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Let E be an elliptic curve defined over Fq and suppose that E[n] ⊂ E(Fq). For
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We then generalize this result to Jacobians of algebraic curves of arbitrary genus.
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Chapter 1

Introduction

1.1 Tate-Lichtenbaum Self Pairings

It is well-known that all self pairing are trivial for the Weil pairing (i.e.,

en(P, P ) = 1 for all n-torsion points P ). In this thesis we study self pairings for the

Tate-Lichtenbaum pairing. We address the question,

Question 1. Given an elliptic curve E defined over Fq and an integer n relatively

prime to q, when does the Tate-Lichtenbaum pairing have only trivial self pairings

for all points in E[n]?

If E is an elliptic curve with cyclic n-torsion over Fq, then nondegeneracy of

the Tate-Lichtenbaum pairing implies that there exist points with nontrivial self

pairings. Thus, we turn our attention to the case that all n-torsion points are

defined over Fq. In this case the existence of a point with a nontrivial self pairing

is sometimes possible, but not guaranteed [2].

In this thesis we consider elliptic curves which have all of their n-torsion

points defined over Fq. We characterize when these curves have only trivial Tate-

Lichtenbaum self pairings on their n-torsion points. This characterization depends

on the action of the Frobenius endomorphism on the n2-torsion points.

Theorem 1. Let E be an elliptic curve defined over Fq and let n be an integer with
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gcd(n, q) = 1. Assume that E[n] ⊂ E(Fq). Then τn(Q, Q) = 1 for all Q ∈ E[n] if

and only if there exists an integer a such that φ(R) = aR for all R ∈ E[n2]. If such

an integer exists, then a ≡ 1 mod n.

For certain elliptic curves, it is easy to recognize when this condition on the

Frobenius endomorphism is realized. As an example, we study curves of the form

y2 = x3 + d2 for nonzero integers d and find the following characterization.

Theorem 2. Let E be defined by y2 = x3 + d2 over Fp with p ≡ 1 mod 3 and

let n ≥ 3 be an odd integer such that E[n] ⊂ E(Fp) . Then τn(P, P ) = 1 for all

P ∈ E[n] if and only if 4p = A2 + 3B2 for some integers A and B with B ≡ 0

mod n2.

When n = 3, this theorem, together with explicit calculations of the Tate-

Lichtenbaum pairing, yields the following classical result due to Jacobi.

Corollary 3. Let p ≡ 1 mod 3. Then 3 is a cubic residue mod p if and only if there

exist integers A and B with 4p = A2 + 243B2.

The Weil pairing and Tate-Lichtenbaum pairing can be defined for more gen-

eral abelian varieties. Although many of the results of this thesis can be restated for

principally polarized abelian varieties, we restrict to Jacobians for simplicity. We

consider the problem,

Question 2. Given the Jacobian, J , of a genus g curve defined over Fq and an

integer n relatively prime to q, can we characterize when all Tate-Lichtenbaum self

pairings on J [n] are trivial?
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We give a partial answer to this question. Like the characterization for elliptic

curves, the result for Jacobians is also given in terms of the action of the Frobenius

endomorphism on the n2-torsion elements. We state the result below.

Theorem 4. Let {Q1, Q2, . . . , Qg, Q−1, . . . , Q−g} be a basis for J [n2] such that

{nQ±i}g
i=1 is an en-symplectic basis of J [n]. The Tate-Lichtenbaum pairing on J [n]

is then antisymmetric if and only if the Frobenius endomorphism restricted to J [n2]

(with respect to this basis) is given by a matrix mod n2 of the form




M N1

N2 M>




where M is a g × g matrix such that M mod n is the identity matrix and M has

constant diagonal mod n2 if n is odd and mod n2

2
if n is even; and Ni (i = 1, 2) is

an antisymmetric g × g matrix such that Ni mod n is the zero matrix.

In addition, τn(P, P ) = 1 for all P ∈ J [n] if and only if each Ni has zero

diagonal.

We conclude this thesis by giving examples for Tate-Lichtenbaum self pairings

on the 2-torsion of the Jacobians of some genus 2 curves.

1.1.1 Motivation: Pairings and Cryptography

Properties of the Tate-Lichtenbaum pairing are of practical interest due their

use in cryptography. Security of elliptic curve cryptosystems is based on the diffi-

culty of computing discrete logarithms. In certain circumstances, bilinear pairings

can be used to reduce the problem of finding discrete logarithms in an elliptic curve

to finding discrete logarithms in a multiplicative group (such as F×
q ). This reduced

problem can then be solved more quickly than the original one.
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The reduction works as follows. Suppose we are given two elements, P and Q,

in E[n], the group of n-torsion elements (defined over Fq). Also suppose that Q = aP

for some unknown integer a. The problem of finding a is known as the discrete

logarithm problem. Let G be a multiplicative group and let e : E[n] × E[n] → G be

a bilinear nondegenerate pairing. For simplicity, we assume that G has prime order.

Choose an element R such that e(P, R) is nontrivial. Then,

e(Q, R) = e(aP, R) = e(P, R)a. (1.1)

Both e(Q, R) and e(P, R) are elements of G. We now have the problem of finding

a discrete logarithm in the multiplicative group G. Subexponential attacks yield

the solution for a, and this is also a solution to the original problem. When e is

the Weil pairing, this reduction is called the MOV attack [10] and when e is the

Tate-Lichtenbaum pairing, it is known as the Frey-Müller-Rück attack [7].

Sometimes e(P, P ) is nontrivial. In these cases one may simply choose R = P

and the reduction simplifies to

e(Q, P ) = e(aP, P ) = e(P, P )a. (1.2)

Hence, it is of interest to understand which pairings and which elliptic curves

have this property. Since these cryptosystems can be generalized to Jacobian va-

rieties, we also want to understand pairings and self pairings in this generalized

setting.

In [3], Boneh and Franklin use bilinear pairings to create an Identity Based

cryptosystem. They require the existence of a pairing and a point that pairs non-
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trivially with itself. This provides additional motivation for wanting to recognize

when this situation occurs.

1.2 Outline of Thesis

This thesis is structured as follows. In Chapter 2 we define the Weil pairing,

en, and discuss its properties. We then define the Tate-Lichtenbaum pairing, τn, in

terms of the Weil pairing and discuss properties of the Tate-Lichtenbaum pairing.

Lastly, we show that this definition is equivalent to the standard definition of the

pairing.

In Chapter 3 the definition of the Tate-Lichtenbaum pairing is used to find

conditions that force all self pairings on n-torsion to be trivial. We then apply these

conditions to the special case of elliptic curves and show that τn has only trivial

self pairings if and only if the Frobenius endomorphism acts as multiplication by an

integer on the n2-torsion subgroup.

In Chapter 4 we apply the elliptic curve results from Chapter 3 to the elliptic

curve given by E : y2 = x3 − d2x defined over Fp. We also characterize when self

pairings are always trivial by explicitly computing Tate-Lichtenbaum pairings using

Miller’s algorithm. These results combine to yield the classical reciprocity result

that for primes p ≡ 1 mod 3 we have that 3 is a cubic residue mod p if and only if

4p = A2 + 243B2 for some integers A and B.

In Chapter 5 we apply our results to Tate-Lichtenbaum self pairings on the

2-torsion points of the elliptic curve given by E : y2 = x3 − d2x and obtain a result

5



about primes congruent to 1 mod 8. We also apply our results to the 4-torsion points

of the same curve and obtain a result about the octic residuacity of −2.

In Chapter 6 we use a result from Chapter 3 to study when Tate-Lichtenbaum

self pairings are always trivial on the n-torsion subgroup of a Jacobian defined over

a finite field. This result is similarly given in terms of the action of the Frobenius

endomorphism on n2-torsion and generalizes the elliptic curve case.

In Chapter 7 we apply the results of Chapter 6 to the Jacobian of the genus

2 curve given by y2 = x(x2 − 1)(x2 − 4)(x − 3). We also apply the results to the

Jacobian of the genus 2 curve given by y2 = x5 +1 and give examples of how Jacobi

sums can be used to analyze the triviality and nontriviality of Tate-Lichtenbaum

self pairings on the 2-torsion subgroup.
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Chapter 2

Background

We now turn the discussion to the most commonly used pairings, the Weil

pairing and the Tate-Lichtenbaum pairing. In Section 2.1 we define the Weil pairing

and discuss its properties. In Section 2.2 we define the Tate-Lichtenbaum pairing in

terms of the Weil pairing and discuss its properties. In Section 2.3 we explain the

construction of the Tate-Lichtenbaum pairing as a cup product map and show that

this construction is equivalent to the standard definition of the pairing.

2.1 The Weil Pairing

Let J be the Jacobian variety of a curve C defined over a finite field Fq where

q = pk for some prime p and some positive integer k. Let µn represent the nth

roots of unity in Fq. Let J [n] = {P ∈ J(Fq)|nP = idJ} be the group of n-torsion

elements of J . If p - n, then there exists a map

en : J [n] × J [n] → µn

called the Weil pairing.

In order to define the Weil pairing, we need some notation for divisors. Recall

that a divisor D is a formal sum of points, i.e., D =
∑

P∈C(Fq)

nP [P ]. We use Div

to denote the set of divisors. Let deg : Div(C) → Z be the degree map, given

7



by deg(D) =
∑

P∈C

nP . The set of divisors of degree zero is denoted by Div0(C).

The divisor of a function f is a formal sum of the zeros and poles of f , counting

multiplicities:

div(f) =
∑

P∈C(Fq)

ordP (f)[P ], (2.1)

where ordP (f) is the order of vanishing of f at the point P . These are called

principal divisors.

Define the divisor class group of C to be the group Div0 mod principal divisors.

Hence, two divisors D1 and D2 are said to be equivalent if D1 − D2 is a principal

divisor. This group is isomorphic to J . If P is an element of J , we will use DP to

denote a divisor with the property that P = [DP ], the divisor class of DP .

Definition 2.1. If p - n then the Weil Pairing is a map

en : J [n] × J [n] → µn defined by

en(P, Q) =
g(DR + DP )

g(DR)
, (2.2)

where gn = f ◦ n, div(f) = nDQ and R is any point in J(Fq).

It is important to note that the value of en(P, Q) is independent of the choice

of R (see [15] and [12] for proofs). Furthermore, the Weil pairing can be efficiently

computed using Miller’s algorithm (see [11] and Appendix B).

One can also define the Weil pairing as

en(P1, P2) =
h1(D2)

h2(D1)
(2.3)

where Pi ∈ J [n], Di is a degree zero divisor such that Pi = [Di], D1 and D2 have

disjoint supports, and hi is a function such that div(hi) = nDi.

8



Theorem 2.2. The Weil pairing has the following properties:

1. Bilinearity: en(P + Q, R) = en(P, R) · en(Q, R) and

en(P, Q + R) = en(P, Q) · en(P, R) for all P, Q, R ∈ J [n];

2. Nondegeneracy: if en(P, Q) = 1 for all P ∈ J [n], then Q = idJ ; if en(P, Q) = 1

for all Q ∈ J [n], then P = idJ ;

3. Antisymmetry: en(P, Q) = en(Q, P )−1 for all P, Q ∈ J [n];

4. Alternating: en(P, P ) = 1 for all P ∈ J [n].

5. Compatibility: If P ∈ J [n] and Q ∈ J [nm], then mQ ∈ J [n] and

enm(P, Q) = en(P, mQ);

enm(Q, P ) = en(mQ, P ).

6. Galois invariance: if σ ∈ Gal(Fq/Fq), then en(σ(P ), σ(Q)) = σen(P, Q).

Proof. See [14], Proposition 8.1(e) for the proof of the elliptic curve case and [12]

for the general case for abelian varieties.

When J is an elliptic curve, the Weil pairing has the following additional

property [15]:

Proposition 2.3. Let E be an elliptic curve defined over Fq and let n be a positive

integer such that n is relatively prime to the characteristic of Fq. Let P1 and P2

generate E[n]. Then en(P1, P2) is a primitive nth root of unity.

9



2.2 The Tate-Lichtenbaum Pairing

The Tate-Lichtenbaum pairing is a bilinear nondegenerate pairing on Jacobian

varieties and it is related to the Weil Pairing.

Theorem 2.4. Let J = J(Fq) be a Jacobian variety defined over Fq and let n|q−1.

Assume that there is a nontrivial point of order n defined over Fq. Then there exists

a bilinear nondegenerate pairing

〈·, ·〉n : J(Fq)[n] × J(Fq)/nJ(Fq) → F×
q /(F×

q )n. (2.4)

Much like the Weil pairing, the Tate-Lichtenbaum pairing can be efficiently

computed using Miller’s algorithm. For computational purposes, we want the Tate-

Lichtenbaum pairing to have a unique value, rather than a coset. Thus, one often

uses the modified Tate-Lichtenbaum pairing:

τn : J(Fq)[n] × J(Fq)/nJ(Fq) → µn (2.5)

defined by τn(P, Q) = 〈P, Q〉(q−1)/n
n .

Remark: Requiring n|q − 1 forces the group µn to be contained in F×
q . Note

also the slight abuse of notation — an element of J(Fq)/nJ(Fq) should really be

represented as Q + nJ(Fq).

Schaefer shows that the Tate-Lichtenbaum pairing can be defined using the

Weil pairing ([13]).

Theorem 2.5. Given points P1 ∈ J(Fq)[n] and P2 ∈ J(Fq), let Ri ∈ J(Fq) be such

that nRi = Pi for i = 1, 2. Let φ denote the qth power Frobenius map. Then

τn(P1, P2) = en(P1, φ(R2) − R2) = en2(R1, φ(R2) − R2).

10



In Section 2.3 we show that this definition does not depend on the choice of

Ri. The last equality follows from the compatibility of the Weil pairing (Theorem

2.2). Furthermore, the bilinearity and alternating properties of the Weil pairing give

the following corollary.

Corollary 2.6. For any P ∈ J(Fq)[n], let R ∈ J(Fq) be such that nR = P . Then

〈P, P 〉n = en2(R, φ(R)).

The Tate-Lichtenbaum pairing can also be defined in a manner similar to that

of the Weil pairing. Let P ∈ J(Fq)[n] and let Q ∈ J(Fq). We require that DP and

DQ have no points of C in common. If necessary, we replace DP or DQ by equivalent

elements to make this so. There exists a function fP such that div(fP ) = nDP . The

Tate-Lichtenbaum pairing is defined to be

〈P, Q〉n := fP (DQ). (2.6)

In Section 2.3 we show that these two definitions yield the same bilinear pairing.

Note that both the Weil Pairing and the Tate-Lichtenbaum pairing can be

efficiently computed using Miller’s algorithm [11] to construct the functions in the

definitions. This makes them practical for use in cryptography.

Theorem 2.7. The Tate-Lichtenbaum pairing has the following properties:

1. Bilinearity: For all P, Q ∈ J [n] and all R ∈ J(Fq)/nJ(Fq) we have that τn(P +

Q, R) = τn(P, R) · τn(Q, R); for all P ∈ J [n] and all Q, R ∈ J(Fq)/nJ(Fq) we

have that τn(P, Q + R) = τn(P, Q) · τn(P, R);

11



2. Nondegeneracy: If τn(P, Q) = 1 for all P ∈ J [n], then Q ∈ nJ(Fq). If

τn(P, Q) = 1 for all Q ∈ J(Fq), then P = idJ ;

Proof. Bilinearity of the Tate-Lichtenbaum pairing follows directly from bilinearity

of the Weil pairing.

When the n-torsion is defined over Fq, nondegeneracy of the Tate-Lichtenbaum

pairing follows from nondegeneracy of the Weil pairing. Suppose that τn(P, Q) = 1

for all P ∈ J [n]. If we write Q = nR for some R ∈ J [n2], then en(P, φ(R) − R) = 1

for all P ∈ J [n]. Nondegeneracy of the Weil pairing now implies that φ(R)−R = idJ ,

hence R is rational over Fq. Therefore Q = nR ∈ nJ(Fq). The following lemma

implies nondegeneracy in the remaining variable.

Lemma 2.8. Let V and W be finite Z/nZ-modules with equal orders. If the pairing

e : V × W → µn is nondegenerate in one variable, then it is also nondegenerate in

the second variable.

Proof. Suppose that the pairing V × W → µn is nondegenerate in V (i.e. that if

e(v, w) = 1 for all w ∈ W , then v = 1). Then the pairing defines an injection

V ↪→ Hom(W, µn). By assumption, #V = #W = #Hom(W, µn), so this is actually

an isomorphism. Suppose that e(v, w) = 1 for all v ∈ V . Then we have that

Hom(W, µn) = Hom(W/〈w〉, µn). This then implies that #W = #W/〈w〉, so we

must have w = 1.

For the proof of nondegeneracy in general, see Section 2.3.3.

Recall that the Weil pairing is antisymmetric and alternating. The Tate-
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Lichtenbaum pairing does not necessarily have these properties. The goal of this

thesis is to characterize when the Tate-Lichtenbaum pairing is alternating when

restricted to J [n]×J [n] (i.e., when self–pairings are trivial). This property depends

on when the pairing is antisymmetric.

There are other well–known relationships between the Weil pairing and the

Tate–Lichtenbaum pairing. One often uses the relation

en(P, Q) =
〈Q, P 〉n
〈P, Q〉n

to compute the Weil pairing in practice. This together with Theorem 2.5 implies

the following corollary.

Corollary 2.9. If E is an elliptic curve such that the Tate–Lichtenbaum pairing is

antisymmetric, then en(P, Q) = 〈Q, P 〉2n up to nth powers.

2.3 Schaefer’s Construction of the Tate-Lichtenbaum Pairing

Recall that in [13], Schaefer shows that the Tate–Lichtenbaum pairing can be

defined from the Weil pairing as

τn(P1, P2) = en(P1, φ(R2) − R2) = en2(R1, φ(R2) − R2)

where φ denotes the qth power Frobenius map. This result is derived by constructing

a cup product map induced by the Weil pairing on cohomology groups.
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2.3.1 Construction of the pairing

Let G be the Galois group Gal(Fq/Fq). Note that the qth power Frobenius

map fixes Fq. Let n be a positive integer such that n|q − 1. Then µn ⊂ Fq and the

Weil pairing en : J [n] × J [n] → µn induces a cup-product pairing on cohomology

groups

H i(G, J [n]) × Hj(G, J [n]) → H i+j(G, µn) (2.7)

for nonnegative integers i and j.

Recall that for a group M , H0(G, M) is the subgroup of elements in M that

are fixed by G. By hypothesis, µn ⊂ Fq. Thus, we have that H0(G, µn) = µn and

H0(G, J [n]) = J(Fq)[n]. We now see that when i = j = 0, and when J [n] ⊂ J(Fq),

then the pairing in (2.7) is precisely the Weil pairing.

When i = 0 and j = 1, the map in (2.7) becomes

H0(G, J [n]) × H1(G, J [n]) → H1(G, µn). (2.8)

Hence, we must understand the group H1(G, M). A cocycle is a map ξ : G →

M such that for all σ and τ in G, ξ(στ) = σξ(τ) + ξ(τ). A cocycle of the form

σ 7→ σ(m) − m where m ∈ M is called a coboundary. The group H1(G, M) is the

quotient of cocycles modulo coboundaries.

The Kummer isomorphism k : F×
q /(F×

q )n → H1(G, µn) is defined as follows.

The Kummer sequence 1 → µn → F
×
q → F

×
q → 1 induces an exact sequence

1 → µn → F×
q

n−→ F×
q

k−→ H1(G, µn) → H1(G,F
×
q ).

By Hilbert’s Theorem 90, we have that H1(G,F
×
q ) = 0. For any element x ∈ F×

q ,
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fix an element y in Fq such that yn = x. Then k maps x to the class (σ 7→ σ(y)
y

) ∈

H1(G, µn). The map k is well-defined. Suppose that y0 is another element such that

yn
0 = x. Then y

y0

= ζ is an nth root of unity and

σ(y0)

y0
=

σ(ζy)

ζy
=

σ(y)

y
.

Hence, any choice of an nth root of x yields the same class. Since σ is in G, it fixes

all elements of Fq and thus we have that the kernel of this map contains (F×
q )n.

We also have that µn ⊂ F×
q , and this shows that coboundaries are zero. Thus, the

kernel of k equals (F×
q )n.

There is a similar isomorphism δn : J(Fq)/nJ(Fq) → H1(G, J [n]) which is

defined as follows. The Kummer sequence for J is

idJ → J(Fq)[n] → J
n−→ J → idJ

and it induces the long exact sequence

idJ → J(Fq)[n] → J(Fq)
n−→ J(Fq)

δn−→ H1(G, J [n]) → H1(G, J(Fq)).

Given an element Q ∈ J(Fq), fix an element R ∈ J(Fq) such that nR = Q. Then δn

maps Q to the cocycle (σ 7→ σ(R) − R) in H1(G, J [n]). The exact sequence shows

that the kernel of this map is nJ(Fq), since σ fixes all elements defined over Fq and

since Q = nR. Note that this map is well defined. If we were to choose a different

element R′ with nR′ = Q, then R′ differs from R by an n-torsion element S (since

n(R − R′) = idJ). Therefore, we have that

σ(R′) − R′ = σ(R + S) − (R + S) = σ(R) − R + σ(S) − S = σ(R) − R

15



since the n-torsion points are Fq-rational and fixed by σ.

The pairing from (2.8) now yields a pairing

〈·, ·〉∗n : J(Fq)[n] × J(Fq)/nJ(Fq) → F×
q /(F×

q )n

which is defined as follows. Let P ∈ J(Fq)[n], let Q ∈ J(Fq)/nJ(Fq), and let

Q = nR. Let ωn : H1(G, J [n]) → H1(G, µn) be the map (depending on P ) that

sends the element (σ 7→ ζ(σ)) to (σ 7→ en(P, ζ(σ))). Then

〈P, Q〉∗n = k−1 ◦ ωn ◦ δn(Q). (2.9)

Evaluating at σ = φ, the qth power Frobenius map, yields the following theo-

rem from [13].

Theorem 2.10. Let J be the Jacobian of a curve defined over Fq. Let n be an

integer such that n|q − 1. Then the Weil pairing induces a cup product map that

yields a bilinear nondegenerate pairing

〈·, ·〉∗n : J(Fq)[n] × J(Fq)/nJ(Fq) → F×
q /(F×

q )n.

It is defined by (〈P, Q〉∗n)
q−1

n = en(P, φ(R) − R) where nR = Q and φ is the qth

power Frobenius map.

In Section 2.3.2, we prove that this pairing is the same as the standard defini-

tion of the Tate-Lichtenbaum pairing given by (2.6).
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2.3.2 Equivalence to the Tate-Lichtenbaum pairing

We have seen that the Weil pairing induces a cup product pairing H0(G, J [n])×

H1(G, J [n]) → H1(G, µn) and that this yields the pairing

〈·, ·〉∗n : J(Fq)[n] × J(Fq)/nJ(Fq) → F×
q /(F×

q )n (2.10)

defined by (〈P, Q〉∗n)
q−1

n = en(P, φ(R) − R) where nR = Q.

Theorem 2.11. The Tate-Lichtenbaum pairing as defined in Theorem 2.5 is the

same as the standard definition given in (2.6). That is,

fP (DQ)
q−1

n = en(P, φ(R) − R).

Proof. Let P ∈ J [n] and let Q ∈ J(Fq)/nJ(Fq) have disjoint supports. Let R ∈

J(Fq) be such that nR = Q. Let DP and DQ be disjoint divisors of degree zero,

defined over Fq, with the property that P = [DP ], and Q = [DQ].

Lemma 2.12. Let J be the Jacobian of a curve C and let Q0 be an element in

J(Fq). It is possible to represent the class Q0 by a divisor, D, with the property that

φ(D) = D.

Proof. Let Fq(C)× represent the functions on C defined over Fq. Since [D] is in

J(Fq), we know that φ[D] = [D]. Hence, we have φ(D) = D + div(F ) for some

function F ∈ Fq(C)×. Then F is an element of Fqn(C) for some n. We have that

φ(D)−D = div(F ), so the cocycle such that φ 7→ div(F ) is an element of H1(H, P ).

The following claim shows that this cocycle is actually a coboundary.

Claim 2.13. Let P be the principal divisors from Fqn(C)×. Let H = Gal(Fqn/Fq).

Then we have H1(H, P ) = 0.
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Proof. The exact sequence

1 → F×
qn → Fqn(C)× → P → 1

induces the exact sequence

H1(H,F×
qn) → H1(H,Fqn(C)×) → H1(H, P ) → H2(H,F×

qn).

By Hilbert’s Theorem 90, we have that H1(H,F×
qn) = 0. Hilbert’s Theorem 90 also

gives us H1(H,Fqn(C)×) = 0 since H is also the Galois group Gal(Fqn(C)/Fqn).

Since H is cyclic, we have the isomorphism H2(H,F×
qn) ' Ĥ0(H,F×

qn), where

Ĥ0(H,Fqn) is the group of elements of F×
qn that are fixed by H, mod norms. Since

H fixes Fq and since the norm map is surjective on finite fields, this group is trivial.

Therefore we also have that H1(H, P ) = 0.

Claim 2.13 shows that div(F ) = φ(div(F1)) − div(F1) for some F1 ∈ Fqn(C).

Rearranging gives us φ(DQ − div(F1)) = DQ − div(F1). Thus, we can replace DQ

by the equivalent divisor DQ − div(F1). This divisor is fixed by φ, as desired.

Lemma 2.12 shows that we may choose DQ such that φ(DQ) = DQ. Let g

be a function on the curve with div(g) = nDR − DQ. Then div(gφ) = nDφ
R − DQ

and div(gφ/g) = n(Dφ
R − DR). Also let fP be a function on the curve such that

div(fP ) = nDP .

Then the definition of the Weil pairing (in Equation 2.3) gives

en(P, φ(R) − R) =
fP (Dφ

R − DR)

(gφ/g)(DP )
=

βφ

β
, (2.11)
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where β = fP (DR)
g(DP )

, since the following lemma tells us that we may assume that

fP (Dφ
R) = φfP (DR).

Lemma 2.14. The function fP can be chosen so that it commutes with φ.

Proof. Recall that P is defined over Fp. Hence, div(fφ
P ) = φ(nDP ) = nDP and we

see that
fφ

P

fP
is a constant element of Fp.

Then (σ 7→ fσ
P

fP
) is trivial since H1(G,F

×
p ) = 0 by Hilbert’s Theorem 90. This

shows that
fφ

P

fP
= αφ

α
for some α ∈ F

×
p . Therefore, ( fP

α
)φ = fP

α
and we see that fP

α
is

defined over Fp. This means that φ ◦ fP

α
= fP

α
◦ φ. Thus, replacing fP by fP

α
gives

the desired result.

The lemma implies that βn = fP (nDR)
g(DP )n is an element of Fq since the nth power

of the Weil pairing is always 1. Recall that ωn : H1(G, J [n]) → H1(G, µn) is the

map that sends the element (σ 7→ ζ(σ)) to (σ 7→ en(P, ζ(σ))). Recall that we also

have the Kummer isomorphism k : F×
q /(F×

q )n → H1(G, µn). Evaluating at σ = φ

yields

k−1 ◦ ωn ◦ δn(Q) ≡ βn mod (F×
q )n (2.12)

≡ fP (nDR)

g(nDP )
mod (F×

q )n. (2.13)

This is equivalent to fP (nDR)
fP (nDR−DQ)

mod (F×
q )n because

g(nDP ) = g(div(fP )) = fP (div(g)) = fP (nDR − DQ),

where the second equality is Weil Reciprocity.
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Furthermore, we have that fP (nDR)
fP (nDR−DQ)

≡ fP (DQ) mod (F×
q )n, which is simply

〈P, Q〉n as given by the classical definition of the pairing. We now have that

βn ≡ k−1 ◦ ωn ◦ δn ≡ 〈P, Q〉n,

as in Equation 2.9. Raising to the power (q − 1)/n gives an isomorphism from

F×
q /(F×

q )n to µn, and it gives us that

βq−1 = 〈P, Q〉
q−1

n
n = τn(P, Q).

We also have that βq−1 = βφ

β
= en(P, φ(R)−R) by Equation 2.11. Hence, we obtain

the relation

τn(P, Q) = en(P, φ(R) − R),

where nR = Q. Throughout the proof, we used a fixed choice of R. In Section 2.3.1

we saw that the value of the pairing is independent of this choice.

2.3.3 Nondegeneracy of the Tate-Lichtenbaum pairing

In Theorem 2.7 we proved that the Tate-Lichtenbaum pairing is nondegenerate

in the special case that J [n] ⊂ J(Fq). We now prove nondegeneracy in general.

Let {Q1, . . . , Qb} generate J(Fq)[n]. Let Ωn : J [n] → (µn)b be defined by

Q 7→ (en(Q1, Q), en(Q2, Q), . . . , en(Qb, Q)).
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Then we have that

Ωn(φ(Q)) = (en(Q1, φ(Q)), . . . , en(Qb, φ(Q)))

= (en(φ(Q1), φ(Q)), . . . , en(φ(Qb), φ(Q))

= (en(Q1, Q)φ, . . . , en(Qb, Q)φ)

= Ωn(Q)

(2.14)

since every generator Qi is defined over Fq and since µn ⊂ F×
q . This shows that

Ωn((φ − 1)(Q)) = 1 for all Q ∈ J [n]. Therefore Ωn induces a surjective map

Ω̃n : J [n]/(φ − 1)J [n] → ImΩn.

We analyze the orders of these groups using the following lemmas.

Lemma 2.15. Let M be a finite abelian group on which φ acts and let M [φ − 1]

denote the kernel of φ − 1. Then #M [φ − 1] = #M/(φ − 1)M .

Proof. The map φ − 1 gives the exact sequence

0 → M [φ − 1] → M
φ−1−−→ M → M/(φ − 1)M → 0.

Since the sequence is exact, the alternating product of group orders is one. This

implies the result.

It is clear that #J(Fq)[n] = #J [n][φ − 1]. By Lemma 2.15, this implies that

#J(Fq)[n] = #J [n]/(φ − 1)J [n].

Lemma 2.16. Suppose that A and B are finite Z/nZ-modules and that there is

a bilinear nondegenerate pairing 〈·, ·〉 : B × A → µn. Let C be a subgroup of B

and let C be generated by the set S = {gi}s
i=1. Let Ωn : A →

∏

S

µn be defined by

a 7→ (. . . , 〈gi, a〉, . . . ). Then #Ωn(A) = #C.
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Proof. Nondegeneracy of the pairing implies that A = Hom(B, µn). This says that

ker(Ωn) = {f ∈ Hom(B, µn)|f(C) = {1}}. But this is the group Hom(B/C, µn).

Thus, we have that #Ωn(A) = #A
#kerΩn

= #A
#(B/C)

= #C.

Lemma 2.16 tells us that #ImΩn = #J(Fq)[n], and so we have #ImΩn =

#J [n]/(φ− 1)J [n]. Thus, Ω̃n is a surjective map between groups of the same order,

and hence it is an isomorphism. We now show that this implies nondegeneracy.

Let Q be an element in J(Fq) and let Q = nR for some element R ∈ J(Fq).

Suppose that we know that τn(P, Q) = 1 for all P ∈ J(Fq)[n]. Then we have

en(P, φ(R)−R) = 1 for all P ∈ J(Fq)[n]. In particular, we have en(Qi, φ(R)−R) = 1

for every generator Qi of J(Fq)[n]. This shows that Ω̃n(φ(R) − R) = 1. Injectivity

of Ω̃n implies that (φ − 1)(R) ∈ (φ − 1)J [n]. Let (φ − 1)(R) = (φ − 1)(T ) for some

element T ∈ J [n]. Then we have φ(R − T ) = R − T , so R − T is in J(Fq). Since

Q = nR = n(R − T ), we now have that Q ∈ nJ(Fq). This proves that the pairing

τn : J(Fq)[n] × J(Fq)/nJ(Fq) → µn

is nondegenerate in the second variable. Lemma 2.8 implies that it is also nonde-

generate in the first variable.

22



Chapter 3

Tate-Lichtenbaum Self Pairings

It is well–known that the Weil pairing always has trivial self pairings (i.e., that

en(P, P ) = 1 for all n-torsion points P ). In this chapter we study Tate-Lichtenbaum

self pairings on n-torsion. If E is an elliptic curve with cyclic n-torsion over Fq,

then nondegeneracy of the Tate-Lichtenbaum pairing implies that there exist points

with nontrivial self pairings. An interesting case is when all n-torsion points are

defined over Fq. In this case the existence of a point with a nontrivial self pairing

is sometimes possible, but not guaranteed.

In Section 3.1 we discuss the restriction of the Tate-Lichtenbaum pairing to

n-torsion. In Section 3.2 (and throughout the remainder of the thesis) we restrict

to the case that the n-torsion is Fq-rational. Under this restriction, we determine

conditions that make Tate-Lichtenbaum self pairings trivial for each element of J [n].

In Section 3.3 we apply the results of the previous section to Tate-Lichtenbaum

pairings on elliptic curves. This yields a characterization of the triviality of self

pairings in terms of the action of the Frobenius endomorphism on the n2-torsion

elements.
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3.1 Restriction to n-torsion

The Tate-Lichtenbaum pairing can always be restricted to a map on J [n]×J [n].

We first consider when this restriction yields a nondegenerate pairing. However, this

property will not be required for the rest of the thesis.

Suppose that we had the situation that J [n2] ⊂ J(Fq). Then any P ∈ J(Fq)[n]

can be written as P = nQ for some Q ∈ J [n2]
⋂

J(Fq), so P ∈ nJ(Fq). In this

case, we have that τn(P, P ) = τn(P, Q)n = 1. Therefore, if all n2-torsion points are

Fq-rational, we have that all self pairings are trivial.

The following lemma addresses the opposite extreme case, namely when no

n2-torsion point is defined over Fq.

Lemma 3.1. Suppose that J [n] ⊂ J(Fq) and that J [n]
⋂

nJ(Fq) = {idJ}. Then

the natural map J [n]
∼−→ J(Fq)/nJ(Fq) is an isomorphism. As a result, the Tate-

Lichtenbaum pairing restricts to a nondegenerate pairing τn : J [n] × J [n] → µn.

Proof. The natural map J [n] → J(Fq)/nJ(Fq) comes from the exact sequence

idJ → J [n] → J(Fq)
n−→ J(Fq) → J(Fq)/nJ(Fq) → idJ .

It has kernel J [n]
⋂

nJ(Fq), which is {idJ} by hypothesis. The group J(Fq) is finite

and so J [n] and J(Fq)/nJ(Fq) have the same orders. Therefore injectivity implies

surjectivity, so the map is an isomorphism.

Bilinearity of the Tate-Lichtenbaum pairing also implies that for an element

P ∈ J(Fq)[n]
⋂

nJ(Fq) we have that τn(Q, P ) = 1 for all Q ∈ J [n]. Therefore, if we
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want τn to be nondegenerate on J(Fp)[n], then we need to have J(Fq)[n]
⋂

nJ(Fq) =

{idJ}. The next lemma tells us that this condition is equivalent to having all n2-

torsion elements irrational over Fq.

Lemma 3.2. Let J be the Jacobian of a curve defined over Fq and let n be a positive

integer. Then J(Fq)[n]
⋂

nJ(Fq) = {idJ} if and only if J [n2]
⋂

J(Fq) = J(Fq)[n].

Proof. Suppose that J(Fq)[n]
⋂

nJ(Fq) = {idJ}. We clearly have that J(Fq)[n] ⊂

J [n2]
⋂

J(Fq). Let P be an element in J [n2]
⋂

J(Fq). Then nP ∈ J(Fq)[n]
⋂

nJ(Fq)

and so nP = idJ by hypothesis. Thus, P is in J(Fq)[n].

Conversely, suppose that J [n2]
⋂

J(Fq) = J(Fq)[n]. Let P be an element

of J(Fq)[n]
⋂

nJ(Fq). Write P = nQ for some Q ∈ J(Fq). Then we have that

n2Q = nP = idJ , so Q is in J [n2]
⋂

J(Fq). Therefore Q is an element of J(Fq)[n]

by our hypothesis, and P = nQ = idJ .

From now on we restrict to the case J [n] ⊂ J(Fq). There are now two possibil-

ities. Sometimes there exists a point P ∈ J [n] such that τn(P, P ) 6= 1. Sometimes all

n-torsion points have trivial self pairings. The remainder of this thesis investigates

when these situations occur.

3.2 Alternating Tate-Lichtenbaum Pairings

Assume that J [n] ⊂ J(Fq). The following theorem gives conditions for the

Tate-Lichtenbaum pairing to be alternating.

Theorem 3.3. Let n be a positive integer. Let {Qi}2g
i=1 be generators of J [n]. The
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Tate-Lichtenbaum pairing has the property that τn(Q, Q) = 1 for all Q ∈ J [n] if and

only if

1. τn(Qi, Qi) = 1 for all i;

2. τn(Qi, Qj) = τn(Qj, Qi)
−1 for all i.

Proof. Suppose that Conditions 1 and 2 hold. Since every point of J can be written

as a linear combination of generators, we need to verify that

2g∑

i=1

aiQi (where ai ∈ Z)

pairs trivially with itself. Bilinearity implies that

τn

(
2g∑

i=1

aiQi,

2g∑

i=1

aiQi

)
=

2g∏

i=1

2g∏

j=1

τn(Qi, Qj)
aiaj .

Condition 1 allows us to remove factors of the form τn(Qi, Qi)
a2

i and Condition 2

tells us that the remaining factors cancel since τn(Qi, Qj)
aiajτn(Qj, Qi)

aiaj = 1 when

i 6= j. Hence, every n-torsion point pairs trivially with itself.

Conversely, suppose that τn(Q, Q) = 1 for every Q ∈ J [n]. In particular, this

is true for the generators of J [n], so Condition 1 holds. Let Q = Qi + Qj. Then

1 = τn(Q, Q)

= τn(Qi + Qj, Qi + Qj)

= τn(Qi, Qi) · τn(Qi, Qj) · τn(Qj, Qi) · τn(Qj, Qj)

= τn(Qi, Qj) · τn(Qj, Qi).

This is Condition 2.

Remark: Note that when n is even, then Condition 2 for i = j is slightly weaker

than Condition 1. When Condition 2 holds, bilinearity implies that τn is antisym-
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metric since:

τn

(
∑

i

aiQi,
∑

j

bjQj

)
=

∏

i

∏

j

τn(Qi, Qj)
aibj

=
∏

i

∏

j

τn(Qj, Qi)
−bjai

= τn

(
∑

j

bjQj,
∑

i

aiQi

)−1

.

3.3 Tate-Lichtenbaum Self Pairings in Elliptic Curves

Throughout this section we restrict to the special case of genus 1 curves. Let

E be an elliptic curve defined over a finite field Fq, where q is a prime power, and

assume that E[n] ⊂ E(Fq). Let φ represent the qth-power Frobenius endomorphism

given by φ(x, y) = (xq, yq), where (x, y) is a point on E. The following theorem

characterizes when all self pairings are trivial.

Theorem 3.4. Let E be an elliptic curve defined over Fq and let n be an integer

with gcd(n, q) = 1. Assume that E[n] ⊂ E(Fq). Then τn(Q, Q) = 1 for all Q ∈ E[n]

if and only if there exists an integer a such that φ(R) = aR for all R ∈ E[n2]. If

such an integer exists, then a ≡ 1 mod n.

Proof. Let a be an integer and suppose φ(R) = aR for all R in E[n2]. For any point

Q in E[n], let R ∈ E(Fq) be such that nR = Q. Then, by Theorem 2.5,

τn(Q, Q) = en2(R, φ(R)) = en2(R, aR) = en2(R, R)a = 1.

Conversely, suppose that τn(Q, Q) = 1 for all Q in E[n]. According to The-

orem 3.3 , we know that the Tate-Lichtenbaum pairing is antisymmetric on E[n].
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Let {R1, R2} generate E[n2]. Then multiplication by n yields generators Pi = nRi

of E[n] for i = 1, 2.

The Frobenius endomorphism restricted to E[n2] can be represented by a 2×2

matrix with coefficients mod n2 acting on the generators of E[n2] (expressed as

column vectors). Thus,

φ =




a b

c d


 mod n2

expresses the relations that φ(R1) = aR1 + cR2 and φ(R2) = bR1 + dR2. Condition

1 of Theorem 3.3 now says that

1 = τn(P1, P1) = en2(R1, φ(R1)) = en2(R1, aR1 + cR2) = en2(R1, R2)
c = ζc,

where ζ = en2(R1, R2) is a primitive n2th root of unity. (Note that ζ is primitive by

Proposition 2.3.) The above relation occurs if and only if c ≡ 0 mod n2. Likewise,

τn(P2, P2) = 1 implies that b ≡ 0 mod n2.

We now have φ represented by a diagonal matrix on the n2-torsion points, so

that φ(R1) = aR1 and φ(R2) = dR2. By Theorem 2.5,

τn(P1, P2) = en2(R1, φ(R2) − R2) = en2(R1, dR2 − R2) = en2(R1, R2)
d−1,

and

τn(P2, P1) = en2(R2, φ(R1) − R1) = en2(R2, aR1 − R1)

= en2(R2, R1)
a−1 = en2(R1, R2)

1−a.

Condition 2 of Theorem 3.3 says that τn(P1, P2) · τn(P2, P1) = 1. Thus we have that

1 = en2(R1, R2)
d−1en2(R1, R2)

1−a = en2(R1, R2)
d−a,
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which occurs if and only if a ≡ d mod n2. Hence we have shown that φ(R) = aR

for all R ∈ E[n2]. Furthermore, note that since E[n] ⊂ E[n2] and since φ acts

trivially on E[n], then restriction to E[n] implies that a ≡ 1 mod n.
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Chapter 4

The Curve E : y2
= x3

+ d2

In this chapter, we consider the elliptic curve given by Ed : y2 = x3 + d2

defined over a field Fp for some prime p and some nonzero integer d. In Section 4.1

we outline some properties of Ed[3] . In Section 4.2 we use Miller’s algorithm to

explicitly calculate the Tate-Lichtenbaum pairing on generators of Ed[3] and we

analyze the conditions that yield trivial self-pairings. In Section 4.3 we use complex

multiplication to simplify the condition that φ is integer multiplication on Ed[n
2] for

arbitrary integers n. In Section 4.4 we combine the results of the previous sections

to obtain a classical reciprocity theorem.

4.1 Properties of E : y2 = x3 + d2

Let Ed : y2 = x3 + d2 be defined over Fp where p ≥ 5 is prime and d is a

nonzero integer. We restrict to the case where Ed[3] ⊂ Ed(Fp) (hence p ≡ 1 mod 3

and Ed is ordinary). Under this restriction, Fp contains µ3, the cube roots of unity.

Since Ed[3] is generated by the points P = (0, d) and Q = (−α2, d
√
−3) where

2d ≡ α3 mod p, we conclude that our restriction forces 2d to be a cubic residue.

(Note that −3 is automatically a quadratic residue mod p since p ≡ 1 mod 3.) The

simplest case is E4 : y2 = x3 + 16 since E4[3] is generated by (0, 4) and (−4, 4
√
−3).

From now on, we let E = Ed.
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4.2 Explicit Calculations of the Tate-Lichtenbaum Pairing

Explicit calculations of the Tate-Lichtenbaum pairing using Miller’s algorithm

yield the following result.

Theorem 4.1. Let E be the elliptic curve defined by y2 = x3 + d2 over Fp where p

is prime such that p ≡ 1 mod 3. Assume that 2d is a cube mod p (so that E[3] ⊂

E(Fp)). Then the following are equivalent:

1. τ3(R, R) = 1 for all R ∈ E[3];

2. 3 is a cubic residue p.

Proof. Let α be such that α3 = 2d and note that E[3] is rational mod p since

p ≡ 1 mod 3. Let ζ be a primitive cube root of unity in Fp. By Theorem 3.3, we

only need to explicitly compute the Tate-Lichtenbaum pairing on the generators.

We use Miller’s algorithm to do so. Let r =
√
−3, let fP (x, y) = y − d, and let

fQ(x, y) = y
√
−3−3(αx+d). Then div(fP ) = 3[P ]−3[∞] and div(fQ) = 3[Q]−3[∞].

1. Let DP = [(−ζα2, dr)] + [(−ζ2α2, dr)] − [(0,−d)] − [(−α2,−dr)] be a divisor

on E. Then [P ] − [∞] is equivalent to DP modulo principal divisors and

〈P, P 〉3 = fP (DP ) ≡ d2(2ζ)2

(2d2)(−2ζ2)
≡ 1 mod (F×

p )3.

2. To calculate 〈P, Q〉3, choose β such that β3 = 3− d2 and let DQ = [(β,−r)] +

[(βζ,−r)] + [(βζ2,−r)] − [(1,
√

1 + d2)] − [(1,−
√

1 + d2)] − [(−α2,−dr)] be a

divisor on E. Then [Q] − [∞] is equivalent to DQ modulo principal divisors

and

〈P, Q〉3 = fP (DQ) ≡ 1

(2d)ζ2
≡ ζ mod (F×

p )3.

31



We also calculate

〈Q, P 〉3 = fQ(DP ) ≡ 9d2 · 4(1 − ζ)(1 − ζ2)

(6d2
√
−3)(2ζ)

≡ ζ−1 mod (F×
p )3

since P is equivalent to DP in the divisor class group and since −3 is a

quadratic residue mod p. Thus we see that 〈P, Q〉3〈Q, P 〉3 ≡ 1 mod (F×
p )3.

3. Let D′
Q = [(−α2ζ, dr)]+[(−α2ζ2, dr)]−2[(−α2,−dr)] be a divisor on E. Then

[Q] − [∞] is also equivalent to D′
Q and

〈Q, Q〉3 = fQ(D′
Q) ≡ 9d2 · 4(1 − ζ)(1 − ζ2)

4 · 9d2
≡ 3 mod (F×

p )3.

Thus, in order for self pairings to be trivial, we need 3 to be a cube mod p.

Therefore by Theorem 3.3, we see that 3 is a cube mod p if and only if all

elements of E[3] have trivial self pairings.

4.3 Complex Multiplication

We can use the fact that elliptic curves defined over finite fields have complex

multiplication to restate Theorem 3.4 as follows.

Theorem 4.2. Let E be an ordinary elliptic curve defined over Fp for some prime

p and let n be a positive integer such that E[n] ⊂ E(Fp). Assume that End(E) is

the ring of integers in an imaginary quadratic field Q(
√
−D) for some squarefree

integer D.

(A) If D ≡ 3 mod 4, then we can write 4p = A2 + DB2 for some integers A and B

with n|B. Moreover, τn(P, P ) = 1 for all P ∈ E[n] if and only if n2|B.
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(B) If D ≡ 1, 2 mod 4, then we can write p = A2 + DB2 for some integers A and

B with n|B. Moreover, τn(P, P ) = 1 for all P ∈ E[n] if and only if n2|B.

Proof. For Case A, we have D ≡ 3 mod 4. This gives us that End(E) = Z
[

1+
√
−D

2

]
.

We can view the Frobenius endomorphism, φ, as an element of this ring. We write

φ = a + b
(

1+
√
−D

2

)
= (2a+b)+b

√
−D

2
. Since we know that φφ = p, we have that 4p =

(2a + b)2 + b2D. The assumption that E[n] is defined over Fp forces φ ≡ 1 mod n,

so we have that a ≡ 1 mod n and that n|b.

If D > 3, then a and b depend on p up to sign since ±1 are the only units

in End(E). By Theorem 3.4, τn(P, P ) = 1 for all P ∈ E[n] if and only if φ is an

integer mod n2. This occurs if and only if n2|b.

Now suppose that D = 3. By the above, we have 4p = A2 + 3B2 for some

integers A and B with n|B. The units in End(E) are generated by u = 1+
√
−3

2
, a

sixth root of unity. Thus we have

φ = uk
(

A±B
√
−3

2

)

= uk
(

A∓B
2

± B
(

1+
√
−3

2

))

= uk
(

A∓B
2

)
± uk+1B,

for some integer k. Since φ must be congruent to 1 mod n and n|B, we must have

that αuk ≡ 1 mod n for some integer α. Thus, we see that uk = ±1. We now have

φ = x ± B
(

1+
√
−3

2

)
for some integer x. Therefore φ is congruent to an integer mod

n2 if and only if n2|B.

In Case B, we have D ≡ 1, 2 mod 4 and so End(E) = Z[
√
−D]. We view the

Frobenius endomorphism as an element φ = a + b
√
−D in this ring. Since φφ = p,

we have that p = a2 + Db2. The assumption that E[n] ⊂ E(Fp) gives us that
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a ≡ 1 mod n and n|b. As before, if D > 1, then a and b depend on p up to sign since

±1 are the only units. As above, we have that all Tate-Lichtenbaum self pairings

are trivial on E[n] if and only if n2|b.

Now suppose that D = 1. We write p = A2 + B2 for some integers A and B

with n|B. The units in End(E) are generated by i, where i2 = −1. Thus, we have

φ = ik(A ± Bi) = ikA ± ik+1B for some integer k. Since φ is congruent to 1 mod n

and n|B, we must have ik = ±1. Thus, φ is congruent to an integer mod n2 if and

only if n2|B.

In particular, we can use the fact that E : y2 = x3 + d2 has complex multipli-

cation by the ring Z
[

1+
√
−3

2

]
to restate Theorem 3.4 as follows.

Theorem 4.3. Let E be defined by y2 = x3 + d2 over Fp with p ≡ 1 mod 3 and let

n be a positive integer such that E[n] ⊂ E(Fp) . Then τn(P, P ) = 1 for all P ∈ E[n]

if and only if 4p = A2 + 3B2 for some integers A and B with B ≡ 0 mod n2.

Proof. This follows from Theorem 4.2.

Remark: Observe that when n > 2, we need only consider the case that p ≡

1 mod 3, since otherwise E would be supersingular and thus have p + 1 points over

Fp. Since E[n] ⊂ E(Fp), we have n2|p + 1 and so n|p + 1. However, the definition

of the Tate-Lichtenbaum pairing requires that n|p − 1, hence n|2, a contradiction.

We now have the following corollary.

Corollary 4.4. Let E be the elliptic curve defined by y2 = x3 + d2 over Fp where p

is a prime such that p ≡ 1 mod 3. Suppose that E[3] ⊂ E(Fp). Then the following
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are equivalent:

1. τ3(P, P ) = 1 for all P ∈ E[3];

2. 4p = A2 + 243B2 for some integers A and B.

Note that it is a classical result that if p ≡ 1 mod 3, then there are integers

A and B such that 4p = A2 + 27B2. Moreover, A is unique if we require that

A ≡ 1 mod 3.

As an example of the above result, consider the elliptic curve defined by E :=

y2 = x3 + 1 over F307. Since we can write 4(307) = 162 + 243(22) and since 3|6,

we conclude that τ3(P, P ) = 1 for all 3-torsion points P . However, the same curve

defined over F283 has nontrivial self-pairings on E[3] since 4(283) = 162 + 27(42)

and 4 is not divisible by 3. In particular, the 3-torsion point S = (37, 194) pairs

nontrivially with itself and τ3(S, S) = 238, a cube root of unity in F283.

4.4 Consequences

The following classical result due to Jacobi ([1], Corollary 2.6.10) now follows

from Corollary 4.4 and Theorem 4.1 applied to the case d = 4.

Theorem 4.5. Let p ≡ 1 mod 3. Then 3 is a cubic residue mod p if and only if

there exist integers A and B with 4p = A2 + 243B2.

Since 3 is a cubic residue for one-third of all primes p such that p ≡ 1 mod 3,

we obtain the following.
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Theorem 4.6. Let E be the elliptic curve defined by y2 = x3 +16 over Fp. For one

third of all primes p ≡ 1 mod 3, τ3(P, P ) = 1 for all P ∈ E[3].
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Chapter 5

The Curve: E : y2
= x3 − d2x

In this chapter, we consider the elliptic curve given by E : y2 = x3−d2x defined

over a field Fp for some prime p and some nonzero integer d. In Section 5.1 we give

an overview of the properties of E. In Section 5.2 we analyze Tate-Lichtenbaum

self pairings on E[2]. We use Miller’s algorithm to explicitly calculate the Tate-

Lichtenbaum pairing on generators of E[2] and we analyze the conditions that yield

trivial self-pairings. We also use complex multiplication to simplify the condition

that φ is integer multiplication on E[4]. We then combine these results to obtain

a theorem about primes congruent to 1 mod 8. In Section 5.3 we analyze Tate-

Lichtenbaum self pairings on E[4] in the same manner. Complex multiplication

is used to characterize self pairings in terms of the action of the Frobenius map

on E[16]. Combining this with explicit calculations of pairings yields a classical

reciprocity result.

5.1 Properties of E : y2 = x3 − d2x

Let Ed : y2 = x3 − d2x be defined over Fp where p is an odd prime. We

again restrict to the case where E[n] ⊂ E(Fp) (hence p ≡ 1 mod n). Under this

restriction, Fp contains µn, the nth roots of unity. When n is even, we further

restrict to the case where p ≡ 1 mod 4. This guarantees that in addition to nth
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roots of unity, Fp also contains the 4th roots of unity. From now on we let E = Ed.

The torsion subgroup E[2] is generated by the Fp-rational points R = (0, 0)

and S = (d, 0). If d is a quadratic residue mod p and d ≡ δ2 mod p, then E[4] is

generated by the Fp-rational points P = (iδ2, (1− i)δ3) and Q = (δ2(1−
√

2), (
√

2−

2)δ3) where i2 = 1. Observe that 2P = R and 2Q = S. Also note that E[4] is

rational over Fp if and only if both −1 and 2 are quadratic residues mod p. This

occurs if and only if p ≡ 1 mod 8.

5.2 Self pairings on E[2]

We now characterize when Tate-Lichtenbaum self pairings are trivial on E[2]

using Theorem 3.3 and Theorem 4.2.

5.2.1 Explicit Calculations of the Tate-Lichtenbaum pairing on E[2]

Explicit calculations of the Tate-Lichtenbaum pairings for E[2] yield the fol-

lowing theorem.

Theorem 5.1. Let p > 2 be prime and let E : y2 = x3 − d2x be defined over Fp.

Then the following are equivalent:

1. τ2(P, P ) = 1 for all P ∈ E[2];

2. p ≡ 1 mod 8.

Proof. By Theorem 3.3, all self pairings are trivial if and only if generators of E[2]

pair both trivially and antisymmetrically. Let fR = x and let fS = x − d. Let

T = (−d, 0) and notice that R + S + T = ∞.
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1. Let DR = [R + T ] − [T ] = [S] − [T ]. Then 〈R, R〉2 = fR(DR) = fR(S)
fR(T )

=

d
−d

= −1. Therefore we need −1 to be a square mod p, which is equivalent to

p ≡ 1 mod 4.

2. Let DS = [S+T ]− [T ] = [R]− [T ]. Then 〈S, S〉2 = fS(DS) = fS(R)
fS(T )

= −d
−2d

= 1
2
.

Therefore we need 2 to be a square mod p. Since −1 must also be a square,

this occurs if and only if p ≡ 1 mod 8.

3. It remains to characterize when 〈R, S〉2 · 〈S, R〉2 = 1. Let D′
R = [−P ] − [P ]

and let D′
S = [−Q] − [Q]. Then

〈R, S〉2 · 〈S, R〉2 = fR(D′
S) · fS(D′

R) =
fR(−Q)

fR(Q)
· fS(−P )

fS(P )
= 1.

This shows that the Tate-Lichtenbaum pairing is antisymmetric on E[2].

Thus, Tate-Lichtenbaum self pairings are trivial for all 2-torsion points if and only

if p ≡ 1 mod 8.

5.2.2 Complex Multiplication

Complex multiplication can be used to recognize when the Frobenius endo-

morphism acts like integer multiplication on E[n2].

Theorem 5.2. Let p be an odd prime and let n > 2. Define E to be the elliptic curve

given by y2 = x3 − d2x over Fp. Assume that E[n] ⊂ E(Fp). Then p ≡ 1 mod 4.

Moreover, τn(P, P ) = 1 for all P ∈ E[n] if and only if we can express p = A2 + B2

for some integers A and B with n2|A.
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Proof. If p ≡ 3 mod 4, then Ed is supersingular and has p + 1 points over Fp. Thus

we have that n2|p + 1 since E[n] ⊂ E(Fp). We also have that n|(p − 1), and so n

divides (p + 1)− (p − 1) = 2. This is a contradiction since we assume n > 2. Thus,

p ≡ 1 mod 4. The second half of the theorem follows directly from Theorem 4.2.

When n = 2, we have the following proposition.

Proposition 5.3. Let p ≡ 1 mod 4 be a prime. Define E to be the elliptic curve

given by y2 = x3 − d2x over Fp. Then τ2(P, P ) = 1 for all P ∈ E[2] if and only if

we can express p = A2 + 16B2 for some integers A and B.

Proof. In Theorem 5.2, we used the hypothesis that n > 2 to show that p must

be congruent to 1 mod 4. We now assume that p ≡ 1 mod 4, and hence we have

p = A2 + B2 for some odd integer A and some even integer B. The remainder of

the proof is identical to that of Theorem 4.2.

5.2.3 Consequences

Putting together Proposition 5.3 and Theorem 5.1 now yields the following

result.

Theorem 5.4. Let p be prime. Then p ≡ 1 mod 8 if and only if p = x2 + 16y2 for

some integers x and y.

We can also prove this directly. If p = x2 + 16y2 for some integers x and y,

then it is clear that p ≡ 1 mod 8. Conversely, if we have p ≡ 1 mod 8, then p is also

congruent to 1 mod 4, so there are integers u and v such that p = u2 + v2. Since p
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is odd, we take u to be odd and v to be even. This implies that u2 ≡ 1 mod 8, and

hence v2 ≡ 0 mod 8. Therefore, we have 4|v.

5.3 Self pairings on E[4]

In this section we characterize when Tate-Lichtenbaum self pairings are trivial

on 4-torsion points.

5.3.1 Explicit Calculations of the Tate-Lichtenbaum Pairing on E[4]

Explicit calculations of the Tate-Lichtenbaum pairing for E[4] yield the fol-

lowing theorem.

Theorem 5.5. Let p ≡ 1 mod 8 be prime and let E : y2 = x3 − d2x be defined over

Fp. Suppose that d is a quadratic residue mod p. Then the following are equivalent:

1. τ4(T, T ) = 1 for all T ∈ E[4];

2. −2 is an octic residue mod p.

Proof. Recall that E[4] is rational over Fp if and only if d is a quadratic residue

mod p. Let d ≡ δ2 mod p and let i be a primitive fourth root of unity. Then

P = (iδ2, (1 − i)δ3) and Q = (δ2(1 −
√

2), (
√

2 − 2)δ3) generate E[4]. These points

are rational over Fp since p ≡ 1 mod 8.

We use Miller’s algorithm to find a function whose divisor is 4[P ]− 4[∞]. The

function fP = (−(i+1)δx−y)2

x
has this property. We also use Miller’s algorithm to find

the function fQ = ((
√

2−1)δ(x−δ2)−y)2

x−
√

2
whose divisor is div(fQ) = 4[Q] − 4[∞].
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By Theorem 3.3, we need only check pairings on the generators. Self pairings

are trivial if and only if (1) 〈P, P 〉4 ≡ 1 mod (Fp)
4; (2) 〈Q, Q〉4 ≡ 1 mod (Fp)

4; and

(3) 〈P, Q〉4〈Q, P 〉4 ≡ 1 mod (Fp)
4. We explicitly compute these Tate-Lichtenbaum

pairings.

1. Let D′
P = [P +S]− [S] = [(−iδ2, (−i−1)δ3)]− [(δ2, 0)]. Then D′

P is equivalent

to [P ] − [∞] modulo principal divisors and

〈P, P 〉4 = fP (D′
P )

= fP (P+S)
fP (S)

= −2.

Therefore, in order for self pairings to be trivial we require that 2 be a fourth

power mod p (since p ≡ 1 mod 8 guarantees that −1 is a quartic residue).

2. To calculate 〈P, Q〉4, let DQ = [Q + S] − [S] = [((1 −
√

2)δ2,−(
√

2 − 2)δ3)] −

[(δ2, 0)]. (Notice that Q + S = −Q.) Then DQ is equivalent to [Q] − [∞]

modulo principal divisors and

〈P, Q〉4 = fP (DQ)

= fP (−Q)
fP (S)

= −(
√

2 − 1)2(i − 1).

To calculate 〈Q, P 〉4, let DP = [P + R] − [R] = [(iδ2,−(1 − i)δ3)] − [(0, 0)].

(Notice that P + R = −P .) Then DP is equivalent to [P ] − [∞] modulo
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principal divisors and

〈Q, P 〉4 = fQ(DP )

=
fQ(−P )

fQ(R)

= 2(i − 1).

In order for self pairings to be trivial, we need 〈P, Q〉4 · 〈Q, P 〉4 ≡ 1 mod (Fp)
4

by Theorem 3.3. Hence, we need −2(
√

2 − 1)2(i − 1)2 = 4i(
√

2 − 1)2 to be a

fourth power. By hypothesis, 4 is already a fourth power. Therefore trivial

self pairings require that i(
√

2 − 1)2 be a quartic residue.

3. Let D′
Q = [Q + R] − [R] = [(δ2(

√
2 + 1),−(

√
2 + 2)δ3)] − [(0, 0)]. Then D′

Q is

equivalent to [Q] − [∞] modulo principal divisors and

〈Q, Q〉4 = fQ(D′
Q)

=
fQ(Q+R)

fQ(R)

= 8
√

2
−(

√
2−1)2

.

In order for self pairings to be trivial, we need 8
√

2
−(

√
2−1)2

to be a fourth power

mod p. By hypothesis, −8 is already a quartic residue, hence we require that

√
2

(
√

2−1)2
is a fourth power mod p.

Suppose that p ≡ 1 mod 16. Then i is a quartic residue mod p. We then have

that 〈T, T 〉4 ≡ 1 mod (Fp)
4 for all T ∈ E[4] if and only if 2, (

√
2 − 1)2, and

√
2

(
√

2−1)2

are all fourth powers mod p. This occurs if and only if
√

2− 1 is a quadratic residue

and 2 is an octic residue mod p. The following supplement to Scholz’s reciprocity

law [1] proves that for p ≡ 1 mod 16, the second condition implies the first (note

that (
√

2 − 1)(
√

2 + 1) = 1).
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Lemma 5.6. Let q ≡ 1 mod 8 be a prime. Define

(q

2

)
4

=





1 if p ≡ 1 mod 16

−1 if p ≡ 9 mod 16.

Then
(

2
q

)
4

(
q
2

)
4

=
(√

2+1
q

)
2
, where

( ·
q

)
n

is the nth-power residue symbol mod q.

(See [9], Proposition 5.8 for a proof.)

Hence, all self pairings are trivial if and only if 2 is an octic residue mod p.

Since p ≡ 1 mod 16, this is equivalent to −2 being an octic residue mod p.

Now consider the case that p ≡ 9 mod 16. Suppose that 〈T, T 〉4 = 1 for all

T ∈ E[4]. As before, the above conditions imply that 2, i(
√

2− 1)2, and
√

2
(
√

2−1)2
are

all fourth powers mod p. Putting the last two conditions together yields that
√
−2

is a fourth power, hence −2 is an octic residue. Hence, the condition that 2 is a

fourth power is redundant since p ≡ 1 mod 8 implies that −1 is a fourth power mod

p.

Conversely, suppose that −2 is an octic residue mod p. Since for p ≡ 9 mod 16

we have that −1 is not an octic residue, this implies that 2 is also not an octic residue.

We want to show that this implies that the following:

1. 2 is a quartic residue mod p;

2. i(
√

2 − 1)2 is a quartic residue mod p;

3.
√

2
(
√

2−1)2
is a quartic residue mod p.

We automatically have that 2 is a quartic residue since p ≡ 1 mod 8. By

Lemma 5.6, we see that
√

2 − 1 is not a quadratic residue, hence (
√

2 − 1)2 is a
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quadratic residue, but not a quartic residue. Likewise, p ≡ 9 mod 16 implies that i

is a quadratic residue but not a quartic residue. We conclude that i(
√

2 − 1)2 is a

fourth power. Similarly,
√

2
(
√

2−1)2
is a fourth power since neither

√
2 nor (

√
2 − 1)2

are fourth powers. Thus, all three of the conditions above hold, and we conclude

that 〈R, R〉4 = 1 for all R ∈ E[4].

5.3.2 Consequences

When n = 4, we have the following corollary to Theorem 5.2.

Corollary 5.7. Let p ≡ 1 mod 4 be a prime. Define E to be the elliptic curve given

by y2 = x3 − d2x over Fp and assume that d is a quadratic residue mod p. Suppose

that E[4] ⊂ E(Fp). Then τ4(P, P ) = 1 for all P ∈ E[4] if and only if we can express

p = A2 + 256B2 for some integers A and B.

Recall that p ≡ 1 mod 8 implies that −1 is a quartic residue mod p. Putting

together Corollary 5.7 and Theorem 5.5 now yields the following result.

Theorem 5.8. Let p ≡ 1 mod 8 be prime. Then −2 is an octic residue mod p if

and only if p = x2 + 256y2 for some integers x and y.

Furthermore, for p ≡ 1 mod 16, this yields the well-known fact that 2 is an

octic residue mod p if and only if p = x2 + 256y2 for some integers x and y (see [1],

Corollary 7.5.8).
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Chapter 6

Tate-Lichtenbaum Self Pairings on Jacobians

of Curves

In Chapter 3 we saw how alternating Tate-Lichtenbaum self pairings relate to

the Frobenius endomorphism for elliptic curves. In this chapter we generalize this

result to Jacobians of higher genus curves.

In Section 6.1 we present the generalized result. The remainder of the chapter

is dedicated to the proof. In Section 6.2 we analyze the conditions on the Frobenius

map (on n2-torsion) that make the Tate-Lichtenbaum pairing antisymmetric. In

Section 6.3 we analyze the conditions that make self pairings trivial on generators

of n-torsion.

6.1 Self Pairings on Higher Genus Jacobians

Let C be a genus g algebraic curve defined over a finite field Fq where q is

a prime power. Let J represent the Jacobian of C. As before, let φ represent the

qth power Frobenius endomorphism. Let n be an integer with gcd(n, q) = 1. We

assume that J [n] ⊂ J(Fq)

Since J is the Jacobian of a genus g curve, the torsion group J [n] is isomorphic

to (Z/nZ)2g . Let {Q±i}g
i=1 denote generators of J [n2]. The following lemma specifies
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a choice of generators and is a convenient way of expressing the nondegeneracy of

the Weil pairing, en. Let Ik denote the k × k identity matrix.

Lemma 6.1. Let ζ be a fixed primitive nth root of unity. Define fn : J [n]× J [n] →

Z/nZ by en(Q, R) = ζfn(Q,R). Then there is a choice of generators

{Q1, Q2, . . . , Qg, Q−1, . . . , Q−g}

such that the matrix associated to fn(Qi, Qj) is




0 Ig

−Ig 0


 mod n, with respect to

the above ordering of the generators.

Proof. First notice that fn inherits nondegeneracy and bilinearity from the Weil

pairing. Antisymmetry of the Weil pairing implies that fn(P, Q) ≡ −fn(Q, P ) mod

n, so fn is antisymmetric. We show that J [n] has a symplectic basis

{Q1, Q2, . . . , Qg, Q−1, . . . , Q−g}

such that fn(Qi, Qj) ≡ δi,−j mod n for i > 0 (where δ is the Kronecker delta func-

tion).

Let {P1, . . . P2g} be any basis for J [n] and let Q1 = P1. Let ai = fn(P1, Pi). If

d = gcd(a1, . . . , a2g, n), then

en

(n

d
P1, Pi

)
= en(P1, Pi)

n/d = (ζai/d)n = 1

for all i. Nondegeneracy of the Weil pairing then implies that n
d
P1 = idJ which

implies that d = 1 since P1 is a generator of the n-torsion. Therefore
∑

xiai+xn = 1

for some integers xi and x. Now P =
∑

xiPi has the property that fn(P1, P ) = 1.

Define Q−1 = P .
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We proceed by induction on g and assume that g > 1. Let

W = {P ∈ J [n] | fn(Q1, P ) ≡ fn(Q−1, P ) ≡ 0 mod n},

and let Q ∈ J [n] be any point. Set Q′ = Q − fn(Q, Q−1)Q1 + fn(Q, Q1)Q−1. Then

Q′ is in W . Hence, we see that J [n] = (Z/nZ)Q1 ⊕ (Z/nZ)Q−1 ⊕ W .

We claim that fn remains nondegenerate when restricted to W . Let P ∈ W be

nontrivial. Then nondegeneracy of fn on J [n] implies that there is a point Q ∈ J [n]

such that fn(P, Q) 6≡ 0. As above, let Q′ = Q−fn(Q, Q−1)Q1+fn(Q, Q1)Q−1. Then

en(P, Q′) = en(P, Q) since P ∈ W . Thus, fn(P, Q′) ≡ fn(P, Q) 6≡ 0 mod n and

Q′ ∈ W by the argument given above. This proves nondegeneracy of fn restricted

to W .

By induction, there exists a symplectic basis {Q2, . . . , Qg, Q−2, . . . , Q−g} for

W Inclusion of Q1 and Q−1 in this basis gives the desired basis for J [n].

Let {Q1, Q2, . . . , Qg, Q−1, . . . , Q−g} be a basis of J [n2] such that {nQ±i}g
i=1 is

the basis of J [n] given by Lemma 6.1. Let σi be the sign of i. The importance of

this lemma is that we now have that

en(nQi, nQj) =





ζσi if i = −j

1 otherwise.

(6.1)

With respect to this basis, we now have the following theorem.

Theorem 6.2. Let {Q1, Q2, . . . , Qg, Q−1, . . . , Q−g} be a basis for J [n2] such that

{nQ±i}g
i=1 is a basis of J [n] as given by Lemma 6.1. The Tate-Lichtenbaum pair-

ing on J [n] is then antisymmetric if and only if the Frobenius endomorphism re-
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stricted to J [n2] (with respect to this basis) is given by a matrix mod n2 of the form


M N1

N2 M>


 where M is a g × g matrix such that M mod n is the identity matrix

and M has constant diagonal mod n2 when n is odd and mod n2

2
when n is even;

and Ni (i = 1, 2) is an antisymmetric g × g matrix such that Ni mod n is the zero

matrix.

In addition, τn(P, P ) = 1 for all P ∈ J [n] if and only if each Ni has zero

diagonal.

Remark: If the Tate-Lichtenbaum pairing is antisymmetric (or, more specifically,

has all trivial self pairings on J [n]), then there exists a basis for J [n2] such that

the Frobenius map on J [n2] is a matrix of the form given in Theorem 6.2 (namely,

an en-symplectic basis). However, if there is some basis such that the Frobenius

map on J [n2] has the form given in Theorem 6.2, then we cannot conclude anything

about self pairings. The converse is only true if we fix an en-symplectic basis as

in Lemma 6.1. As a result, we can use Theorem 6.2 to show the existence of an

element that has a nontrivial self pairing, but we cannot use the theorem to show

that all self pairings on J [n] are trivial.

Our proof of Theorem 6.2 relies on Theorem 3.3, which states that the Tate-

Lichtenbaum pairing has the property that τn(P, P ) = 1 for all P ∈ J [n] if and only

if self-pairings are trivial for the n-torsion generators and τn is antisymmetric on the

generators. The proof of Theorem 6.2 addresses each condition separately.
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6.2 Antisymmetry of the Tate-Lichtenbaum Pairing

Since all of the n-torsion points are rational, the Frobenius endomorphism φ

acts trivially on J [n]. Therefore the matrix corresponding to the action of φ on

J [n2] is congruent to the identity matrix mod n. Write φ(Qi) =

g∑′

k=−g

ak,iQk (where

the prime denotes summation over k 6= 0). Since i 6= k implies that n | ak,i, we

write ak,i = n bk,i for some integer bk,i. Similarly, we can write ai,i − 1 = nAi for

some integer Ai since ai,i ≡ 1 mod n.

Combining this with Theorem 2.5 gives the following lemma (recall that σi =

sign(i)).

Lemma 6.3. For i 6= j,

τn(nQi, nQj) =





ζσiA−i if j = −i

ζσib−i,j otherwise.

(6.2)

Proof. Assume that i 6= j. By bilinearity, we see that

τn(nQi, nQj) = en2(Qi, φ(Qj) − Qj)

= en2

(
Qi,

g∑′

k=−g

ak,jQk − Qj

)

= en2(Qi, Qj)
aj,j−1 ·

g∏′

k=−g
k 6=j

en2(Qi, Qk)
ak,j

= en(nQi, nQj)
Aj ·

g∏′

k=−g
k 6=j

en(nQi, nQk)
bk,j .

(6.3)

By Equation 6.1, all factors but one vanish. If j = −i, then τn(nQi, nQ−i) =

en(nQi, nQ−i)
A−i. Otherwise, we get τn(nQi, nQj) = en(nQi, nQ−i)

b−i,j .
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As a result of Lemma 6.3 we get that τn(nQi, nQj) = τn(nQj, nQi)
−1 if and

only if: 



ζσiA−i = ζ−σ−iAi if j = −i

ζσib−i,j = ζ−σjb−j,i otherwise.

Hence, when j = −i, then τn(nQi, nQ−i) = τn(nQ−1, nQi)
−1 if and only if

ζA−i = ζAi, which occurs if and only if A−i ≡ Ai mod n. Since nAk = ak,k − 1, we

obtain the relations ai,i ≡ a−i,−i mod n2.

If j 6= −i, then τn(nQi, nQj) = τn(nQj, nQi) if and only if

en(nQi, nQ−i)
b−i,j = en(nQj, nQ−j)

−b−j,i .

By Equation 6.1, en(nQk, nQ−k) = ζ when k > 0 and equals ζ−1 otherwise.

This shows that antisymmetry holds for j 6= i if and only if

ζb−i,j = ζ−b−j,i for i, j > 0 or i, j < 0

ζb−i,j = ζb−j,i for i > 0 > j or i < 0 < j.

Since ai,j = n bi,j (for i 6= j), we find that antisymmetry holds if and only if

a−i,j ≡ −a−j,i mod n2 for i, j > 0 or i, j < 0

a−i,j ≡ a−j,i mod n2 for i < 0 < j or i > 0 > j.

(6.4)

It remains to prove that ai,i ≡ aj,j mod n2

2
for all i, j ∈ {1, . . . g,−1, ...,−g}.

(If n is odd, this is the same as showing equivalence mod n2.) Galois invariance

of the Weil pairing implies that en2(φ(Qi), φ(Qj)) = φ(en2(Qi, Qj)) = en2(Qi, Qj)
q.

Recall that we write φ(Qi) =
∑2g

k=1 ak,iQk. Consider the case that j = −i. We get
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that

en2(φ(Qi), φ(Q−i)) = en2

( g∑′

k=−g

ak,iQk,

g∑′

`=−g

a`,−iQ`

)

=

g∏′

k=−g

g∏′

`=−g

en(ak,iQk, a`,−iQ`).

We separate the product into factors that allow us to deal with the diagonal entries

ak,k separately. Recall that ai,j = nbi,j for i 6= j. Then en2(φ(Qi), φ(Q−i)) becomes

en2(Qi, Q−i)
ai,ia−i,−i ×

g∏′

`=−g
6̀=−i

en(nQi, nQ`)
ai,ib`,−i

×
g∏′

k=−g
k 6=i

en(nQk, nQ−i)
bk,ia−i,−i ×

g∏′

k=−g
k 6=i

g∏′

`=−g
6̀=−i

en2(Qk, Q`)
ak,ia`,−i .

The double product evaluates to 1 because n|ak,i and n|a`,j. Similarly, the single

products are 1. The equation now collapses to

en2(Qi, Q−i)
q = en2(φ(Qi), φ(Q−i)) = en2(Qi, Q−i)

ai,ia−i,−i .

As we have seen, antisymmetry implies that ai,i ≡ a−i,−i mod n2. Thus, we

get the congruences

q ≡ a2
i,i mod n2 for all i. (6.5)

Let i, j ≤ g be distinct integers. Then a2
i,i ≡ q ≡ a2

j,j mod n2. Recall that we

also know that ai,i ≡ 1 ≡ aj,j mod n. We conclude that ai,i ≡ aj,j mod (n2/2). If

we order the generators Q1, Q2, . . . , Qg, Q−1, . . . , Q−g, then this proves that φ is a

matrix of the form stated in Theorem 6.2.

Conversely, suppose that the conditions given in Equation 6.4 hold and that

ai,i ≡ a−i,−i mod n2 for all i. Recall that these must be congruent to 1 mod n since

we assume that the n-torsion is rational over Fq. As before, since ai,j ≡ 0 mod n
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when i 6= j, we write ai,j = nbi,j for some integer bi,j. Since ai,i ≡ 1 mod n, we write

ai,i − 1 = nAi for some integer Ai. Suppose that j = −i. Then Lemma 6.3 implies

that

τn(nQi, nQ−i) = ζσiA−i = ζ−σ−iA−i = ζ−σ−iAi

where the last equality holds because aj,j ≡ a−j,−j mod n2 for all j. This is now just

τn(nQ−i, nQi)
−1 by Lemma 6.3.

Now suppose that j 6= −i. Then by Lemma 6.3, τn(nQi, nQj) = ζσib−i,j . If i

and j have the same signs, then the conditions in Equation 6.4 and Lemma 6.3 imply

that this is ζσjb−j,i = τn(nQj, nQi)
−1. If i and j have opposite signs, then the condi-

tions in Equation 6.4 and Lemma 6.3 imply that this is ζ−σjb−j,i = τn(nQj, nQi)
−1.

Hence, the Tate-Lichtenbaum pairing is antisymmetric under these assumptions.

6.3 Self Pairings of the Generators of J [n]

We have shown how antisymmetry relates to the matrix representing the

Frobenius endomorphism. We now want to show how τn(Pi, Pi) = 1 relates to

the matrix. Recall that in the above proof of antisymmetry of τn, we need only deal

with the cases that i 6= j. It is interesting to note that the congruences in (6.4) for

i = j give the conditions for trivial Tate-Lichtenbaum self-pairings of the generators

of the n-torsion points except when n is even. However, we take a different approach

for that proof which will work for any n.

Suppose that τn(nQi, nQi) = 1 for all i = 1, 2, ..., 2g. As before, we represent

the Frobenius map on J [n2] as the matrix (ai,j) with i, j ∈ {1, . . . , g,−1, . . . ,−g}
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(with respect to the basis given by Lemma 6.1).

By Theorem 2.5, we get that en2(Qi, φ(Qi)) = 1. Also recall that φ(Qi) =
g∑′

k=−g

ak,iQk, and so

en2

(
Qi,

g∑′

k=−g

ak,iQk

)
= 1.

Since for i 6= k we have that n | ak,i, we write ak,i = nbk,i for some bk,i (because

φ ≡ I2g mod n). Bilinearity and compatibility yield the following

1 = en2

(
Qi,

g∑′

k=−g

ak,iQk

)
=

g∏′

k=−g
k 6=i

en2(Qi, n bk,iQk)

=

g∏′

k=−g
k 6=i

en(nQi, n bk,iQk) =

g∏′

k=−g
k 6=i

en(nQi, nQk)
bk,i

= en(nQi, nQ−i)
b−i,i .

By Equation 6.1 we have that ζσib−i,i = 1. These two cases imply that b−i,i ≡

0 mod n, hence

a−i,i ≡ 0 mod n2 for all i. (6.6)

Conversely, we need to prove that if (6.6) holds, then τn(nQi, nQi) = 1 for all

i. This will complete the proof that if φ has the matrix form given in Theorem 6.2,

then self pairings are trivial on J [n]. Recall that by Equation 6.3 we know

τn(nQi, nQj) = en(nQi, nQj)
Aj ·




g∏′

k=−g
k 6=j

en(nQi, nQk)
bk,j


 .

Letting j = i gives

τn(nQi, nQi) = en(nQi, nQi)
Ai · en(nQi, nQ−i)

b−i,i

= en(nQi, nQ−i)
b−i,i

= ζσib−i,i .

(6.7)

54



Assuming that φ satisfies the condition in (6.6), then ζσib−i,i = 1.

Thus, if the matrix corresponding to φ mod n2 has the form given in Theo-

rem 6.2, then self pairings are trivial on the generators of J [n]. This together with

antisymmetry implies that all self-pairings on J [n] are trivial.
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Chapter 7

Examples of Self Pairings on Jacobians of

Curves

In this chapter we give examples of the results in Chapter 6 for genus 2 curves.

In Section 7.1 we apply Theorem 6.2 to Jacobians of genus 2 curves. In Section 7.2

we apply our results to the Jacobian of the curve C1 : y2 = x(x2 − 1)(x2 − 4)(x− 3).

In Section 7.3 we apply our results to the Jacobian of the curve C2 : y2 = x5 + 1.

In this example, we determine the eigenvalues of the Frobenius endomorphism and

show how they can be used to determine when all self pairings on J [n] are trivial.

7.1 Overview of Self Pairings in Genus 2

Let J be the Jacobian of a curve defined over Fq and suppose that n is an odd

integer such that gcd(n, q) = 1. We work with respect to a basis

{Q1, Q2, . . . , Qg, Q−1 . . . , Q−g}

for the generators of J [n2] as described in Lemma 6.1. Suppose that J is the Jacobian

of a genus 2 curve. Then Theorem 6.2 states that self-pairings on J [n] are trivial if
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and only if the Frobenius map on J [n2] has the form

φ ≡




b c 0 a

d b −a 0

0 f b d

−f 0 c b




mod n2, (7.1)

with respect to the en-symplectic basis {Q1, Q2, Q−1, Q−2} (as in Lemma 6.1), where

b ≡ 1 mod n and a, c, d, f ≡ 0 mod n. If n is an even integer, we lose the restriction

that the diagonal is constant, in which case φ has the form

φ ≡




b c 0 a

d b′ −a 0

0 f b d

−f 0 c b′




mod n2, (7.2)

with respect to the above en-symplectic basis for J [n], where b, b′ ≡ 1 mod n and

a, c, d, f ≡ 0 mod n.

7.2 The Curve C : y2 = x(x2 − 1)(x2 − 4)(x − 3)

Using MAGMA [4], we found examples of trivial self-pairings for the Jacobian

of the genus 2 hyperelliptic curve C : y2 = x(x2−1)(x2−4)(x−3). Due to limitations

in the computation of division points, we focused on examples of pairings of 2-torsion

points. Hence, we chose to work with this curve because all of the Weierstrass points

are known and are defined over any field Fq. The smallest prime p such that the

2-torsion points of JC(Fp) have trivial self pairings is p = 41. We found a symplectic
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basis for the 2-torsion of the Jacobian of C(F41) (i.e., a basis such that the Weil

pairing corresponds to a matrix as in Lemma 6.1). The associated Frobenius map

for this particular basis is given by the matrix:

φ =




3 2 0 2

0 3 2 0

0 2 3 0

2 0 2 3




mod 4.

Observe that this satisfies Equation 7.2.

The prime p = 43 yielded nontrivial self pairings. Using a symplectic basis for

the Jacobian of C(F43) we found that the Frobenius map is given by:

φ =




3 0 2 2

0 3 2 2

0 0 1 0

0 0 0 1




mod 4.

Observe that this does not satisfy Equation 7.2 because the upper right 2× 2 block

does not have zeros off of the diagonal. However, this matrix can be diagonalized.

Let P be the matrix 


1 0 0 1

0 1 0 1

0 0 1 1

0 0 1 0




.
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Then we have that

P−1φP ≡




3 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1




.

Although we have given the matrix the form described in Theorem 6.2, we have

done so by changing the basis in such a way that the basis for J [n] is no longer

en-symplectic. As a result, we still have the existence of nontrivial self pairings.

This shows that the converse of Theorem 6.2 only holds for a particular basis. It

is not enough to be able to write the Frobenius in a certain form. However, if the

matrix associated to the Frobenius endomorphism mod n2 cannot be written in the

form given in Theorem 6.2, we know that there must exist nontrivial self pairings.

7.3 The Curve C : y2 = x5 + D

Consider the genus 2 hyperelliptic curve C : y2 = x5 + D defined over Fp.

This curve has a single point at infinity. Let J represent the Jacobian of C. Assume

that p ≡ 1 mod 5. (Since p is odd, this implies that we really have p ≡ 1 mod 10.)

Then we have the fifth roots of unity contained in Fp. Let ζ be a primitive fifth

root of unity. Assume that D is a fifth power mod p and let D ≡ d5 mod p. Then

the points Pk = (d(−ζ)k, 0) with k = 1, 3, 5, 7, 9 are rational over Fp.

Every element of J can be represented using a unique pair of points on C (see

[6] for details). In particular, every element of J [2] can be represented using the

points Pk and the point at infinity, and hence J [2] ⊂ J(Fp).
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We can count the points on C using Jacobi sums. Recall that if χ and λ are

characters of F×
p , then we define their Jacobi sum to be J(χ, λ) =

∑

a+b=1

χ(a)λ(b).

See [8] for details about Jacobi sums and point counting.

Let N(f = g) represent the number of Fp-solutions to the equation f = g.

Then N(y2 = x5 + D) =
∑

u+v=D

N(y2 = u) ·N(x5 = −v). If u is a nonzero quadratic

residue mod p then there are two solutions to y2 = u. If it is a nonresidue, then

there are no solutions. Hence, N(y2 = u) = 1 + ρ(u) where ρ(u) =
(

u
p

)
is the

Legendre symbol (extended to Fp by defining ρ(0) = 0).

Let ζ be a primitive fifth root of unity and let χ be a character of F×
p of order

5. We can extend χ to all of Fp by setting χ(0) = 0. Since p ≡ 1 mod 5, we have

p = π1π2π3π4 in Z[ζ]. Choose χ to be a fifth power residue symbol χ(a) =
(

a
πi

)
5
.

Note that χ(−1) = 1. Then N(x5 = −v) = 1 + χ(−v) + χ2(−v) + χ3(−v) + χ4(−v)

since 5|p − 1 (see [8], Proposition 8.15).

Thus, we have that

N(y2 = x5 + D) =
∑

u+v=D

(1 + ρ(u)) (1 + χ(−v) + χ2(−v) + χ3(−v) + χ4(−v)).

Since
∑

v

χi(−v) = 0 for all i and
∑

u

ρ(u) = 0, this simplifies to

N(y2 = x5 + D) = p +
4∑

i=1

∑

u+v=D

ρ(u)χi(−v).

Letting u = Du′ and v = Dv′, we get

N(y2 = x5 + D) = p +

4∑

i=1

∑

u′+v′=1

ρ(Du′)χi(−Dv′)

= p +

4∑

i=1

ρ(D)χi(D)
∑

u+v=1

ρ(u)χi(v)

= p +

4∑

i=1

ρ(D)χi(D)J(ρ, χi).

(7.3)
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Since p is odd and ρ is an order 2 character, we have that [8]

J(ρ, χi) = χi(4)J(χi, χi).

Let Nq be the number of Fq-points on C. Then, including the point at infinity, the

number of points on C is

Np = p + 1 +
4∑

i=1

ρ(D)χi(4D)J(χi, χi).

Note that χ4 = χ and χ3 = χ2.

7.3.1 The Frobenius Endomorphism

We want to relate these Jacobi sums to the eigenvalues of the Frobenius endo-

morphism. We begin with the following proposition about the characteristic poly-

nomial of the Frobenius map.

Proposition 7.1. For a genus g hyperelliptic curve C defined over Fq, the charac-

teristic polynomial of the Frobenius endomorphism has the form

f(t) = t2g + a1t
2g−1 + · · ·+ agt

g + · · ·a1q
g−1t + qg

where ai ∈ Z.

See Theorem 14.16 in [6] for details.

The coefficients ak can be defined using the number of points on C(Fqk). For

a genus 2 curve defined over Fp, the characteristic polynomial is f(t) = t4 + a1t
3 +

a2t
2 + a1pt + p2 where a1 = Np − p− 1 and 2a2 = (Np2 − p2 − 1 + a2

1). We also have

the following proposition concerning the roots of f .
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Proposition 7.2. Let C be a genus g hyperelliptic curve defined over Fq. Let

f(t) =

2g∏

i=1

(t − τi) with τi ∈ C. Then

1. |τi| =
√

q for all i;

2. the roots can be ordered such that τiτi+g = q;

3. for any integer k, Nqk = qk + 1 −
2g∑

i=1

τk
i .

See Theorem 14.17 in [6] for more information. Let

τ1 = −ρ(D)χ(4D)J(χ, χ)

τ2 = −ρ(D)χ2(4D)J(χ2, χ2)

(7.4)

and let define τ3 and τ4 by τ1τ3 = q = τ2τ4. Then the algebraic integers τi satisfy

Proposition 7.2 and are eigenvalues of the Frobenius endomorphism.

7.3.2 Matrix Representation of a Jacobi Sum

We want to represent the Frobenius endomorphism as a matrix and determine

whether or not it can be put into the form given in Theorem 6.2. We use its

eigenvalues to do so. The endomorphism ring is Z[ζ] and the Frobenius is an element

of this ring which is given by a τi. Let {ζ, ζ2, ζ3, ζ4} be a Z-basis of Z[ζ]. Since the

τi are Galois conjugates, it suffices to work with any one of them (since choosing a

different τi would correspond to permuting the basis). Let τ = τi = aζ + bζ2 + cζ3 +

dζ4 for some integers a, b, c and d and for some fixed choice of i.

We can calculate a matrix for multiplication by τ on the elements of Z[ζ].

Writing τζk in this basis for k = 1, 2, 3, 4 yields the following matrix representation.
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Mi =




−d d − c c − b b − a

a − d −c d − b c − a

b − d a − c −b d − a

c − d b − c a − b −a




. (7.5)

Consider self pairings on J [2]. Since this matrix must be congruent to the

identity matrix mod 2, we know that it can be written as Mi ≡ 2X +I mod 4 where

I is the 4 × 4 identity matrix and X is a 4 × 4 matrix with entries in F2.

We wish to determine if a change of basis will convert Mi into the form given

by Equation 7.2. We use MAGMA to run through all possibilities for X and to cal-

culate their characteristic polynomials. They are all reducible mod 2. The possible

characteristic polynomials are given below.

x4 x4 + x3

x4 + x2 x4 + x3 + x2 + x

x4 + 1 x4 + x3 + x + 1

x4 + x2 + 1 x4 + x3 + x2

x4 + x3 + x x4 + x3 + x2 + 1

7.3.3 C : y2 = x5 + 1 over F41

If p = 41, then ρ(1)χ(1)J(ρ, χ) = 5ζ + 3ζ2 + 7ζ3 + ζ4 is an eigenvalue of the

Frobenius endomorphism. We use Equation 7.5 to represent it as a matrix M . Then
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M satisfies

M ≡




3 2 0 2

0 1 2 2

2 2 1 0

2 0 2 3




mod 4. (7.6)

In this case, we have M = 2X + I where

X ≡




1 1 0 1

0 0 1 1

1 1 0 0

1 0 1 1




mod 2 (7.7)

and X has characteristic polynomial x4 + x2 + 1 which is reducible and one of the

possible polynomials.

The change of basis matrix that puts M in the form given by Equation 7.2 is

A =




1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1




mod 4. (7.8)

and we see that

A−1MA ≡




3 2 0 2

0 1 2 0

0 2 3 0

2 0 2 1




mod 4. (7.9)

Unfortunately, this does not imply that Tate-Lichtenbaum self-pairings are trivial
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on the 2-torsion of the Jacobian of y2 = x5 + 1 defined over F41. This is because

the matrix might not correspond to an en-symplectic basis of J [2].

We can use MAGMA to do additional analysis. We find a basis for J [4] such

that the Frobenius endomorphism on J [4] is

φ1 ≡




1 0 0 2

2 1 2 2

0 2 3 2

2 0 0 3




mod 4 (7.10)

and the Weil pairing on J [2] is given by



1 −1 1 1

−1 1 −1 1

1 −1 1 −1

1 1 −1 1




. (7.11)

The change of basis matrix

B =




1 1 0 0

0 0 1 0

0 1 1 1

0 0 0 1




. (7.12)

yields an en-symplectic basis and gives the Frobenius map the form

φ2 ≡ Bφ1B
−1 ≡




3 2 0 2

0 1 2 0

0 2 3 0

2 0 2 1




mod 4. (7.13)
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Observe that φ2 is the same as A−1MA mod 4. Since φ2 is written in an en-

symplectic basis and since it also has the form in Equation 7.2, we conclude that all

self pairings on J [2] are trivial.

7.3.4 C : y2 = x5 + 1 over F71

Now consider the prime p = 71. We now have that ρ(1)χ(1)J(ρ, χ) = −ζ −

7ζ2 + 3ζ3 + ζ4 is an eigenvalue of the Frobenius endomorphism. We again use

Equation 7.5 to represent it as a matrix, N . Then N satisfies

N ≡




3 2 2 2

2 1 0 0

0 0 3 2

2 2 2 1




mod 4. (7.14)

Writing N as 2X+I for some 4×4 matrix X, we find that X has characteristic

polynomial x4 + x + 1. Since this polynomial is irreducible over F2, we see that N

cannot be put in the form given by Theorem 6.2. This shows that even if we change

to a basis for J [n] that is symplectic for the Weil pairing, en, the matrix N would

not have the form given by Equation 7.2 and hence there must exist an element of

J [2] that pairs nontrivially with itself.

Computations with MAGMA (for p ≤ 641) suggest that Tate-Lichtenbaum

self pairings are trivial on J [2] if and only if p ≡ 1 mod 20. Since we already require

that p ≡ 1 mod 5, this says that trivial self pairings are equivalent to the condition

that p ≡ 1 mod 4.
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Appendix A

Elliptic Curves and Jacobian Varieties

A.1 Elliptic Curves

This thesis deals with bilinear pairings on elliptic curves and Jacobians of

higher genus curves. An elliptic curve E can be represented as a nonsingular pro-

jective curve of the form

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3 (A.1)

defined over a field K with the ai ∈ K being fixed constants. This equation is

known as the generalized Weierstraß equation. We denote by E(K) the set of all

equivalence classes of solutions in K.

When z = 0 we get the solution (0 : 1 : 0), called the “point at infinity” and

often denoted by ∞. For z 6= 0, we work with the affine generalized Weierstraß

equation,

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (A.2)

When the characteristic of K is not 2 or 3, a simple change of variables can

be used to convert Equation A.1 into one of the form y2 = x3 + Ax + B, where

A and B are new constants in K. An equation of this form is called a Weierstraß

equation for the elliptic curve E. In order for the elliptic curve to be nonsingular,

we require that x3 + Ax + B have no multiple roots. This is equivalent to requiring
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the discriminant ∆ = 4A3 + 27B2 to be nonzero.

Although in number theory we often work with elliptic curves defined over

finite fields, it is often useful to be able to picture the graph of an elliptic curve.

The picture we most often visualize is that of an elliptic curve defined over R in

which x3 + Ax + B has three distinct real roots.

x

y

We picture the point at infinity as sitting at the top and bottom of the y-axis.

One can alternatively define an elliptic curve to be a nonsingular projective

curve with a group structure defined by regular maps ([12]). This group structure

forces the curve to have genus 1 (see [12], page 2). Traditionally, we often view

the group structure geometrically in terms of chords and tangents. Hence, we mo-

mentarily return to the picture of an elliptic curve defined over R. If we have two

distinct points, P and Q, which we want to compose to form a third point, we begin

by drawing the line that passes through P and Q. This line will intersect the graph

of E in a third point. The reflection of this point across the x-axis is the sum, P +Q.
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x

y

P

Q

P + Q

There are certain cases that require special attention. For example, if instead

we wish to form the point P + P , which we denote by 2P , we need to do a similar,

but slightly different construction. In this case, we draw the line, `, tangent to the

graph of E at P . Since ` now intersects the graph of E with multiplicity 2 at P ,

there is again a third point of intersection. The reflection of this point across the

x-axis is the sum 2P .

-1.5 -1 -0.5 0.5 1 1.5 2
x

-2

-1

1

2

y

P 2P

In all cases, the composition law can be explicitly stated in terms of rational func-

tions. The inverse of an element is simply its reflection across the y-axis. The point

at infinity serves as the identity element. While this composition is easily seen to

be commutative, it is not obvious that it should be associative. See [15] for a proof.

Note that the group structure which we have described depends on our choice of ∞

as the identity element.
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Alternatively, let Pic0(E) be the group of divisor classes of degree 0 (where two

divisors are defined to be equivalent if they differ by a principal divisor). Then the

map E(K) → Pic0(E) defined by P 7→ [P ] − [∞] is a bijection and it gives the set

of points E(K) a canonical group structure which is easily seen to be commutative.

This group structure agrees with the chord and tangent method outlined above.

A.2 Jacobians of Higher Genus Algebraic Curves

Jacobians are higher dimensional analogues to elliptic curves and much of the

theory of elliptic curves can be generalized. In general, the definition of elliptic

curves in terms of equations does not generalize to higher dimensions. The excep-

tion is the case of 2-dimensional abelian varieties, which are Jacobians of genus 2

projective curves of the form

y2z4 = a0x
6 + a1x

5z + · · ·+ a6z
6 (A.3)

(when defined over fields of characteristic not equal to 2 or 3). See [5] for details.

However, we can make the following generalization: abelian varieties can be

defined as nonsingular connected projective varieties with a group structure defined

by regular maps ([12]). Jacobian varieties are special examples of abelian varieties.

Let C be a genus g curve defined over K and choose Q ∈ C(K). Then the Jacobian

variety, J = Jac(C), of C is an abelian variety that is canonically attached to

C. It comes equipped with a regular map φ : C → J which has the property that

φ(Q) = 0. It induces a map Div0(C) → J(K) defined by
∑

niPi 7→
∑

niφ(Pi). This,

in turn, induces an isomorphism Pic0(C) → J(K). Furthermore, the dimension of
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J is the genus of C. If C is a genus 1 curve, then Jac(C) = C (assuming that C has

a rational point over K).

Let n be a positive integer not divisible by the characteristic of K. Define

E[n] = {P ∈ E(K)|nP = ∞} to be the subgroup of n-torsion points. Here K is

an algebraic closure of K. Then E[n] ' (Z/nZ)2. If J is the Jacobian of a genus g

curve, then we similarly define J [n] to be the kernel of the multiplication by n map

J(K)
n−→ J(K). In this case, J [n] ' (Z/nZ)2g.
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Appendix B

Miller’s Algorithm

Computation of both the Weil pairing and the Tate-Lichtenbaum pairing re-

quires finding a function with certain properties. In particular, if P ∈ J [n], one

needs a function fP such that div(fP ) = P . Victor Miller developed an algorithm

for efficiently finding and evaluating such functions (see [15], [11]). It uses the idea

of successive doubling. We present it in the case of elliptic curves.

Let E be an elliptic curve, let P be an element of E[n], and let R be any

point in E. We need to find a function fP such that div(fP ) = n[P + R]−n[R] and

evaluate fP (Q1)
fP (Q2)

for some points Q1 and Q2.

Let Dj = j[P + R] − j[R] − [jP ] + [∞]. Then Dj = div(fj) for some function

fj. For example, D1 arises from by the equation of the line through P, R, and P +R.

If fj and fk are known, one can find fj+k as follows.

1. Compute the equation ax + by + c = 0 for the line passing through the points

jP and kP . If these are the same points, use the tangent line.

2. Compute the equation x+d = 0 for the vertical line through the point (j+k)P .

3. The function fj+k is defined to be fjfk
ax+by+c

x+d
, up to a constant.

4. Use successive doubling and addition of functions of the form fj to build up

the function fn. Then div(fn) = Dn = n[P + R] − n[R] − [nP ] + [∞] =
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n[P + R] − n[R] since P is an n-torsion element. Hence, up to multiplication

by a constant, fP = fn.

Note that the constant factor cancels when we evaluate fP on a degree zero

divisor. Also note that fP depends on R (or more precisely, on the divisor used to

represent P ). However, it can be shown that the use of Miller’s algorithm to compute

pairings produces results independent of the choice of R. See [15] for details.
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