Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantum mechanical investigation on the vibrational relaxation of HF in collisions with H atoms

    Thumbnail
    View/Open
    umi-umd-4502.pdf (7.142Mb)
    No. of downloads: 721

    Date
    2007-05-10
    Author
    Tao, Liang
    Advisor
    Alexander, Millard
    Metadata
    Show full item record
    Abstract
    We investigate the vibrational relaxation of HF(v=2-5) in collisions with H atoms by means of fully-quantum reactive scattering calculations. Our calculations are based on the global ab initio potential energy surface of Stark and Werner which includes, specifically, an accurate description on the reaction barrier and the van der Waals wells in the reactant and product arrangements. We attribute discrepancies between early fluorescence experiments and quasi-classical trajectory calculations to accuracies in the approximate potential energy surface used, in particular inaccuracies in the predicted barrier heights. By suitable linear combinations of the definite parity basis functions, we are able to separate the nominally indistinguishable inelastic relaxation pathways: (1) Inelastic vibrational relaxation unaccompanied by H atom exchange (2) Inelastic vibrational relaxation accompanied by H atom exchange In addition, reactive quenching also contributes to the overall vibrational removal of HF We report state-to-state and overall integral cross sections for each of these channels. The dominant removal process corresponds to vibrational relaxation without H-atom exchange. The magnitude of the vibrational relaxation cross sections are in reasonable overall agreement with the limited experimental data. We also observe sharp structure in the energy dependence of the HF(v=3) removal cross sections. We use an adiabatic-bender analysis to assign this structure to scattering resonances arising from quasi-bound van der Waals states in the HF-H entrance valley.
    URI
    http://hdl.handle.net/1903/6992
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility