Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Improved Algorithm for Solving Constrained Optimal Control Problems

    Thumbnail
    View/Open
    PhD_94-1.pdf (5.861Mb)
    No. of downloads: 670

    Date
    1994
    Author
    Ma, Baoming
    Advisor
    Levine, W.S.
    Metadata
    Show full item record
    Abstract
    Motivated by the need to have an algorithm which (1) can solve generally constrained optimal control problems, (2) is globally convergent, (3) has a fast local convergence rate, a new algorithm, which solves fixed end-time optimal control problems with hard control constraints, end-point inequality constraints, and a variable initial state, is developed. This algorithm is based on a second-order approximation to the change of the cost functional due to a change in the control and a change in the initial state. Further approximation produces a simple convex functional. An exact penalty function is employed to penalize any violated end-point inequality constraints. We then show that the solution of the minimization of the convex functional, subject to linearized system dynamics, the original hard control constraints, the original hard initial state constraints, and linearized end-point constraints, generates a descent direction for that exact penalty function.<P>We then show that the algorithm developed in this dissertation can also solve the following types of optimal control problems: (1) problems with a free end-time; (2) problems with path constraints; (3) problems with some design parameters that are also to be optimized.<P>Global convergence properties of a version of the algorithm are analyzed. In particular, it is shown that the algorithm is globally convergent under some conditions. The local convergence rate of the algorithm can be better than that of the first-order algorithms when some matrices are properly updated.<P>A version of the algorithm is implemented in a package which is easy to use. A variety of benchmark problems are solved. Finally, the algorithm is employed in solving two challenging biomechanics problems: (1) a human moving his arm from an initial resting position so as to touch an stop at a target with the tip of the index finger while the muscular stress, the joint constraint forces, and the neural excitations are minimized; (2) a human pedaling s stationary bicycle as fast as possible from rest. Those results demonstrate that the algorithm developed in this dissertation is effective in dealing with generally constrained optimal control problems.
    URI
    http://hdl.handle.net/1903/5558
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility