Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SELF ORGANIZING WIRELESS SENSOR NETWORKS

    Thumbnail
    View/Open
    umi-umd-4895.pdf (2.675Mb)
    No. of downloads: 1026

    Date
    2007-10-26
    Author
    Kordari, Kamiar
    Advisor
    Blankenship, Gilmer L
    Metadata
    Show full item record
    Abstract
    This dissertation is concerned with the properties of self-organizing network systems, where a large number of distributed sensor nodes with limited sensing, processing and communication capability organize themselves into a cooperative network without any centralized control or management. Due to the distributed nature of the management and lack of global information for in-node decision making, sensor management in such networks is a complicated task. The dynamics of such networks are characterized by constraints and uncertainty, and the presence of disturbances that significantly affect aggregate system behavior. In this dissertation we examine several important topics in the management of self-organizing wireless sensor networks. The first topic is a statistical analysis to determine the minimum requirements for the deployment phase of a random sensor network to achieve a desired degree of coverage and connectivity. The second topic focuses on the development of a viable online sensor management methodology in the absence of global information. We consider consensus based sensor data fusion as a motivating problem to demonstrate the capability of the sensor management algorithms. The approach that has been widely investigated in the literature for this problem is the fusion of information from all the sensors. It does not involve active control of the sensors as part of the algorithm. Our approach is to control the operations of the nodes involved in the consensus process by associating costs with each node to emphasize those with highest payoff. This approach provides a practical, low complexity algorithm that allows the nodes to optimize their operations despite the lack of global information. In the third topic we have studied sensor networks that include "leaders," "followers," and "disrupters." The diffusion of information in a network where there are conflicting strategies is investigated through simulations. These results can be used to develop algorithms to manage the roles in the network in order to optimize the diffusion of information as well as protect the network against disruption.
    URI
    http://hdl.handle.net/1903/7625
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility