Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polysilicon RTCVD Process Optimization for Environmentally- Conscious Manufacturing

    Thumbnail
    View/Open
    TR_96-72.pdf (1.010Mb)
    No. of downloads: 912

    Date
    1996
    Author
    Lu, Guangquan
    Bora, Monalisa
    Rubloff, Gary W.
    Metadata
    Show full item record
    Abstract
    In the semiconductor manufacturing industry, optimization of advanced equipment and process designs must include both manufacturing metrics (such as cycle time, consumables cost, and product quality) and environmental consequences (such as reactant utilization and by-product emission). We have investigated the optimization of rapid thermal chemical vapor deposition (RTCVD) of polysilicon from SiH4 as a function of process parameters using a physically-based dynamic simulation approach. The simulator captures essential time-dependent behaviors of gas flow, heat transfer, reaction chemistry, and sensor and control systems, and is validated by our experimental data. Significant improvements in SiH4 utilization (up to 7 x) and process cycle time (up to 3 x) can be achieved by changes in (i) timing for initiating wafer heating relative to starting process gas flow; (ii) process temperature (650 - 750oC ) ; and (iii) gas flow rate (100 - 1000 sccm). Enhanced gas utilization efficiency and reduced process cycle time provide benefits for both environmental considerations and manufacturing productivity (throughput). Dynamic simulation proves to be a versatile and powerful technique for identifying optimal process parameters and for assessing tradeoffs between various manufacturing and environmental metrics.
    URI
    http://hdl.handle.net/1903/5789
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility