not skew this 

analysis.   

An interesting result from the three-cluster analysis showed that these methods could 

discover areas in images that are important for the classification, and this is demonstrated 

in Figures 15b and 15c. The analysis found a region of interest for diagnosing a 



 

mammogram as non-cancerous.  These techniques can be used as a meth

feature space for important areas. 

Table 1. Results Table. The accuracy of the techniques.  The * indicates 

different but similar data sets.

Method 

Three-Cluster Equation 1

Two-Cluster

Toward Cancer

Two Cluster Equation 1

R2 Image Checker * 

Wavelet * 

Naïve Bayes

Three-Cluster

Variance Analysis

Two-Cluster

Selection Equation 1

Small-Cluster Analysis

 

  

             (a)                                  (b)

Figure 17: The left and right MLO views of three cases that were misdiagnosed. 

The cancerous areas are outlined in red.  There are significant variations in the size 

and morphology of spiculated lesions.  Note that cases (b) and (c) both have 

significant differences in the size and shape of the breasts from left to right. 
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cancerous.  These techniques can be used as a meth

feature space for important areas.  

Table 1. Results Table. The accuracy of the techniques.  The * indicates 

different but similar data sets. 

Cancerous Non-Cancerous

Cluster Equation 1 90% 79% 

Cluster Weighted 

Toward Cancer Equation 1 
97% 42% 

Two Cluster Equation 1 87% 71% 

R2 Image Checker * [9] 96% 33% 

 [13] 77% 77% 

Naïve Bayes 51% 49% 

Cluster Equation 2 95% 73% 

Variance Analysis 60% 60% 

Cluster With 

Selection Equation 1 
92% 73% 

Cluster Analysis 51% 56% 

     

(a)                                  (b)                                           (c)                    

: The left and right MLO views of three cases that were misdiagnosed. 

The cancerous areas are outlined in red.  There are significant variations in the size 

and morphology of spiculated lesions.  Note that cases (b) and (c) both have 

s in the size and shape of the breasts from left to right. 

cancerous.  These techniques can be used as a method for probing 

Table 1. Results Table. The accuracy of the techniques.  The * indicates 

Cancerous 

 

(c)                     

: The left and right MLO views of three cases that were misdiagnosed. 

The cancerous areas are outlined in red.  There are significant variations in the size 

and morphology of spiculated lesions.  Note that cases (b) and (c) both have 

s in the size and shape of the breasts from left to right.  
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Our methods make use of a spatial analysis of the suspicious points, and its success is 

an encouraging sign for the investigation and utilization of more complicated non-local 

analysis techniques in medical imaging and analysis.   

Analysis of the misdiagnosed cases in Figure 17 demonstrates a potential flaw in the 

method.  When there is too much structure in one area that draws the relatively simple 

features that we are using into it on just a small number of cases, the method can 

misclassify them.  A potential improvement is to incorporate a second level of classifiers 

that would analyze the missed diagnoses. 

 

   

3.4 K-Means Variants Conclusions 

 

 

Our results are strong on all cases of the test set, correctly classifying with 85% 

accuracy and our technique outperforms both the best academic and commercial 

approaches, suggesting that this is an important technique in the classification of 

mammograms.  We have also shown that using the image comparisons to determine the 

classification is insensitive to the parameters of the volumes. 

We created and compared multiple models, demonstrating that three area volumes 

worked slightly better than two, and showed that the data-defined method was not as 

effective.  However, the data-defined method was sensitive to the presence of false 

positives near the breast boundary, and removing volumes at the breast boundary could 

improve the effectiveness of this approach.  We also defined a new distance measure for 

the comparison of point sets and demonstrate its effectiveness in this application.  The 
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coupling of this distance measure with the parametric learning of clusters led to a highly 

effective classification technique.    

The clusters also discovered an area of interest in mammogram comparisons which 

improved the diagnosis of mammograms that did not have cancer. More clusters might 

improve the technique, or, more importantly, they might lead to the discovery of more 

areas of interest. We suggest several ways that might improve on the methods that we 

used to compare mammograms. One method is to convert a mammogram into a 

connected graph structure of suspicious points and to utilize known graph comparison 

methods for the measure. 
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4 Image Database 

 

Building effective content-based image retrieval (CBIR) systems involves the 

combination of image creation, storage, security, transmission, analysis, evaluation 

feature extraction, and feature combination in order to store and retrieve medical images 

effectively. This requires the involvement of a large community of experts across several 

fields. We have created a CBIR system called Archimedes which integrates the 

community together without requiring disclosure of sensitive details. Archimedes' system 

design enables researchers to upload their feature sets and quickly compare the 

effectiveness of their methods against other stored feature sets. Additionally, research 

into the techniques used by radiologists is possible in Archimedes through double-blind 

radiologist comparisons based on their annotations and feature markups. This research 

archive contains the essential technologies of secure transmission and storage, textual and 

feature searches, spatial searches, annotation searching, filtering of result sets, feature 

creation, and bulk loading of features, while creating a repository and testbed for the 

community.  In the medical imaging field, CBIR techniques and clinical decision support 

techniques are called case-based reasoning [73] or evidence-based medicine [21, 24].  

The CBIR process involves feature extraction from the images, which is described in 

Chapter 2, the processing of the features through a similarity function, which is described 

in Chapter 3, and the retrieval of images from the database, as well as feedback.   

  The number of digital medical images is rapidly rising, prompting the need for 

improved storage and retrieval systems.  Image archives and imaging systems are an 

important economic and clinical factor in the hospital environment [109]. The 
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management and the indexing of these large image repositories is becoming increasingly 

complex. Most retrievals in these systems are based on the patient identification 

information or image modality [74] as it is defined in the DICOM standard [92], but it is 

hoped that inclusion of other features can improve the effectiveness of this type of 

system. Archimedes includes retrieval based on features and combinations of features, as 

well as on patient identification information, doctor’s notations, and image modality in 

order to develop effective CBIR. Archimedes also includes filtering of the result set in 

order to further refine and improve the search.   

 Clinical decision support techniques such as case-based reasoning [73] or evidence-

based medicine [21, 24] rely on effective CBIR development. Image and visual feature-

based searches will help find similar images, but textual searches are always going to be 

an important part of any medical CBIR system, especially through searches on patient 

information or characteristics. That is why searching on patient information and other 

text is already supported in the Archimedes system. 

The integration of CBIR methods into Picture Archiving and Communication 

Systems (PACS) has been proposed several times.  PACS are the main software 

components used to store and access the large amount of visual data in medical 

departments. Often, several layer architectures exist for quick short-term access and slow 

long-term storage [75], but this is becoming increasingly unnecessary as technologies 

have improved. The Archimedes system was designed as a web-based system for both the 

development and evaluation of CBIR, and provides a platform to evaluate the usefulness 

and effectiveness of incorporating CBIR changes into PACS. 
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Several frameworks for distributed image management solutions have been 

developed such as I2Cnet [87, 88]. Image retrieval based on visual features is often 

proposed but unfortunately little is said about the visual features used or the performance 

obtained. A real medical application of CBIR methods and the integration of these tools 

into medical practice has required a large group in very close cooperation for a long 

period of time. CBIR systems that have followed this model are the Assert system for the 

classification of high resolution CTs of the lung [4, 102] and the IRMA system for the 

classification of images into anatomical areas, modalities and viewpoints [71].  The 

Archimedes system bypasses this difficulty with a web-based community of researchers 

who can contribute features, images, results sets, diagnoses, and other expertise in an 

open research environment. This thesis demonstrates a technology to decentralize this 

process by including a large web-based collaboration of partners, each achieving 

individual goals while contributing to the overall goal of an improved CBIR system. 

Comparing CBIR systems is often challenging because commercial companies are 

often unable or unwilling to share their techniques. Archimedes allows commercial 

companies to contribute their features or results sets without disclosing their techniques, 

enabling unfettered communication. The system also enables the rapid creation, storage, 

and download of specialized data sets for comparisons. One example of an interesting 

data set that Archimedes can create and store would be mammograms of high density 

breasts for which MRI images are also available.  Comparison of CBIR results is 

simplified by the storage of multiple results sets for images, and the ability to quantify the 

results sets. 
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There are several different types of research that go into developing an effective 

CBIR system for medical images. The primary research is done by radiologists, who 

perform the medical scans as well as provide diagnoses. Archimedes can help 

radiologists by organizing their images, capturing their patient notes and digitizing their 

image annotations, speed up the analysis of experiments, and enable quick comparisons 

of different radiologist techniques such as comparing double-reading to single reading of 

mammograms. Web publication of research into radiologist techniques can be simplified 

using Archimedes’ built in annonimizing and web publishing. The next stage of research 

is feature extraction and analysis. An example of this is the measurement of spiculation 

[100] as a feature used to aid in the detection of spiculated lesions. Archimedes can help 

with research into feature extraction by providing annotated images, comparison features, 

and comparison results sets, as well as data analysis and feature combination. Once the 

images have features and diagnoses associated with them, all of the pieces are available 

for research into CBIR techniques. 

 

4.1 Data Collection and Analysis 

 

Archimedes is designed to be able to run and analyze double-blind studies of 

radiologist techniques. Archimedes can be configured so that multiple radiologists can 

annotate the same image under different conditions without viewing the biopsy-based 

ground truth or the other annotations. Their input can then be viewed by a user which can 

only view the doctor information after it has been automatically annonimized to maintain 

the integrity of the study. The data can be analyzed in several ways using the capabilities 
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of Archimedes. A particular data set can be isolated using the dataset name in the image 

annotations. This data set can be filtered to show only particular types of cases, such as 

malignant cancers, normals, or benign cancers. A particular (annonimized) doctor’s 

diagnosis can further refine the results, showing the percentage of accurate diagnoses on 

different classes of images. The position of the actual cancer can be compared to the 

biopsied “truth” position using a spatial search, finding all of the cases where the doctor’s 

diagnosis is within a specified distance of the “truth” position. The analysis can then be 

finished in a matter of hours. The results can then be stored in Archimedes, and the study 

can be published immediately by allowing Archimedes to enable guest user access. 

Archimedes was originally designed to do double-blind research studies, but it also 

has an image analysis and patient records management tool that can be used by the 

medical research community. Radiologists can store and organize medical images such as 

x-rays, mammograms, CAT scans, MRIs, and any other image that is stored in a DICOM 

format. Radiologists can rapidly retrieve images and patient records, and can also find 

patients with similar images, conditions, or annotations to compare treatment successes. 

The software archives the addition of markups and notations to images, as well as 

associating text and patient info with images. 

 

Figure 18. Archimedes Patient Information Search Panel. Searches over 
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patient information can be done using the patient’s name, date of birth, 

social security number, or the date an image was taken. Additional search 

tabs are available as well.  

 

For managing patient records and images, the primary tool is searching by patient 

information and text. For search by text in Archimedes, the medical professional is 

allowed to enter patient information (i.e. first name, last name, date of birth, etc.) into 

Archimedes. Once information is entered, they can use filters to further refine their 

search results. The searching options for patient information are shown in Figure 18, 

while the filtering options are shown in Figure 19, and the updated version is in Figure 

20. Searching by feature allows the doctors to specify feature parameters that they wish 

to see in the results. This enables medical professionals to quickly find similar cases. The 

next type of search is an extension to searching by feature, specifying multiple features 

with defined spatial relationships between them. The most useful of these types of search 

would specify a distance between features, for example to find areas that have the 

features of both spiculations and bright central cores indicative of spiculated lesions in 

mammograms.  Archimedes also allows search over comments other doctors previously 

made about patients or images.  This works like a primitive Yahoo search over the text of 

the medical annotations. 
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Figure 19. Archimedes Filter Panel. Results from searches can be filtered 

based on pathology, image and scanner type, weight range, and race. This 

was useful in analyzing performance data across multiple parameters.  

 

Though the basic searching on patient information and annotations is included with 

minimal effort, the more advanced feature and spatial searching requires extra input. 

There are two options: capturing doctor input or getting permission to make images 

available for researchers to mark up the images. For example, getting the features like 

spiculation into the medical database may require making those images available to the 

researchers who specialize in measuring spiculation. Making the images available to 

researchers involves setting the permissions for a individual image or groups of images to 

public or semiprivate, where images are available to the public at large or to a set group. 

The signed consent forms can also be stored in Archimedes as images. Capturing the 

doctor input required a viewing and input capture tool. 



53 

 

 

Figure 20. Updated Archimedes Search Panel. The search results now 

are returned with thumbnail images and info.  The search panels can be 

closed to maximize space.  

 

Medical professionals can view and manipulate images on the Archimedes system 

and tab through set of images. There is a zooming interface in order to focus in on 

interesting parts of the images. Point features can be inserted and described as overlays to 

the images. Text annotations can be entered.  Multiple overlays can be captured for each 

image, allowing double reading of images. This type of detailed image information is 
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essential for the design and evaluation of CBIR systems as well as computer-aided 

detection and diagnosis systems. The radiologists’ diagnoses are captured and the data 

can be accessed remotely, thereby allowing tele-medicine applications to be run on the 

Archimedes platform. 

The Archimedes system helps store, annotate, and retrieve data and images for the 

radiologists, who are the primary data collection agents in the development of a medical 

image CBIR system. Improving their work and giving them incentives to share their 

images and diagnoses is one of the key steps in creating a collaborative environment to 

create CBIR. 

4.2 Feature Capabilities 

 

One of the main challenges in feature extraction is finding a large enough set of 

images of the same exact type of cancer in order to focus in on its particular 

characteristics. But there are a few large databases that do provide these images, for 

example with lung cancer images [28]. However, in order compare the effectiveness of 

one feature versus another on the same images, the comparison research has to be 

replicated. Archimedes eliminates this problem by allowing researchers to store their 

features in Archimedes for comparison along with the images from which they were 

extracted. The input, storage, and sharing of features is one of the design choices that 

make Archimedes unique. The open sharing of features makes comparisons possible 

without the need for inaccurate replication of older work, as well as enables research into 

feature combination both faster and more effective. Features can be combined using 

spatial search and then fused into a new feature type. For example, a spiculation feature 
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can be combined with a bright central core feature for detecting spiculated lesions. The 

spatial search can also be used to quantify the effectiveness of the feature at predicting 

the position of the cancer by comparing the feature position with the biopsied “truth” 

cancer position. 

Evaluating the effectiveness of features can be done using Archimedes extensive 

query capability. Finding cases when a “test” feature is near a “truth” feature can be done 

using the spatial query capability, as well as those “truth” features that are not near a 

“test” feature and vice versa. The spatial query is tunable with a variable input distance 

for greater flexibility. The image categories can be adjusted with the filters to isolate 

cases that are malignant, or other medically relevant characteristics. 

Archimedes can also store and share features that are not associated with a particular 

position. The flexible design of the feature storage and upload make it capable of 

handling most features. A planned improvement is the handling of feature areas and 

feature volumes. Currently point features and area features are handled, but the spatial 

comparisons are not yet finished. 

Features can be manually input through the Archimedes zooming interface, or loaded 

in bulk though an XML schema, with the following small example: 

<Patient> 

<Image> 

<Doctor> 

<Feature> 

</Feature> 

<Feature> 
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</Feature> 

<Annotation> 

</Annotation> 

</Doctor> 

</Image> 

</Patient> 

 

Archimedes generates a skeleton schema for a user’s selected group of images in 

order to facilitate upload and match the annonimized patient ID with the correct image. 

Features can contain pixel positions using <Xpos> and <Ypos>, but it is not required. 

Features can contain a number of values associated with them, and these values are 

uploaded with <ValueXName>, <ValueXType>, and <ValueX> for the Xth value. These 

values can be used in limiting feature searches. 

Techniques that combine features could also be stored in Archimedes, and stored as 

features as well. Currently, the spatial search can be used to combine features, but more 

complex approaches have to be done offline and uploaded as features. One planned 

upgrade is a learning package built into Archimedes that would simplify the development 

of classifications and analysis of medical images. This would allow radiologists to use 

Archimedes to explore relationships and use the learning package to optimize the 

approach. 

The combination of advanced querying and feature sharing enables rapid analysis of 

features and combinations of features for CBIR and the comparison of computed features 

to “truth” features defined by a radiologist. By providing a platform for the analysis and 
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comparison of features, Archimedes encourages the collaboration between researchers 

designing features as well as researchers building CBIR. 

There are different types of features for different types of artifacts to be associates 

with images. The application has the ability to support user-added features of properly 

defined types.  By default, Archimedes allows users to mark images with: 

 

1.A single point, usually placed in the center of the artifact.   

2.A set of one or more lines used to define a polygonal shape, used to outline or 

surround part of or the whole artifact.   

3.A freehand markup tool that allows custom shapes to be hand drawn onto the 

image.   

4.A rectangle tool that allows a rectangle or square to be drawn on the image.   

5.An oval tool that allows an oval or circle to be drawn on the image.   

6.An angle tool that allows an angle of any size to be drawn on the image, as the 

product of two lines meeting at one point.  

 

These capabilities allow the functionality of Archimedes to capture the diagnosis of 

radiologists through whichever drawing method is preferred by them.  Making the 

database flexible and intuitive will encourage radiologists to make use of the capabilities, 

and thus capture their diagnosis for reference and for research purposes.   
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Figure 21. The initial Archimedes user interface. The search panel and 

results set are on the left, the zooming interface is in the middle, and adding 

features and annotations are on the right. This is the semi-private view where 

no patient information is viewable or searchable.  

4.3 CBIR 

 

The images, categorizations, and diagnoses provided by radiologists combined with 

features enable the exploration of CBIR in medical images through Archimedes. Typical 

CBIR approaches combine features into a feature vector and use a variety of techniques 

to determine the most accurate similarity measure. The categorizations of images, like 

evaluations of breast density or cancer type or malignancy, can be used to evaluate and to 

verify the effectiveness of CBIR at returning similar images. 

As with features, it can be difficult to compare CBIR techniques without recreating 

the research of others. Archimedes allows the storage of result sets to simplify the 

comparison of different CBIR approaches. Currently, the results sets are stored with the 
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query image, but as images are added to the database over time the results set should 

change. The date needs to be added in order to prevent the comparison of newer images 

in competing CBIR approaches. 

 

Figure 22. The updated Archimedes image user interface. The search 

panel and results set are accessible from the tabs on the left, the zooming 

interface is on the left, and additional features and annotations are on the 

right.  

Currently Archimedes only stores CBIR results, but future work would allow CBIR 

techniques to be stored and utilized within Archimedes as well. CBIR techniques that can 
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be stored as a matrix operation on a feature vector can also be stored and used as an 

index. 

 

4.4 Database Design 

 

The design of Archimedes had to take into account the sensitive nature of the data as 

well as the multitude of regulations coming to govern this field. The design focused on 

satisfying HIPAA regulations in the US while maintaining the ability to adapt to other 

regulations. 

There are four main sections to the design of a distributed database system. The first 

layer is the client including the Graphical User Interface (GUI). The second and third 

layers are the server and network protocol. The final layer is the underlying database 

selection and design. The issues driving the design are the security of the system and the 

capabilities needed to operate effectively. 

The client section of the design was difficult because of the need to integrate an 

image tool with a data and search tool. The initial GUI is shown in Figure 21, while an 

updated GUI is shown in Figure 22. Instead of devoting most of the space to images as is 

a standard practice in image applications, Archimedes devoted a smaller space but 

augmented that space with the ability to zoom in on interesting parts of the image as well 

as grab the image and move it around within the available space.  The images can also be 

downloaded into other viewing systems, and image sets are viewed through a tabbing 

system. Moving the images around appeared to be intuitive, and is similar to the 

technique used in GoogleMaps. However, the zooming was designed to be smooth and 
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not stepped, with a mouse interface that was difficult to master. A planned upgrade will 

be to simplify the mouse interface for zooming in and out on images. The extra space was 

used to display auxiliary data like doctor’s notes and the data searching interface and 

search results. 

 

Figure 23. Archimedes High-Level Design. A web interface GUI is 

connected to a RMI server and a database. Note that the Image 

Processing methods are separate from the server.  

 

The client design for searching and managing patient records and images focuses on 

searching by patient information, image features, and text. For search by patient 

information in Archimedes, the medical professional is allowed to enter patient 
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information (i.e. first name, last name, date of birth, etc.) into Archimedes. Once 

information is entered, they can use filters to further refine their search results. Searching 

for images with specific features or spatial combinations of features allows doctors to 

further specify the results. Archimedes also allows search over text comments doctors 

previously made about patients or images. This works like a primitive Yahoo search over 

the text of the medical annotations. This free form of text search, combined with patient 

information, was surprisingly popular and simple to use, possibly because it mimicked a 

well-known searching application. 

The system must maintain a high level of security due to privacy issues associated 

with maintaining sensitive patient medical information. The application is web-based for 

simplified deployment and tele-medicine uses, but this makes security more of an issue. 

Information transmitted from the server to the front-end is encrypted via the AES 

encryption scheme. All modifications during system use are monitored and logged by the 

system, and the viewing of the logs is limited to administrators. Images are transferred 

from the server to the client, where the client allows manipulations and exploration of the 

images. The transmission of images over an encrypted connection caused significant 

problems for the usability of the system. One key to improving the performance on 

images is to strip out all HIPAA-regulated information from the images and transmit it 

separately over an encrypted connection. Note that DICOM is not used to communicate 

between the client and the server, but is used when images are entered or downloaded 

into other applications. Because the choice of server environment was flexible, Java was 

chosen as the development language. 
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Figure 24. An example mammogram image pair that might be stored in 

Archimedes is in (a).  Archimedes spatial search can be used to find clusters of 

features, and this is shown in (b). Storing these clusters as features, we can use a 

spatial query again to find all of the clusters that are a certain distance away 

from the breast boundary, which eliminates three noise clusters as shown in (c) 

and leaves only the actual cancer as shown in (d). This is one of the ways that 

Archimedes can be used to combine features.  
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There are many possible databases that could have been selected for use in 

Archimedes, including products from Oracle and Microsoft. However, the spatial search 

requirements of Archimedes dictated the database choice. Our prototype used MySQL for 

simplicity as is shown in Figure 23, but the final design uses the PostgreSQL open source 

SQL compliant relational database. PostgreSQL runs on all major operating systems 

including Linux, UNIX, BeOS, and Windows, which makes it highly portable and 

therefore extensible in the scope of our project.  PostgreSQL allows all of the features of 

an advanced database, including transactions, tablespaces, and foreign keys. Using 

PostGIS, an extension for the PostgreSQL database, adds support for geographic objects 

and spatially enables the database.  PostGIS complies with the Simple Features 

Specification for SQL and is an Open Source project as well. Both programs have been 

extensively tested and are considered secure, stable products.  Using our Database API 

we are also able to support Oracle databases with the Spatial Extension. This makes the 

project more extensible for the future. 

The design paid careful attention to the access to images because of privacy issues. 

Access to images can be either tightly controlled and private, public, or semi-private, 

while access to patient information is always tightly controlled and private. 

Administration is simplified through the use of groups, where semi-private images have 

groups of trusted medical professionals associated with them to help provide analysis.  

This is helpful for administration, where the hospital doctors or a subset are defined as 

the image default group setting. 

The incorporation of DICOM 3 capability is necessary in any medical image system. 

However, XML support was also included mainly because it was simple. It became the 
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preferred method for uploading data that was not already in DICOM format. The XML 

schema included tags such as <Patient>, <Image>, <Doctor>,<Feature>, <XPos>, 

<YPos>, and <Annotation>. 

Image processing packages can be incorporated into Archimedes through the ability 

to upload not only text and images, but also features in images, their positions, and 

associated annotations. The separation of image processing packages and the database 

application was chosen to maintain the flexibility of the system and the ability to 

incorporate multiple different packages and is shown in Figure 23. The feature 

characteristics need to be flexible, and can be defined at upload. 

Archimedes is a three-tiered application including backend server, server logic unit, 

and web front end user interface. The server can run on any machine using a Unix, Linux, 

or Windows operating system that can support Java.  An example of how it can be used is 

in Figure 24. 



 

5 Improvement to CAD

 

Having developed the similarity function for medical images de
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computer-aided detection of breast cancer.  Computer
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Figure 25. Typical CAD markups.  The triangle marks a cluster of 

calcifications, and the star marks a potential mass.

 

The typical CAD system takes in a mammogram set and 

radiologist.  The system also provides markers on potential cancerous sites as found by 
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Improvement to CAD 

Having developed the similarity function for medical images described in 

an image database described in Chapter 4, we used the database to help improve the 

aided detection of breast cancer.  Computer-aided detection (CAD) of 

ams could be used to avoid missed diagnoses, and has been shown to increase 

the number of cancers detected by more than nineteen percent [41]. Improving the 

effectiveness of CAD could improve the detection of breast cancer, and could improve 

ate by detecting the cancer earlier.   

 

. Typical CAD markups.  The triangle marks a cluster of 

calcifications, and the star marks a potential mass. 

The typical CAD system takes in a mammogram set and displays it for the 

system also provides markers on potential cancerous sites as found by 
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]. Improving the 
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. Typical CAD markups.  The triangle marks a cluster of 

displays it for the 

system also provides markers on potential cancerous sites as found by 
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the system.  An example of these markers is shown in Figure 25.  The determination of 

these markers and the evaluation of their effectiveness in helping radiologists are the 

main thrust of CAD research.   

The hope for CAD is that the cancers missed by the radiologist are marked by the 

computer and brought to the attention of the radiologist.  Most computer-aided detection 

(CAD) systems are tested on images which contain cancer on the assumption that images 

without cancer would produce the same number of false positives. However, a pre-

screening system is designed to remove the normal cases from consideration, and so the 

inclusion of a pre-screening system into CAD dramatically reduces the number of false 

positives reported by the CAD system. We define three methods for the inclusion of pre-

screening into CAD.  

5.1 Incorporation of Asymmetry into CAD 

 

There are three basic methods for including pre-screening into CAD analysis.  The 

first is the strict method, where the pre-screening removes the non-cancerous cases 

entirely from the consideration of the CAD software.  The second is probabilistic, where 

the probability of the case being cancerous or non-cancerous is determined by the pre-

screening system and then incorporated into the CAD analysis.  We also describe an 

improvement on our technique that we call an optimal approach, where a learning 

approach is used to try to determine the optimal factors for the inclusion of the pre-

screening results into the CAD analysis.   These methods will be defined and compared 

below.   
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The strict method is the simplest to define.  Images that are screened as normal are 

removed from consideration by the CAD analysis.  Since there are no false positives 

drawn from these cases, the number of false positives per image decreases.  This is the 

most effective technique at reducing the number of false positives, but it is also the most 

dangerous as mistakes by the pre-screening system cannot be rectified by the CAD 

system.   

The probabilistic method relies on the statistics of the pre-screening method to adjust 

the output of the CAD system.  To incorporate prescreeing into a CAD system, we made 

use of Bayes Theorem, P(CancerSite | Pre-screen) = {P(Pre-screen | CancerSite) 

P(CancerSite) / P(Pre-screen)}.  The sites where pre-screening indicates cancer are thus 

given an increased probability of being cancerous, while sites where pre-screening does 

not indicate cancer are given a reduced probability of being cancerous.  Since the pre-

screening measurement is applied to on entire case, all of the sites in those cases are 

affected similarly.   

  The optimal approach is a variant of the probabilistic approach, but instead of 

deriving the change from the underlying probabilities, the change is learned on a training 

set of cases.  In theory, this approach can optimize the incorporation of pre-screening into 

CAD, but can be difficult in practice.  In this case, P(CancerSite | Pre-screen) = A(Pre-

screen)  P(CancerSite), where A(Pre-screen) is the learned adjustment factor.  This 

approach has more flexibility than the probabilistic approach, but is mush harder to 

implement.   The choice of what to optimize is also a concern.  There are two main 

options, optimizing the area under the ROC curve or optimizing the accuracy of the CAD 
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results in a certain range of specificity.  Both approaches were attempted and will be 

discussed.   

5.2 Evaluation 

  

The analysis was performed with the same cases that were used for the analysis in 

Chapter 3.  The training data set was used to determine the parameter A(Pre-screen) for 

the optimal approach.  The other approaches were tested against the same test set in order 

to be unbiased.   

The results were good at low numbers of false positives in all three techniques, and it 

is at high and medium numbers of false positives where techniques distinguish 

themselves.  Using the probabilistic approach to incorporate pre-screening into CAD is 

shown to work well at low numbers of false positives per image and can improve the 

performance by over 70%, but at high levels of false positives per image, this technique 

has minimal effect.  This is expected since using Bayes Theorem merely reduces the 

probability of the false positives and does not eliminate them. 

The results of the strict approach are identical to the results of the probabilistic 

approach at low levels of false positives, but diverge at higher levels of false positives.  

Since this approach eliminates the false positives instead of just diminishing them, the 

results at high levels of false positives per image are worse than the probabilistic 

approach because true positives are eliminated.  However, in medium levels of false 

positives, the performance is significantly better than the probabilistic approach.  

The optimal approach was tuned to determine the best performance at both low levels 

of false positives and the overall area under the ROC curve.  The performance under both 
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converged to the strict approach; however, this may be due to the pre-screening technique 

that was chosen.   

 

  

Figure 26: ROC curve comparing the CAD system before and after the 

inclusion of the Three-Cluster approach to measuring asymmetry.  The 

inclusion of asymmetry improves the CAD system by up to 77%.  The 

asymmetry measure has a very low level of false positives per image because 

it does not try to determine the position of the cancer, it merely determines 

the presence of cancer.   

The overall performance is still strongly dependent on the effectiveness of the CAD 

system.  The accuracy of the pre-screening is essential in order to prevent true positives 

from having their probabilities diminished, and the specificity is important for improving 

the effectiveness of the CAD system.   
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The incorporation of the classification results back into the original CAD system does 

significantly improve the original CAD system, as shown in Figure 26.  The results of 

incorporating our classification into CAD were good, increasing the accuracy by up to 

71% at a set level of false positives per image. The improvement is most apparent at low 

levels of false positives. Incorporating asymmetry into CAD can improve the 

effectiveness at low levels of false positives per image.  We incorporated it as an 

afterthought, while it would be more effective as a feature used at the beginning of the 

CAD prompt calculation process.  However, we did determine that asymmetry is a 

powerful technique by itself or incorporated into CAD.  This indicates that further 

research into techniques that can compare images and thus measure asymmetry in 

mammograms may significantly improve the effectiveness of CAD algorithms.   
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6 Structured Classification and Retrieval 

 

In order to create an effective classification technique for bioinformatics data, 

methods are needed to efficiently retrieve data based on similarity to a given exemplar or 

set of exemplars.  This type of query is referred to as similarity retrieval.  Of these 

queries, the nearest neighbor query is particularly important, and it is the one that is 

emphasized in this chapter.  An apparently straightforward solution to finding the nearest 

neighbor is to compute a Voronoi diagram for the data points (i.e., a partition of the space 

into regions where all points in the region are closer to the region's associated data point 

than to any other data point), and then locate the Voronoi region corresponding to the 

query poInt.  The problem with this solution is that the combinatorial complexity of the 

search process in high dimensions, expressed in terms of the number of objects, is 

prohibitive thereby making it virtually impossible to store the Voronoi diagram which 

renders its applicability moot. 

Most methods utilize the information in the data and adjust the process to choose the 

best dimensions, but do not choose the best dimensions for each individual query point in 

order to improve the performance.  In this chapter we explore the effectiveness of 

adjusting the retrieval process in response to the query process in response to the query 

point.   Making use of the dimensions where the query point is near to a boundary instead 

of near the middle of the range provides a higher probability of pruning with that 

dimension.  This method is significantly improved when distance functions with a higher 

order are used because the large contributions of a few dimensions are more relevant in 

that case.  We also try to guarantee to not be worse than sequential search.  
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Nearest neighbor retrieval is a basic method used for classification.  However, 

because of the curse of dimensionality, the difference in the distance to one class or the 

other becomes minimal and the accuracy suffers, prompting the use of methods like 

support vector machines (SVM) [68].  In this paper we compare nearest and farthest 

neighbor classifications that have been modified with our high-dimension techniques 

with SVM classifications to determine whether the curse of dimensionality has been 

reduced.   

Nearest neighbor techniques often use the Minkowski metrics like the the L2-norm to 

measure similarity between data points.  However, the L2-norm is not necessarily relevant 

to many emerging applications involving high-dimensional data [1].  Often these are used 

after dimension-reduction techniques like SVD.  We experiment with a new reduced-

dimension distance function that is designed to rapidly determine the maximum lower 

bound on the high-dimensional distance.   

In high-dimensional nearest neighbor there are both indexed methods like the GESS 

method [31] and grid structures [69], and unindexed approaches.  The method in this 

paper is an unindexed approach.   

Several new approaches are discussed in this chapter, including choosing the 

dimensions to analyze based on the dimensions that are relevant to both the data and the 

query point, called dimensional choice, and a new distance function that measures the 

maximum lower bound on the high-dimensional distance, called the UL-Distance.  The 

combination of improved dimensional ranking and a distance function that uses fewer 

dimensions is shown to be an effective combination.   
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6.1 UL-Distance 

 

Normal nearest neighbor approaches break up the feature space well by creating a 

Vornoi space, but are susceptible to bad data points.  A typical distance metric that is 

used is a Minkowski metric of order U as in Equation 4.   

 

4) 

 

where d is the number of 

dimensions in the feature space.  

Here xi – qi indicates the difference in the data point x and the point to be classified q in 

the ith dimension.  The Euclidean distance function uses a value of U=2, while the 

Manhattan distance function uses U=1.  We define a new non-metric distance function 

called the UL-Distance which is defined to be a maximum lower limit on a high-

dimensional Minkowski distance metric in Equation 5.   

 

5) 

 

The max function here picks out the ith 

maximum from the set.  The number of dimensions used in the distance is expressly 

limited to L, which will speed up retrieval, but the contributions are from the dimensions 

that will maximize the distance in order to maintain as much accuracy as possible.  The 

factor L is the number of dimensions used in the distance, and the U is the order of the 
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distance function.  Though this technique provides an approximation to the high-

dimensional distance that can be used for pruning, it can also be an effective distance 

function on its own.  Note that it is not a distance metric because the triangle inequality is 

not guaranteed to hold for different query points.  This distance function is sensitive to 

the few dimensions that are different, instead of being overwhelmed by the number of 

dimensions that are similar.  A second non-metric distance function called the LL-

Distance is nearly identical to the UL-Distance except that it calculates the minimum 

lower limit and is Equation 6. 

 

6) 

 

In order to provide an example of 

why using a distance function that uses all of the dimensions but only calculates with a 

few could be significantly faster than a Euclidean distance, we use a Chessboard distance 

and calculate the farthest neighbor as shown in Figure 27.  Though this may not be the 

most useful calculation, it is the simplest example.  When doing a farthest-neighbor 

search, using the diameter of the data can be an effective technique.  Since the 

Chessboard distance metric requires finding the point with the maximum difference in 

only one dimension, storing the points that are on the diameter of the data set allows the 

lookup of the farthest neighbor in each dimension.  The point (or points if multiple points 

with the same value are stored) on the diameter of each dimension is compared with the 

query point, the dimension with the maximum is determined, and the farthest neighbor is 

looked up.   This would allow the calculation of the farthest neighbor under this distance 
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metric in O(d) time with O(d) storage.  This is the same amount of work necessary to 

calculate one distance, and is a factor of n better than sequential search.  This example 

demonstrates that the dimensionality of the distance function is very important for the 

performance of retrievals. 

 Since the number of dimensions used by the UL-Distance function is limited to L, 

this distance function is effectively a dimension reduction technique that operates on all 

of the dimensions.  An additional technique is required to make the retrieval faster.   

These distance functions do fulfill the properties of positive definiteness, where 

D(a,b) >= 0 for all a and b, symmetry, where D(a,b) = D(b,a), and identity, where D(a,a) 

 

Figure 27: Worst-Case 2D Search. The data in this example are the 

small squares, while the query point is the diamond at (0,0).  The points 

on the diameter are stored in the data structure, or a single point can be 

used if space is an issue.  All of the data points are equidistant from the 

query point, requiring all four surfaces to be accessed to find all farthest 

neighbors in the chessboard distance function.   
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= 0.  However, it is not guaranteed to fulfill the triangle inequality because different 

dimensions are used.   

An alternative approach to limiting the number of dimensions is to only take 

dimensions that contribute more than a certain threshold.  However, that makes 

comparisons with other techniques difficult.  Note that these distance functions are not 

normalized so that comparing the distances with different values of L can be misleading, 

which makes the threshold approach more difficult.  Normalization is feasible for 

particular values of U. 

 

6.2  Using Dimensional Choice 

 

 

Figure 28: An example 2D data set where choosing to search using the x-

dimension is preferred.  The red square q is the query point, and the blue 

circles are the data.  In this case the x-dimension is very significant for 

determining the nearest neighbor, while the contributions from the y-

dimension are not as significant and the y-dimension could be neglected.  

Dimensional Choice would let us choose the x-dimension and ignore the y-

dimension unless it is needed.   
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In low-dimensional search, the choice of which dimension to incorporate into the 

search first is not that important, but examples where is is are shown in Figures 28 and 

29.  However, when there are thousands of dimensions in the data set, the choice is much 

more important.  Choosing the best dimension to start the search does require additional 

work to determine the best dimension, with work of O(d) to O(d log d) to sort the 

dimensions, as well as knowledge of the diameters of the data set.  However, this is only 

a small amount of work compared to a complete high-dimensional search, which for 

sequential search is O(nd) where n is the number of data points and d is the number of 

dimensions.  Additionally, if one is using SVD as is often recommended when using 

high-dimensional data, the initial transformation or projection into the SVD coordinates 

dominates the work required to implement dimensional choice.   

The underlying data structure must be extremely flexible in order to utilize 

dimensional choice, which is why it is not used in low-dimensional cases.  The idea 

behind this technique was mentioned by Nene and Nayar [85], where they suggest a 

projection method that could order the analysis of the dimensions in order to minimize 

the total work.  However, they were working with only sixteen dimensions, so we 

analyze the full effect of this technique on their projection method.  Their technique 

determines the points that are within a distance of ε from the query point by accessing the 

data in each dimension and winnowing down the potential nearest neighbors.  The 

distance ε that should be used is determined to be rather large when there are sparse data 

points and a large number of dimensions.   

Dimensional choice can be used to first estimate the dimensions that have the largest 

potential to winnow down the number of potential nearest neighbors without actually 
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analyzing those dimensions.  This choice is distribution dependent and could be 

calculated as such.  Note that when the query point is at the edge of the data set, the space 

that has to be searched is only ε instead of 2ε (since the range is from x-ε to x+ε and in 

this case half of the space will be empty).  So in the case of the uniform distribution 

(where this technique works the worst), there are dimensions that can as much as double 

the effective winnowing.  In the case of Gaussian distributed data, the effect is even 

better because the winnowing is done at the tails of the distribution.  Additionally, the 

important dimensions can be determined a priori, so that many dimensions need never be 

analyzed. 

In order to realize the effect of the improved winnowing, an additional adjustment 

should be included to the Nene and Nayar approach.  Their approach continues through 

 

Figure 29: An example 2D data set where choosing to search using the y-

dimension is valuable in determining the nearest neighbor to the query point 

q, even though the data set would indicate that a x-dimension is preferred.  

The red square q is the query point, and the blue circles are the data.  In both 

the x and y dimensions, the contributions to the total distance can be 

significant.  The difference between this case and the case in Figure 28 is the 

position of the query position.  
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all of the dimensions regardless of the number of points remaining in the hyper-cube.  A 

stopping condition should be included so that analyzing the dimensions stops when there 

are a set number of points left in the hyper-cube.  Using dimensional choice reduces the 

work by at least a factor of two for a uniform distribution in high dimensions, and a 

significantly better factor for a Gaussian distribution. 

PCA analysis utilizes a limited number of the eigenvectors V with the largest 

eigenvalues λ of the diagonalized covariance matrix D to limit the dimensions.  However, 

this neglects the importance of the query point itself.  The difficulty with this is 

demonstrated by comparing Figures 36 and 37, where the query point determines whether 

the dimension can be neglected.  Dimensional choice can be built as an extension of PCA 

in the following way.  While PCA selects the eigenvectors with the largest variance λ, the 

query point can be included by selecting the dimensions with the largest value of the 

difference from the mean (qi - µi ) and the largest variance λ.  We use a combination 

factor C to balance these two factors to give us a priority value P 

 

7) 

where i is the appropriate dimension, q is the query point, µ is the mean.   Selecting the 

dimensions based on P-Value instead of λ gives the dimension prioritization a sensitivity 

to the query poInt. 

Combining the UL-Distance and dimensional choice methods for nearest and farthest 

neighbor searches can provide significant improvement in speed.  In order to determine 

the farthest neighbor in the UL-Distance, the dimensions of the query point are compared 

)( iii qCValueP µλ −+=−
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with the mean and variance of that dimension.  Then the dimension which has the highest 

possible contribution is analyzed first to get a distance.  The remaining dimensions are 

checked until the current distance difference cannot be exceeded because the potential 

contributions from the remaining dimensions are too small.  An additional level of 

approximation can be included by estimating an earlier stopping poInt.  This method 

operates in O(d log d + na)) where a is the number of dimensions that had to be analyzed 

at the worst case and is dominated by the initial sort, but can be reduced to O(d + n) ~ 

O(d) if only a partial sort is done initially.  This compares favorably with the O(nd) of 

sequential scans. 

In the case of the Euclidean or Manhattan distance metrics, the gains from adapting to 

the query point are not as profound as under the UL-distance because all of the 

dimensions have to be analyzed.  However, we have demonstrated that the dimension of 

the distance function is what drives the difficulty in retrieval.  This motivates the creation 

of new distance metrics like the UL-Distance that emulate Minkowski distance metrics 

but use a lower dimensionality.   

Using Dimensional Choice differs from using PCA in several important ways.  First, 

PCA uses the same dimensions for every classification distance, while Dimensional 

Choice is adaptive and uses a different set of dimensions for each classification distance 

depending on the dimensions that are important for that particular point as well as those 

that are important for the data overall.  Dimensional Choice works better with distance 

functions that are inherently lower dimensional like the UL-Distance and the Chessboard 

distance functions because the combination of a limited number of dimensions and an 

effective choice of those dimensions complement each other. 
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6.3 Search using Similar Neighbor 

 

Many nearest neighbor applications require the exact nearest neighbor.  However, 

when looking for similarity, often the approximate nearest neighbor is sufficient.  Judging 

whether approximate nearest neighbor is good enough requires an understanding of the 

underlying structure of similarity that is embedded into the space.  The amount of 

approximation allowed depends on the tolerance of the system for mis-classification of 

points as similar.  A better approach is finding a similar neighbor instead of the nearest 

neighbor.  This avoids the discussion of how much approximation is tolerable by going 

directly to the question of similarity.   

An example of success in similar neighbor would be finding a point that is not the 

nearest neighbor, but is similar to the query poInt.  An example of failure would be 

finding any point that is not similar, even if it is the nearest neighbor.  This measure of 

success is less strict in terms of actual distances to the objects that are retrieved but more 

strict in terms of the similarity of the objects to the query.   

6.4 Experiments 

 

The main questions for these techniques are what the speed improvement is, and what 

the change in accuracy is.  In order to determine the change in accuracy, we look at a 

nearest neighbor application in recognizing prostate cancer.  Here the loss in accuracy is 

judged by whether the classification loses accuracy, sensitivity, or specificity, instead of 

determining whether the particular nearest neighbor is exactly the same.  This looser 

definition of accuracy is more of a functional definition as large high-dimensional data 
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sets are increasingly used for classification.  The accuracy will be compared with other 

nearest neighbor and SVM approaches.    

 

Figure 30: The accuracy of the methods versus the number of features (or 

dimensions).  The nearest neighbor methods performed surprisingly well 

against the SVM.  The nn PCA method is the nearest neighbor with PCA 

dimensions included, while the nn max uses the UL-Distance.  The general 

flatness of the nearest neighbor methods is encouraging for using nearest 

neighbor with dimension reduction methods.  The nn max does outperform 

all other methods.  The general flatness of the nearest neighbor methods is 

encouraging for using nearest neighbor with dimension reduction methods.   

We used a data set obtained from Clinical Proteomic Program Databank.  The 

experimental data is a set of prostate cancer samples. The experiment analyzed serum 

proteomic mass spectra generated by SELDI-TOF to discriminate the sera of men with 

histopathologic diagnosis of prostate cancer (serum prostate-specific antigen [PSA] ≥ 4 

ng/mL) from those men without prostate cancer (serum PSA < 1 ng/mL). In this data set, 

there are 63 normal (non-cancer) samples, and 69 cancer samples.   
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Figure 31: The sensitivity of the methods versus the number of features.  

The nn PCA method is the nearest neighbor with PCA dimensions included, 

while the nn max uses the UL-Distance.  The similarity of the sensitivity of 

the two methods suggests that it is the specificity and not the sensitivity that 

makes the nn max the better technique.  Both outperform SVM.   

A SVM was used to compare the accuracy loss for the serum proteomic pattern 

analysis.  A SVM is a blend of linear modeling and instance-based learning. A SVM 

selects a small number of critical boundary samples, called support vectors, from each 

category and builds a linear discriminate function that separates them as widely as 

possible. A kernel is used to automatically inject the training samples into a higher-

dimensional space, and to learn a separator in that space [68]. In linearly separable cases, 

SVM constructs a hyper-plane, which separates the two different categories of feature 

vectors with a maximum margin, i.e., the distance between the separating hyper-plane 

and the nearest training vector. The training instances that lie closest to the hyper-plane 
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are support vectors [68]. Linear and polynomial kernels were used.  The feature selection 

method was MIT correlation, which is also known as signal-to-noise statistic [46].  

 

Figure 32: The specificity of the methods versus the number of features.  

The nn PCA method is the nearest neighbor with PCA dimensions included, 

while the nn max uses the UL-Distance.  The flatness of the nn max method 

demonstrates that the dimension reduction does not adversely affect the 

specificity.   

 

The speed and accuracy improvement was measured on the same computer with the 

competing algorithms of the PCA nearest neighbor with a Euclidean distance metric 

versus the UL-Distance of order 2 with Dimensional Choice.  The accuracy was also 

compared with two SVM approaches. Because of the limited supply of data, we used one 

sample as the test case and the remainder as the training cases and did this for each case.  

The drawback to this approach is that the result of each individual test is not independent 

of the results of the other tests.  
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6.5 Results 

 

The results were interesting overall as the nearest neighbor classification performed 

better overall than both of the SVM techniques.  This is shown in Figures 38, 39, and 40.  

The use of the UL-Distance significantly increased the accuracy of the nearest-neighbors 

technique at low levels of features, as is shown in Figure 33, but performed at a similar 

level to the PCA choice of dimensions at high levels of features, as is shown in Figures 

30, 31, and 32.   

 

Figure 33: The accuracy of the nearest neighbor methods versus 

the number of features at a small number of features.  The nn PCA 

method is the nearest neighbor with PCA dimensions included, while 

the nn max uses the UL-Distance.   The loss in accuracy at an 

extremely small number of features is significant, but not terrible.  

The performance of the UL-Distance does improve the performance 

by 3-12% over the PCA features technique.   
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The accuracy of the classification is maintained with the reduction of the number of 

features from 12600 to 800 with the UL-Distance, while the PCA choice of dimensions 

shows slight degradation as is shown in Figure 30.  This reduction in the dimensionality 

of the data by almost 70% without a loss of accuracy is encouraging.  However, the 

accuracy is degraded below 100 dimensions as shown in Figure 33, but only by 6% in 

order to achieve a dimension reduction of 99%.  Note that using the UL-Distance instead 

of the PCA technique improved the accuracy by up to 12% at low numbers of 

dimensions, as is shown in Figure 33.  Of course, these results are dependent on the data 

set used.   

The specificity of the classification is surprisingly stable with dimension reduction 

under the UL-Distance, as is shown in Figure 32.  The other methods did not fare as well.  

The sensitivity of the classification with the UL-Distance and nearest neighbor was 

surprisingly good, as is shown in Figure 31.   

Farthest neighbor classification did not perform well and is not shown.  However, the 

farthest neighbor and nearest neighbor classifications did not tend to misclassify the same 

data points, which implies that the combination of the two might produce a better overall 

classifier.    

6.6 Conclusion 

 

This work has demonstrated significant dimension reduction, up to 70% reduction in 

the number of dimensions in the data set with no loss in accuracy or over 99% reduction 

with only a 6% loss in accuracy.  The method can actually perform better with fewer 
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dimensions than the nearest neighbor with all of the dimensions.  The data set may be 

part of the reason, though it is a typical prostate cancer data set.     

We have developed a new distance function called the UL-Distance that can be 

effectively used to replace Euclidean or other Minkowski metrics for high-dimensional 

nearest neighbor operations.  This performed at up to 12% better than alternate 

approaches.   

Combining this new distance function with a technique of Dimensional Choice where 

the best dimensions to analyze are guessed using information about the underlying data 

and the query itself in order to minimize the amount of work required to perform the 

nearest neighbor search with the UL-Distance achieved significant savings in work.  The 

time to perform a nearest neighbor search is reduced by a factor of five with no loss of 

accuracy, but can be improved up to a factor of ten at some loss of accuracy.  

We demonstrate that the curse of dimensionality is not based on the dimension of the 

data itself, but primarily upon the effective dimension of the distance function.  The 

effective dimension of the UL-Distance is set to a factor of L even though it can act on 

any of the possible d dimensions.  We also note that the higher the order U of the UL-

Distance function, the better the approximation performs since the small factors that 

would be included from neglected dimensions are effectively reduced when using a 

higher order distance function. 

We note that this work is preliminary and does require more extensive analysis.  

However, the combination of a more effective ranking of dimensions using dimensional 

choice and a dimension-limiting distance function appear to be an effective combination 

when using high-dimensional data.   
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7 Conclusion  
 

This thesis touched on many of the problems facing the classification and retrieval of 

cancer images and data.  We developed a method for differencing and classifying images, 

which we then incorporated it into CAD.  We developed a database for the collection and 

analysis of cancer images and data.  We also analyzed better approaches to retrieve and 

analyze high-dimensional cancer data.   

Our results are strong on all cases of the test set for classifying breast cancer images, 

correctly classifying with 85% accuracy and our technique outperforms both the best 

academic and commercial approaches, suggesting that this is an important technique in 

the classification of mammograms.  We have also shown that using the image 

comparisons to determine the classification is insensitive to the parameters of the 

approach. 

We created and compared multiple models, demonstrating improved results over both 

academic and commercial approaches.  We also defined a new distance measure for the 

comparison of point sets and demonstrate its effectiveness in this application.  The 

coupling of this distance measure with the parametric learning of clusters led to a highly 

effective classification technique.    

The clusters also discovered an area of interest in mammogram comparisons which 

improved the diagnosis of mammograms that did not have cancer. More clusters might 

improve the technique, or, more importantly, they might lead to the discovery of more 

areas of interest. We suggested several ways that might improve on the methods that we 

used to compare mammograms.  
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The incorporation of the classification results back into the original CAD system does 

significantly improve the original CAD system.  The results of incorporating our 

classification into CAD were good, increasing the accuracy by up to 71% at a set level of 

false positives per image. The improvement is most apparent at low levels of false 

positives. Incorporating asymmetry into CAD can improve the effectiveness at low levels 

of false positives per image.  We also determined that asymmetry is a powerful technique 

by itself or incorporated into CAD.  This indicates that further research into techniques 

that can compare images and thus measure asymmetry in mammograms may 

significantly improve the effectiveness of CAD algorithms.   

We have created a secure web-enabled HIPPA-compliant database for the storage, 

retrieval, manipulation, and annotation of medical images and medical records for the 

development and evaluation of CBIR methods. The most unique quality is the ability to 

input, store, and share multiple feature sets and result sets for each image, thereby 

allowing greater flexibility for CBIR and allowing web collaboration in the development 

of CBIR. Each expert needed for the development of CBIR gains advantages in their 

individual work by collaborating in Archimedes, while improving the project overall. The 

advanced querying and feature storage capabilities provide rapid analysis and 

comparisons radiologist techniques, medical image features and CBIR techniques. 

The work on retrieval of cancer information has demonstrated significant dimension 

reduction, up to 70% reduction in the number of dimensions in the data set with no loss in 

accuracy or over 99% reduction with only a 6% loss in accuracy.  The method can 

actually perform better with fewer dimensions than the nearest neighbor with all of the 



92 

 

dimensions.  The data set may be part of the reason, though it is a typical prostate cancer 

data set.     

We developed a new distance function called the UL-Distance that can be effectively 

used to replace Euclidean or other Minkowski metrics for high-dimensional nearest 

neighbor operations.  This performed at up to 12% better than alternate approaches.  

Combining this new distance function with a technique of Dimensional Choice where the 

best dimensions to analyze are guessed using information about the underlying data and 

the query itself in order to minimize the amount of work required to perform the nearest 

neighbor search with the UL-Distance achieved significant savings in work.   

We demonstrate that the curse of dimensionality is not based on the dimension of the 

data itself, but primarily upon the effective dimension of the distance function.  The 

effective dimension of the UL-Distance is set to a factor of L even though it can act on 

any of the possible d dimensions.  We also note that the higher the order U of the UL-

Distance function, the better the approximation performs since the small factors that 

would be included from neglected dimensions are effectively reduced when using a 

higher order distance function. 

We note the combination of a more effective ranking of dimensions using 

dimensional choice and a dimension-limiting distance function appear to be an effective 

combination when using high-dimensional data.   
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Appendix A Mammogram Images 

     

                (a)                            (b)                        (c)                               (d) 

Figure 34: The typical set of four images that make up a mammogram, the 

side view of the left breast in (a), the side view of the right breast in (b), the top 

view of the left breast in (c), the top view of the right breast in (d). The cancerous 

areas are outlined in red. This image set was correctly classified by the method 

described in Chapter 3.     

     

                (a)                            (b)                        (c)                               (d) 

Figure 35: Round masses with circumscribed margins. The side view of the 

left breast is in (a), the side view of the right breast is in (b), the top view of the 

left breast is in (c), the top view of the right breast is in (d). The cancerous areas 

are outlined in red.     
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                (a)                            (b)                        (c)                               (d) 

Figure 36: A round mass with microlobulated margins. The side view of the 

left breast is in (a), the side view of the right breast is in (b), the top view of the 

left breast is in (c), the top view of the right breast is in (d). The cancerous areas 

are outlined in red.     

 

     

                (a)                            (b)                        (c)                               (d) 

Figure 37: An architectural distortion with spiculated margins.  The side 

view of the left breast in (a), the side view of the right breast in (b), the top view 

of the left breast in (c), the top view of the right breast in (d). The cancerous 

areas are outlined in red.  
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                (a)                            (b)                        (c)                               (d) 

Figure 38: An architectural distortion with microlobulated margins. The side 

view of the left breast is in (a), the side view of the right breast is in (b), the top 

view of the left breast is in (c), the top view of the right breast is in (d). The 

cancerous areas are outlined in red.     

     

                (a)                            (b)                        (c)                               (d) 

Figure 39: A cancer in a lymph node. The side view of the left breast is in (a), 

the side view of the right breast is in (b), the top view of the left breast is in (c), 

the top view of the right breast is in (d). The cancerous areas are outlined in red.     
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                (a)                            (b)                        (c)                               (d) 

Figure 40: A focal asymmetric density.  The side view of the left breast in (a), 

the side view of the right breast in (b), the top view of the left breast in (c), the 

top view of the right breast in (d). The cancerous areas are outlined in red.  

     

                (a)                            (b)                        (c)                               (d) 

Figure 41: A cancerous asymmetric breast tissue.  The side view of the left 

breast is in (a), the side view of the right breast is in (b), the top view of the left 

breast is in (c), the top view of the right breast is in (d). The cancerous areas are 

outlined in red.     
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                (a)                            (b)                        (c)                               (d) 

Figure 42: A lobulated mass with spiculated margins.  The side view of the 

left breast in (a), the side view of the right breast in (b), the top view of the left 

breast in (c), the top view of the right breast in (d). The cancerous areas are 

outlined in red.  

     

 

 

                (a)                            (b)                        (c)                               (d) 

Figure 43: A round mass with an obscured margin.  The side view of the left 

breast in (a), the side view of the right breast in (b), the top view of the left breast 

in (c), the top view of the right breast in (d). The cancerous areas are outlined in 

red. 
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Appendix B Data 
 

Training Data 

 

Name  Age  Density 

 

Assessment 

 

Subtlety  Digitizer 

A_1134_1 69 2 4 4  DIGITIZER HOWTEK 43.5 

A_1156_1 65 3 5 5  DIGITIZER HOWTEK 43.5 

A_1159_1 69 1 5 5  DIGITIZER HOWTEK 43.5 

A_1160_1 53 2 4 1  DIGITIZER HOWTEK 43.5 

A_1163_1 70 4 5 3  DIGITIZER HOWTEK 43.5 

A_1166_1 61 2 5 5  DIGITIZER HOWTEK 43.5 

A_1174_1 80 2 5 4  DIGITIZER HOWTEK 43.5 

A_1203_1 51 4 4 2  DIGITIZER HOWTEK 43.5 

A_1212_1 30 4 5 5  DIGITIZER HOWTEK 43.5 

A_1217_1 65 3 4 2  DIGITIZER HOWTEK 43.5 

A_1222_1 40 3 5 5  DIGITIZER HOWTEK 43.5 

A_1224_1 57 3 4 3  DIGITIZER HOWTEK 43.5 

A_1229_1 65 2 5 4  DIGITIZER HOWTEK 43.5 

A_1236_1 58 4 5 5  DIGITIZER HOWTEK 43.5 

A_1252_1 67 3 5 4  DIGITIZER HOWTEK 43.5 

A_1262_1 58 2 5 5  DIGITIZER HOWTEK 43.5 

A_1403_1 57 3 5 5  DIGITIZER HOWTEK 43.5 

A_1417_1 66 3 5 5  DIGITIZER HOWTEK 43.5 

A_1467_1 40 3 5 1  DIGITIZER HOWTEK 43.5 

A_1486_1 67 4 5 2  DIGITIZER HOWTEK 43.5 

A_1520_1 52 4 3 4  DIGITIZER HOWTEK 43.5 

A_1587_1 71 3 5 2  DIGITIZER HOWTEK 43.5 

A_1589_1 69 4 5 4  DIGITIZER HOWTEK 43.5 

A_1592_1 40 4 4 1  DIGITIZER HOWTEK 43.5 

A_1620_1 67 2 5 3  DIGITIZER HOWTEK 43.5 

A_1622_1 63 3 4 2  DIGITIZER HOWTEK 43.5 

A_1642_1 71 2 5 5  DIGITIZER HOWTEK 43.5 

A_1671_1 78 2 4 2  DIGITIZER HOWTEK 43.5 

A_1693_1 44 4 5 4  DIGITIZER HOWTEK 43.5 

A_1700_1 77 3 5 1  DIGITIZER HOWTEK 43.5 

A_1701_1 71 1 5 3  DIGITIZER HOWTEK 43.5 

A_1720_1 71 4 4 2  DIGITIZER HOWTEK 43.5 

A_1726_1 61 3 4 3  DIGITIZER HOWTEK 43.5 

A_1790_1 46 4 4 1  DIGITIZER HOWTEK 43.5 

A_1896_1 87 3 5 5  DIGITIZER HOWTEK 43.5 
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A_1899_1 43 3 5 4  DIGITIZER HOWTEK 43.5 

A_1908_1 48 2 5 4  DIGITIZER HOWTEK 43.5 

D_4500_1 63 3 5 4  DIGITIZER HOWTEK 43.5 

D_4501_1 56 2 5 4  DIGITIZER HOWTEK 43.5 

D_4502_1 41 1 5 4  DIGITIZER HOWTEK 43.5 

D_4503_1 52 2 5 4  DIGITIZER HOWTEK 43.5 

D_4505_1 58 2 5 4  DIGITIZER HOWTEK 43.5 

D_4506_1 36 4 5 4  DIGITIZER HOWTEK 43.5 

D_4508_1 37 3 5 4  DIGITIZER HOWTEK 43.5 

D_4510_1 42 2 5 4  DIGITIZER HOWTEK 43.5 

D_4511_1 50 2 5 4  DIGITIZER HOWTEK 43.5 

D_4512_1 43 3 5 4  DIGITIZER HOWTEK 43.5 

D_4513_1 37 3 5 4  DIGITIZER HOWTEK 43.5 

D_4514_1 43 3 5 4  DIGITIZER HOWTEK 43.5 

D_4515_1 38 2 5 4  DIGITIZER HOWTEK 43.5 

D_4516_1 42 3 5 4  DIGITIZER HOWTEK 43.5 

D_4517_1 42 3 5 4  DIGITIZER HOWTEK 43.5 

D_4518_1 44 3 5 4  DIGITIZER HOWTEK 43.5 

D_4519_1 55 1 5 4  DIGITIZER HOWTEK 43.5 

D_4520_1 37 4 5 4  DIGITIZER HOWTEK 43.5 

D_4521_1 39 2 5 4  DIGITIZER HOWTEK 43.5 

D_4522_1 41 4 5 4  DIGITIZER HOWTEK 43.5 

D_4523_1 62 2 5 4  DIGITIZER HOWTEK 43.5 

D_4524_1 48 4 5 4  DIGITIZER HOWTEK 43.5 

D_4525_1 61 1 5 4  DIGITIZER HOWTEK 43.5 

D_4526_1 52 1 5 4  DIGITIZER HOWTEK 43.5 

D_4527_1 51 3 5 4  DIGITIZER HOWTEK 43.5 

D_4528_1 50 4 5 4  DIGITIZER HOWTEK 43.5 

D_4529_1 58 1 5 4  DIGITIZER HOWTEK 43.5 

D_4530_1 58 4 5 4  DIGITIZER HOWTEK 43.5 

D_4532_1 52 2 5 4  DIGITIZER HOWTEK 43.5 

D_4533_1 47 2 5 4  DIGITIZER HOWTEK 43.5 

D_4534_1 36 1 5 4  DIGITIZER HOWTEK 43.5 

D_4536_1 47 1 5 4  DIGITIZER HOWTEK 43.5 

D_4537_1 51 3 5 4  DIGITIZER HOWTEK 43.5 

D_4538_1 41 3 5 4  DIGITIZER HOWTEK 43.5 

D_4539_1 45 3 5 4  DIGITIZER HOWTEK 43.5 

D_4540_1 46 4 5 4  DIGITIZER HOWTEK 43.5 

D_4541_1 49 2 5 4  DIGITIZER HOWTEK 43.5 

D_4542_1 57 1 5 4  DIGITIZER HOWTEK 43.5 

D_4543_1 37 3 5 4  DIGITIZER HOWTEK 43.5 



100 

 

 

 

 

Test Data 

 

Name 

 

Age 

 

Density 

 

Assessment 

 

Subtlety  Digitizer 

A_1112_1 88 3 5 5  DIGITIZER HOWTEK 43.5 

A_1114_1 81 4 4 3  DIGITIZER HOWTEK 43.5 

A_1122_1 48 2 5 4  DIGITIZER HOWTEK 43.5 

A_1127_1 58 4 5 1  DIGITIZER HOWTEK 43.5 

A_1140_1 81 2 5 4  DIGITIZER HOWTEK 43.5 

A_1147_1 77 3 5 3  DIGITIZER HOWTEK 43.5 

A_1149_1 68 2 4 2  DIGITIZER HOWTEK 43.5 

A_1155_1 48 4 5 5  DIGITIZER HOWTEK 43.5 

A_1168_1 87 4 4 2  DIGITIZER HOWTEK 43.5 

A_1169_1 37 1 5 2  DIGITIZER HOWTEK 43.5 

A_1171_1 73 1 5 5  DIGITIZER HOWTEK 43.5 

A_1207_1 77 2 5 1  DIGITIZER HOWTEK 43.5 

A_1211_1 67 3 5 5  DIGITIZER HOWTEK 43.5 

A_1228_1 73 3 5 5  DIGITIZER HOWTEK 43.5 

A_1233_1 46 4 4 4  DIGITIZER HOWTEK 43.5 

A_1234_1 65 3 5 4  DIGITIZER HOWTEK 43.5 

A_1237_1 46 4 5 5  DIGITIZER HOWTEK 43.5 

A_1247_1 52 2 5 5  DIGITIZER HOWTEK 43.5 

A_1258_1 43 3 5 4  DIGITIZER HOWTEK 43.5 

A_1401_1 70 4 5 2  DIGITIZER HOWTEK 43.5 

A_1416_1 55 4 5 4  DIGITIZER HOWTEK 43.5 

A_1468_1 71 1 5 5  DIGITIZER HOWTEK 43.5 

A_1485_1 51 3 5 2  DIGITIZER HOWTEK 43.5 

A_1504_1 69 4 5 3  DIGITIZER HOWTEK 43.5 

A_1510_1 58 4 5 5  DIGITIZER HOWTEK 43.5 

A_1573_1 73 2 5 3  DIGITIZER HOWTEK 43.5 

A_1577_1 85 3 5 1  DIGITIZER HOWTEK 43.5 

A_1618_1 62 3 5 3  DIGITIZER HOWTEK 43.5 

A_1628_1 75 2 5 5  DIGITIZER HOWTEK 43.5 

A_1658_1 83 3 5 4  DIGITIZER HOWTEK 43.5 

A_1669_1 52 1 5 4  DIGITIZER HOWTEK 43.5 

A_1673_1 48 4 5 4  DIGITIZER HOWTEK 43.5 

A_1674_1 61 4 5 1  DIGITIZER HOWTEK 43.5 

A_1804_1 48 4 4 1  DIGITIZER HOWTEK 43.5 

A_1821_1 75 3 5 5  DIGITIZER HOWTEK 43.5 
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A_1827_1 78 3 4 3  DIGITIZER HOWTEK 43.5 

A_1892_1 69 3 5 2  DIGITIZER HOWTEK 43.5 

A_1906_1 48 2 5 4  DIGITIZER HOWTEK 43.5 

A_1985_1 41 4 5 2  DIGITIZER HOWTEK 43.5 

A_1999_1 81 2 5 3  DIGITIZER HOWTEK 43.5 

D_4544_1 43 2 5 3  DIGITIZER HOWTEK 43.5 

D_4545_1 54 3 5 3  DIGITIZER HOWTEK 43.5 

D_4546_1 63 2 5 3  DIGITIZER HOWTEK 43.5 

D_4547_1 57 2 5 3  DIGITIZER HOWTEK 43.5 

D_4551_1 44 1 5 3  DIGITIZER HOWTEK 43.5 

D_4552_1 52 3 5 3  DIGITIZER HOWTEK 43.5 

D_4553_1 46 3 5 3  DIGITIZER HOWTEK 43.5 

D_4555_1 40 3 5 3  DIGITIZER HOWTEK 43.5 

D_4557_1 47 4 5 3  DIGITIZER HOWTEK 43.5 

D_4558_1 61 2 5 3  DIGITIZER HOWTEK 43.5 

D_4559_1 55 3 5 3  DIGITIZER HOWTEK 43.5 

D_4560_1 44 3 5 3  DIGITIZER HOWTEK 43.5 

D_4561_1 50 3 5 3  DIGITIZER HOWTEK 43.5 

D_4562_1 42 2 5 3  DIGITIZER HOWTEK 43.5 

D_4563_1 47 2 5 3  DIGITIZER HOWTEK 43.5 

D_4565_1 36 3 5 3  DIGITIZER HOWTEK 43.5 

D_4566_1 35 4 5 3  DIGITIZER HOWTEK 43.5 

D_4567_1 52 2 5 3  DIGITIZER HOWTEK 43.5 

D_4570_1 38 2 5 3  DIGITIZER HOWTEK 43.5 

D_4571_1 56 3 5 3  DIGITIZER HOWTEK 43.5 

D_4572_1 50 1 5 3  DIGITIZER HOWTEK 43.5 

D_4574_1 56 2 5 3  DIGITIZER HOWTEK 43.5 

D_4575_1 39 2 5 3  DIGITIZER HOWTEK 43.5 

D_4576_1 58 1 5 3  DIGITIZER HOWTEK 43.5 

D_4577_1 40 2 5 3  DIGITIZER HOWTEK 43.5 

D_4582_1 38 4 5 3  DIGITIZER HOWTEK 43.5 

D_4583_1 52 2 5 3  DIGITIZER HOWTEK 43.5 

D_4584_1 45 3 5 3  DIGITIZER HOWTEK 43.5 

D_4585_1 36 4 5 3  DIGITIZER HOWTEK 43.5 

D_4587_1 41 3 5 3  DIGITIZER HOWTEK 43.5 

D_4588_1 47 2 5 3  DIGITIZER HOWTEK 43.5 

D_4589_1 53 2 5 3  DIGITIZER HOWTEK 43.5 

D_4590_1 44 3 5 3  DIGITIZER HOWTEK 43.5 

D_4591_1 40 4 5 3  DIGITIZER HOWTEK 43.5 

D_4592_1 51 2 5 3  DIGITIZER HOWTEK 43.5 

D_4593_1 62 2 5 3  DIGITIZER HOWTEK 43.5 
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D_4594_1 38 3 5 3  DIGITIZER HOWTEK 43.5 

D_4595_1 47 3 5 3  DIGITIZER HOWTEK 43.5 
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