Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Triviality and Nontriviality of Tate-Lichtenbaum Self Pairings

    Thumbnail
    View/Open
    umi-umd-4340.pdf (336.3Kb)
    No. of downloads: 506

    Date
    2007-04-25
    Author
    Schmoyer, Susan Lynn
    Advisor
    Washington, Lawrence C
    Metadata
    Show full item record
    Abstract
    Let E be an elliptic curve defined over F_q and suppose that E[n] subset E(F_q). For attacking the elliptic curve discrete logarithm problem it is useful to know when points pair with themselves nontrivially under the Tate-Lichtenbaum pairing. In this thesis we characterize when all points in E[n] have trivial self pairings. This result is expressed in terms of the action of the Frobenius endomorphism on E[n^2]. We then generalize this result to Jacobians of algebraic curves of arbitrary genus.
    URI
    http://hdl.handle.net/1903/6851
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility