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Abstract

Title of Dissertation: AN IMPROVED ALGORITHM FOR SOLVING

CONSTRAINED OPTIMAL CONTROL PROBLEMS

Baoming Ma, Doctor of Philosophy, 1994

Dissertation directed by: Professor William S. Levine

Department of Electrical Engineering

Motivated by the need to have an algorithm which (1) can solve generally con-
strained optimal control problems, (2) is globally convergent, (3) has a fast local
convergence rate, a new algorithm, which solves fixed end-time optimal control prob-
lems with hard control constraints, end-point inequality constraints, and a variable
initial state, is developed. This algorithm is based on a second-order approximation
to the change of the cost functional due to a change in the control and a change in the
initial state. Further approximation produces a simple convex functional. An exact
penalty function is employed to penalize any violated end-point inequality constraints.
We then show that the solution of the minimization of the convex functional, subject
to linearized system dynamics, the original hard control constraints, the original hard
initial state constraints, and linearized end-point constraints, generates a descent di-
rection for that exact penalty function.

We then show that the algorithm developed in this dissertation can also solve
the following types of optimal control poblems: (1) problems with a free end-time; (2)
problems with path constraints; (3) problems with some design parameters that are
also to be optimized.

Global convergence properties of a version of the algorithm are analyzed. In

particular, it is shown that the algorithm is globally convergent under some conditions.



The local convergence rate of the algorithm can be better than that of the first-order
algorithms when some matrices are properly updated.

A version of the algorithm is implemented in a package which is easy to use.
A variety of benchmark problems are solved. Finally, the algorithm is employed in
solving two challenging biomechanics problems: (1) a human moving his arm from an
initial resting position so as to touch and stop at a target with the tip of the index
finger while the muscular stress, the joint constraint forces, and the neural excitations
are minimized; (2) a human pedaling a stationary bicycle as fast as possible from rest.
Those results demonstrate that the algorithm developed in this dissertation is effective

in dealing with generally constrained optimal control problems.
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Preliminaries






Chapter 1

Introduction

1.1 Role of Optimal Control

Since its birth from a classical subject, the calculus of variations, in the late 1950’s,
modern optimal control theory has been rapidly developed. In addition to its success-
ful applications in areas which range from designing spacecraft guidance and control
systems to applied economics, chemical engineering, nuclear engineering, etc, optimal

control theory has also found a role in analyzing animal and human locomotion.

1.2 Locomotion Research That Motivated This Study on Computing
Optimal Control

There are two major reasons that could justify the use of optimal control theory in
the study of locomotion. The first reason is a logical one. Locomotion is believed
to be goal-oriented. Optimal control theory, a study of the control strategy which
maximizes or minimizes a certain goal function subject to the constraints imposed by,
among others, the dynamics of a system, therefore provides a convenient and natural
tool. The second reason is a practical one. In order to understand human or animal
neuromotor control strategies, a reasonable and rigorous approach is based on the
use of a dynamical model of the musculoskeletal system to predict the muscle exci-

tation signals that produce the movement. Because the number of muscles spanning



each joint usually exceeds the number of degrees of freedom defining joint motion,
the human and animal musculoskeletal system is mechanically highly redundant. In
addition, many muscles can affect more than one joint, which causes complex dynam-
ical interactions. Therefore, finding the muscle excitation patterns which provide the
desired movement is difficult by trial and error for even the simplest case [84,170]. On
the other hand, optimal control theory sees no difference between dynamics of muscle
activation, dynamics of musculotendon and dynamics of the skeleton. They are simply

parts of the system dynamics. It is a tool both unified and systematic.

Human locomotion has always been a subject attracting wide attention, because
of its orderly organization and complex coordination. However, studies had been
mostly experimental in nature until the late 1960’s. A study by Chow and Jacobson
[24] was described as “probably the most comprehensive contribution” in applying the

optimal control theory in the field of locomotion [47].

Motivated by the need to better understand how the central nervous system
coordinates limb movement, Levine, Zajac, and their students have done a significant
amount of work in using optimal control theory to study intermuscular control of multi-
joint movement. Through a variety of increasingly complex models, they have gained
insight into the theoretical and computational aspects of optimal control problems

involving human and animal musculoskeletal systems.

They began by studying maximum-height jumping by cats and humans. In the
case of a simple one-segment, planar baton, driven by an ideal torque generator, a
complete analytical solution was derived [78], where the feedback optimal control was
expressed in terms of specific controls in different regions of state space. Then, the op-
timal control problems were solved numerically for a four-segment inverted pendulum
with muscles described by models, which are of Hill’s type [51,148,167], incorporated
in the joint torque generators [20,21,110,148,149]. Then they progressed to the study
of pedaling a stationary bicycle as fast as possible, with the belief that it is intermedi-

ate in complexity between maximal height jumping and normal locomotion [110,124,

125,126,127,128,148,149).



Qualitative comparisons between the predictions of the model and previously
reported experimental findings indicated that the model reproduces major features of
both a maximum-height squat jump [110,148] and minimum-time pedaling [124,125,
126,127,128,148,149).

A similar approach was adapted in Giat’s work [39], in which the study was to

find control patterns which could lift the human arm to hit a target in a plane.

Each of the above problems has a relatively unambiguous performance criterion,

so it fits well into the framework of optimal control theory.

1.3 Computatjonal Challenges

The dynamics models of complex systems, especially of those biomechanics systems,
always have the following characteristics: high dimension, severe nonlinearity, complex
coupling, various constraints and occasionally time-variation. As for the dimension,
for example, Sim’s jumping model has 24 states and 8 controls; his pedaling model
has 48 states, although some of those are dependent, and 16 controls. Both models
used a one-state muscle model [148]. Raasch’s current pedaling model, in which a
new two-state muscle model is used, has 100 states, some of which are dependent,
and 18 controls [124,125,126,127,128]. Using the same new muscle model, Giat’s arm
model has 40 states and 12 controls [39] The nonlinearities are introduced by the
generalized gravitational force terms, generalized inertial terms, and by the nonlinear
behavior of muscles. The coupling becomes more evident when the mechanical system

is closed-loop, and when some muscles can affect more than one joint.

Clearly, except for some special cases [79,80,88], finding closed-form optimal
control solutions is almost impossible. A numerical approach then has to be adopted

in most cases.

Expectations of a good numerical optimal control algorithm have always been
that it should first be “robust”, which means (a) it is convergent, (b) it converges to at

least a local minimum, (c) it will not crash under any circumstance, and second that it



should be “efficient”, which means that it has a fast (local) convergence rate, and third
that it should be “versatile”, which means that it can handle general optimal control
problems: general setting of dynamics, cost function, terminal constraints and path
constraints. In reality, those expectations (or standards) are too high to be realized by
a single algorithm. There are only a few conceptually implementable optimal control
algorithms available which can meet part of the above expectations. Among them,

even fewer have been well implemented.

1.4 Objective and Contributions

The goal of this dissertation is to develop a computational algorithm to meet the above

challenges. The contributions of this dissertation can be summarized as follows:

¢ a new algorithm, with an approach similar to the Han-Powell method in finite-

dimensional optimization, is devised:

it is globally convergent under some conditions;

its local convergence rate can be better than that of the first-order algo-

rithms when some matrices are properly updated;

it solves optimal control problems with hard control constraints, end-point

constraints, a variable initial state, and a variable parameter vector;

it can also solve, approximately, path constraints;

¢ a version of the algorithm is implemented in a package which is easy to use;

e a variety of benchmark problems are solved well and fast by the package;

o the package is also employed in solving two challenging biomechanics problems:

— a human moving his arm from an initial resting position so as to touch and
stop at a target with the tip of the index finger while the muscular stress,

the joint constraint forces, and the neural excitations are minimized;

— a human pedaling a stationary bicycle as fast as possible, from rest.



1.5 Organization

This dissertation is organized into three parts. The first part is the preliminaries, which
includes this introductory chapter and Chapter 2 where a comprehensive survey on

the techniques and algorithms for solving optimal control problems are given.

In the second part, new algorithms are developed to solve generally constrained

optimal control problems.

In Chapter 3, with an approach similar to the Han-Powell method in finite-
dimensional optimization, a new algorithm is devised to solve continuous-time optimal
control problems where the control variables and the terminal states are constrained.
It is first noticed that the summation of the first and second variations is a second-
order approximation to the change of the cost functional due to a change in the
control. Further approximation produces a simple convex functional. Consequently,
solving the original complicated problem can be replaced by solving iteratively a much
simplier “direction-finding” subproblem and a line search along the “direction” found.
We then show that the solution of the minimization of the convex functional subject
to a linearized system dynamics, linearized terminal inequality constraints, and the
original control constraint, generates a descent direction of an exact penalty functional.

A global convergence analysis is then given.

In Chapter 4, the ideas behind the algorithm developed in Chapter 3 can be
further extended to a much more general optimal control problem which has not only
hard control constraints and terminal-state inequality constraints, but also a variable
initial state vector, some components of which are allowed to vary within a constraint
box, while the remaining components are fixed. It will be shown later in the chapter
that this problem can include optimal control problems in the most general setting,
namely, problems which are subjected to control constraints, path constraints, end-
point constraints, a variable initial state, and a variable vector of design parameters,

within a fixed/free end-time interval.

A common feature of the algorithms developed in both Chapter 3 and Chap-



ter 4 is that it is required to solve a generally constrained linear quadratic regulator
problem (LQR) at each iteration. On the other hand, the constrained LQR problem is
important in its own right. The goal of Chapter 5 is to study the following constrained
LQR problem: minimize a convex functional, subject to a linear dynamical system,
hard control constraints, a constraint box for some initial state variables, and linear
end-point constraints. Two special properties which are related to the problem are pre-
sented: (1) the existence of an optimal control solution; and (2) the uniqueness of the
optimal control solution. In addition, some computational techniques are investigated.

In Chapter 6, a variety of benchmark problems are solved by the algorithm.

The third part of this dissertation applies the new algorithm developed in Chap-

ter 3 to two biomechanics problems.

In Chapter 7, the skeletal and muscular dynamics of the human upper extremity
is studied by using optimal control theory. The algorithm, which was developed in
Chapter 3 and is capable of handling generally constrained optimal control problems,
is employed to compute the activity which occurs in each muscle of the upper extremity
when the goal is to move the arm from an initial resting position so as to touch and
stop at a target with the tip of the index finger while the muscular stress, the joint
constraint forces, and the neural excitations are minimized. The results obtained from
the simulation describe all the major dynamic events that take place in the upper

extremity when the movement is attempted.

In Chapter 8, the skeletal and muscular dynamics of the human lower extremity
is studied by using optimal control theory. The algorithm, which was developed in
Chapter 3 and is capable of handling generally constrained optimal control problems,
is employed to compute the activity which occurs in each muscle of the lower extremity

when the goal is to pedal a stationary bicycle as fast as possible.

Finally, in Chapter 9, conclusions are given, and topics for future research are

discussed.



Chapter 2

Survey of Computational Methods for Solving

Optimal Control Problems

2.1 General Optimal Control Problem

The dynamical system considered is described by the differential equation
2(t) = f(=(t),u(t),t), (2.1.1)
t(to) = o, (2.1.2)
which is subject to the control constraints
u(t) € Q, Vit € [to, 5], (2.1.3)
where ) is a compact subset of R™, the path constraints,
h(z(t),u(t),t) < 0, (2.1.4)
for any t€[to,ts], and the terminal-state constraints,
9ea(2(ts),t) = 0, (2.1.5)
gne(z(ts),ty) < 0. (2.1.6)

In the above, z(t) € R™ is the state of the system at time ¢, and u(t) € R™ the control

at time t, with t€7 =[to,ts]. Let the set of admissible controls be,

U={u|u:T — Qis continuous a.e. }. (2.1.7)



Let the set of feasible controls F consist of all the control functions u € 4 such that
the constraints (2.1.4), (2.1.5) and (2.1.6) are all satisfied. We may now formulate a

general optimal control problem as follows:

Problem (P). Subject to the dynamical system (2.1.1), the initial condition (2.1.2),
the path constraints (2.1.4), the terminal equality constraints (2.1.5), and the terminal
inequality constraints (2.1.6), find a control u €l such that the cost functional

I(0) = Katty)ty) + || Ler)ou(r), ) dr (218)

is minimized over .

The following conditions are assumed to be satisfied.

Assumption 2.1.1 f:R"XR™XT > R", geq: R"XT - R?, gne :R"XT —
RY, h:R"XR"XT -R", K:R"XT >R, L:R"XR™xT —->R. f,hand
L, together with their partial derivatives with respect to each of the components of
and u, are continuous for all (z,u,t)ER"XR™ X T. K, geq and gn. are continuously

differentiable with respect to x;

Assumption 2.1.2  There exists a positive constant M such that
|f(z,u,t)| < M(1 + |2|) (2.1.9)

for all (z,u, ) ER" X QO x T.

Remark: From the theory of differential equations, the system (2.1.1)-(2.1.2) has a

unique solution z* corresponding to each u€eld.

Remark: Because the state z* is uniquely determined by control u when its initial
condition z(%p) is fixed, the cost functional J dependents only on u. Thus, the above
optimal control problem can also be viewed as an abstract optimization problem in
function space

min J(u

uelf ( )

where F is the feasible control set defined before.



2.2 Analytical Methods

There are three analytical approaches to find an optimal control. The first approach
is based on working directly on the variational optimality conditions. Historically,
those conditions are the necessary and/or sufficient conditions from the Calculus of
Variations — a classical mathematical discipline whose objective was to find, among a
family of functions, curves or surfaces, those which possess a certain extremal property
[7,37]. Later, the necessary conditions from the Pontryagin minimum principle became
dominant [4,120]. A great advantage of the Pontryagin minimum principle is its ability
to handle hard constraints on the control, a problem classical variational theory could
not readily handle. The second approach is based on the optimality conditions when
the optimal control problem is viewed as an abstract optimization in a function space.
Among them, the necessary conditions from the Generalized Kuhn-Tucker Theorem
[26,85] have often been used. The same family of optimality conditions also includes
some second-order necessary and sufficient conditions, which can be used for getting
additional information on the optimum. The optimal controls derived by both the
first and the second approaches are basically open-loop in nature. The third approach
is based on dynamic programming [6,11] which leads to a first-order nonlinear partial
differential equation called the Hamilton-Jacobi-Bellman (HJB) Equation and to a

description of an optimal feedback control law.

For the first approach, usually, only necessary conditions are studied. Occa-
sionally, some sufficient conditions are examined as well. Application of the necessary
conditions which characterize the optimum leaves us with a limited number of candi-
dates for a solution to the problem; it is then sometimes possible, for a problem which
is simple and/or special enough, to use a process of elimination to determine which of
these candidates is the sought-for solution. Finding candidates satisfying those vari-
ational necessary conditions will consequently result in a two-point boundary-value
problem of order 2r, where n is the dimension of the state of the system. An excellent

book on this approach was by Athans and Falb [4] where the Pontryagin minimum



principle was used exclusively. In that book, a good variety of problems were solved
and the results intuitively interpreted. Another excellent book was by Bryson and Ho
[11] where many practical problems have been solved by applying a mixture of the
calculus of variations and the Pontryagin minimum principle. Studies of the optimal
control problem in the framework of general extremal problems can be found in the
books by Ioffe and Tihomirov [58], and Zeidler [171]. Also, a comprehensive presen-
tation of the classical calculus of variations using modern approaches can be found
in the book by Cesari [14]. Other good books on this approach include the ones by
Leitmann [77], and by Kirk [68].

The second approach has mainly been a theoretical tool rather than a computa-
tional one. One reason is that the generalized Kuhn-Tucker theorem is usually applied
to a Banach space, which has a dual. People tend to study problems in a Hilbert con-
trol space, such as LJ'[to, ty], since any real Hilbert space is identified with its dual by
a linear isometry. However, a more realistic control space seems to be L™ [to, 5], whose
dual space is complicated. Another reason is that the generalization of the optimal
control problem into a much broader nonlinear functional optimization problem may
easily ignore special structures and properties which are unique to the optimal control
problem. For a simple case that the magnitude of each control variable is constrained,

the corresponding generalized multipliers do not possess clear physical interpretation,

and further, they are difficult to compute.
For the third approach, dynamic programming has also mainly been a theoretical
tool rather than a computational tool. The reason is that dynamic programming suffers

a drawback called the Curse of Dimensionality, which refers to the enormous dimension

of the set of all possible final ‘paths’.

Unless the system equations, the cost function, and the constraints are quite
simple and/or special, finding optimal controls analytically is almost always impossible

by any one of the above approaches. Consequently, numerical solutions are necessary.

10



2.3 Computational Methods — Nonparameterization Approachs

Computational approaches for solving optimal control problems, like those in a closely
related field — optimization in finite-dimensional space, are iterative in nature. Their
ultimate goals are to find a set of states, costates, controls and multipliers which satisfy
certain optimality conditions. Most often, those optimality conditions are the neces-
sary conditions supplied by the Pontryagin minimum principle [4,120] or its variants
[59,60,93,105,106,140]. Sometimes, those optimality conditions can be the necessary
conditions based on the Generalized Kuhn-Tucker Theorem [26,85). Different charac-

teristics of the iterative procedures give rise to many different methods.

Although there are a wide variety of methods for the computation of optimal
controls, they can be classified into different types. One classification is based on the
objectives of the methods at each iteration. Some methods are to find a new set of
states, costates, controls and multipliers which satisfy the optimality conditions better
than in the previous iteration. One example of such methods is the so-called neigh-
boring extremal algorithm [11]. Most often, however, methods are to find a new set of
states, costates, controls and multipliers which make the value of the cost functional
smaller than in the previous iterations. Examples of such methods are the gradi-
ent method [117], the conditional gradient method [43], the projection method [43],
the quasi-Newton’s method [30,53,66,99,147,159], differential dynamic programming
method [61,95,118], etc.

They can also be classified according to their updating schemes for the con-
trols. Some methods approximate the control trajectories by orthogonal functions or

polynomials. That is,

N
u(t) = Za,«b,-(t)

i=1
where the {¢;(¢)} is a family of N orthogonal functions or polynomials [40,69,70,71,
81,137,143,150,151,155,156,157,168]. Sometimes, both the control and the state vari-
ables are approximated in this way [15,17,54,55,65,60,70,71,83,102,112,131,134,146,

163]. Consequently, the original optimal control problem is converted into an opti-
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mization problem, where the updatings are on the parameters {a;}. Different selec-
tions of the {¢;(t)} yield many different methods. Typical examples of the orthogonal
functions are the Chebyshev [23,82,111,162,163], the Fourier [31,112,113,130,131,132],
the Taylor [52,102,114,115,133,134,153], the Walsh [16,17,19,64], the block-pulse [54,
57,129), the Laguerre [22,56,146,165], the Legendre [55), the spline [69,70,71,81], and
some other polynomial [40,143,150,151,155,156,157,168). However, most well known
methods update only the control variables, and the update scheme is such that, when

at the k-th iteration,

WFH = P(uF 4 AksF)

where P is a transformation mapping within the admissible control space U, s* a search
direction, and A* a suitably chosen stepsize. Different constructions of the mapping P,
search direction s* and stepsize AF result in many different methods (algorithms): the
gradient method [117], the conditional gradient method [43], the projection method
[43], the quasi-Newton’s method [30,53,66,99,147,159], etc. Finally, there is a strong

variation type of updating scheme on the control

WU = a(t) V€ L,

wF*1(t) = uF(t)  otherwise

where I, is a subset of [tp,ts] in which the updating on control takes place, and %(%)
is a control taht has certain properties. One example which uses such an updating
scheme is the differential dynamic programming method [61,95,118].

The following is a survey which emphasizes only the major classes of compu-

tational methods. Special attention has been given to some selected representative

methods.
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2.3.1 Gradient Method

Let us recall that an optimal control problem of this chapter can be viewed as an
abstract optimization problem

i

where the cost functional J is a mapping from a function space U to the real line R,
and FCU is a feasible control set. If J is defined on a neighborhood of # and if there

exists a continuous linear mapping J'(%@) : Y — R such that

J(@ +v) = J(@) + J'(8)(v) + o(v), Yveld (2.3.1)
with
el _
= Tl - (2.3.2)

J is called Fréchet differentiable at €. If U is a Hilbert space, then J'(%) is a linear
continuous functional on U, i.e. an element of the dual space *. Riesz’s representation
theorem [85,138] tells us that a real Hilbert space is identified with its dual by a linear
isometry. So, there exists an element of U/ itself, called the gradient VJ(%), such that
J'(@)v=(VJ(u),v).

The gradient method is an iterative procedure for solving unconstrained opti-

mization problems

{Lnelg} J(u) (2.3.3)

in a Hilbert space /. The updating formula is u¥+! =u*¥—A¥V J(uF), where the search

direction, opposite to the direction of the gradient, is a steepest-descent direction.

To apply the gradient method to update the control, a formula for the gradient
of the cost functional J(u) must be obtained. It is known that [117]

VJ(u)(t) = V,H(z,u,p,t) (2.3.4)
where

H(z,u,p,1) = L(z,u,t) + (p, f(2,4,1)) (2.3.5)
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the Hamilton function of the system, and
B(t)

p(ty)

oH
—%(x,u,p, t) (236)

(el 1) (237

defines the costates of the system.

2.3.2 Conditional Gradient Method

Consider now the case where the control is constrained. In order to take advantage of
the descent property of the gradient method, one immediate and intuitive extension
is to find a direction which is, first, feasible, and second, pointing as close to —V.J (uk )
as possible. This method is called the conditional gradient method, or Frank-Wolfe
method. That is, for problems

umei}l J(u) (2.3.8)

where F is a nonempty, closed, convex subset of a Hilbert space /, the control is

updated by
uF = oF 4 AR(TF - o) (2.3.9)
where
T = arg irg; (VI(uF), u— uF) (2.3.10)
and
A = arg /\21[%1,11] J(u* + M@ - b)) (2.3.11)

It has been shown that when an exact stepsize rule is used and J is convex on a convex

set F, this algorithm is well-defined and convergent [43].

In optimal control problems, one of the most convenient Hilbert spaces is L7'[0, t]

equipped with inner product

(u,v) = /tf f: ui(T)vi(7)dr.

-
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So the subproblem of finding @* becomes
_ . kY . .k
T = arg Eg}(VJ(u ), u—u’)
ty
= arg min/ (VI(uF)(7), u(r))dr
u€F Jig
ts
= arg min/ H,(z*(7), o5(7), u*(7),T) u(r) dr. (2.3.12)
ueF Ji,
It is obvious that it can only be solved exactly for special cases.

Example:

Consider a system linear in control,

m(t) fl(x(t)’t) + f2(m(t)’t)u(t)’

(E(to) = Tg.

1t

The integrand of the cost function is also linear in the control,
mip Jw) = Ke(ty)tn)+ [ (Baa(r), )+ L a(r), m)utr) i
and the feasible control set is
F={u]| ugni" <wu(t) <uf*®, j=1,---,m, te€lto,ty] } C LT [to,ts]).
The Hamiltonian is
H(z,u,p,t) = R(z,t)+ S (z,p,t) u(t)
where

R(z,p, t) Ll(w,t) + pT(t)fl(:l:, t)
S(z,p,t) = La(z,0)+ f3 (2,1) p(t).

Then

=L

t
= arg min / " Hu(*(7), p(7), u(r), 7) u(r) dr
vEF Ji,
t
= arg min/ fST(xk(r),pk(T),r) uk('r) dr
u€F Ji,

_ N t’S, K K ) uk(r) d
= arg zrgggfto i(&%(7),p¥(7), ) wk(7) dr.
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The solution is

ules, when Sj(a:k(t), Pk(t),t) <0
(1) = { undefined, when S;(z*(t),p*(t),t) =0
umn, when S;(z*(t), p*(t),t) > 0

where t€[tg,tf] and j =1,:--,m.

Remark: The Pontryagin minimum principle tells us that the optimal control for
this example must be bang-bang, as long as S;(z*(t), p*(t),t) could take the value of
zero only at isolated points. However, it is interesting to notice that, since u**! is a
convex combination of u*¥ and @*, the conditional gradient method may not always

generate bang-bang controls during intermediate iterations.

Remark: Under the assumption that F is convex, since u**! is a convex combination
of u* and @*, control functions {u*} generated will always be feasible, as long as the

initial control function ° is feasible.

Remark: For the general linear quadratic problem subject to hard control con-
straints and linear terminal inequality constraints, which is studied in Chapter 5, the
cost functional is convex in the control function, and the feasible control set F is a
convex subset of L7 [to,ts]. In other cases, any sufficiently smooth functional could
be approximated locally by a quadratic functional. Then the convergence property
mentioned above would still hold for the approximating problem. It reminds us of
a common practice in nonlinear programming where convex functions are used to

approximate the cost and the constraints leading to a convex programming problem.

Remark: It is interesting to notice that both Sim’s bang-bang control algorithm
[148] and Mohler’s algorithm [101] deal with the problem above. A common advantage
of the two algorithms is that all controls generated during intermediate iterations will
always be bang-bang, as long as the initial control is chosen to be bang-bang and there
is no singularity. Both algorithms are shown to be quite computationally effective [101,

148, even though convergence is not proved in either case.
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2.3.3 Projection Method

The basic problem in applying the gradient method to constrained optimization prob-
lems is that the gradient may point outside the set of feasible controls. Another way
to find a feasible descent direction is the projection method. Consider the following

constrained problem

mip J(u)

where F is a nonempty, closed, convex subset of a Hilbert space U. Let a projection
be an operator P : U — F, where for each v€lU the image Pv is the unique element

of F such that
[JPv—o||<|lu—v|| VueF,

i.e., Pv is the vector in F which has the smallest distance to v. A popular projection

method is the following:

Algorithm:

Step 0 Select a ug € F. Select a parameter a€(0,00). Set k=0.
Step 1 Solve projection @* = P(u* —aVJ(uk)).
Step 2. If its solution is such that @* =u*, stop. Otherwise, go to Step 3.

Step 3. Compute a suitable stepsize A¥ >0, according to some stepsize rule.

Step 4. Set u**1=uF4 A\ (% —u*). Set k=k+1 and return to Step 1.

Proposition 2.3.1 Let J :U — R be Fréchet differentiable.
(i) Ifu€F is optimal, then for each o€ (0,00)
P(a — aVJ(i)) = 4.

(ii) IfukcF and
oF = P(u* — aVJ(uF)) —uk £ 0
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for some a > 0, then
(VI(u), o) €~ P42 < 0.
Proof: (i) If 4 € F is optimal, then
(VJ(@), u—4) >0 YueF.
Then, for all u€ F and each a€(0,00),
llu = (& - «VI@)II® = la - (& - aVI(@))|?
= (u— i+ aVJ(1), u— i+ aVJ(d)) — (aVI(i), aVJ(i))
= ||u — 4||* + 2a(VJI(%), u—a) > 0.
That is
la— (@ — aVJ@))| < [|u~ (& - aVI(@))l.
So
4= P(i—-aVJ(2)) Vae€/(0,00).
(ii) As defined,
@* = P(u* — aVJ(uF)).

Then from the definition of projection,

% = (¥ = aVI@))| < [[f = (u* - aVIEh)]l, Yok e F.
Then
0 < (aVJ(uF), aVJ(uF)) - (v* + aVJI(u), vF + aVJI(u*))
= —2a(VJ(uF), vF) = ||oF])%
So

(VI(), o5 < —o-lbHP,  Vak e F.

Remark: From (i) it is clear that when u* is optimal, u¥*! = uF. However the
converse is not necessarily true, even if J is convex in the control function u (the

second conclusion of Theorem 8.1 and its proof in [43] are not correct).
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Remark: The above (ii) tells us that the direction of v* is really a descent direction.

Remark: It has been shown that if J is convex and Fréchet differentiable on F, F is
bounded, VJ(u) Lipschitz continuous on F, the above algorithm is convergent when

either the exact step length rule, or Goldstein’s rule, or Powell’s rule is used [43].

Remark: Finding the projection during each iteration is by no means a trivial

matter.

2.3.4 Quasi-Newton’s Methods

Newton’s method is a powerful computational method for finding the roots of a sys-
tem of nonlinear equations. The idea is to replace the original equations by their
linear approximation at the current estimate of the solution, and then, to solve the
linearized version recursively. Its most appealing advantage is the quadratic rate of
convergence near the solution. Newton’s method is widely used in optimization in both
finite-dimensional and infinite-dimensional spaces, because their first-order optimality
conditions are in the form of either a system of nonlinear equations or a system of
functionals. Consider first the following equality constrained optimization problem in

finite-dimensional space

min  f(z) (2.3.13)
st.  h(z)=0. (2.3.14)

The first-order necessary condition that z* be a relative minimum point is that, if z*

is a regular point for the constraints, there exists a A* such that

Vi) + X TVh(z*) = 0

h(z*) = 0.

To solve the above nonlinear equations, Newton’s method is employed by solving the

linearized version recursively. That is, given (z*,*) the new point (z*+1, AF+1) is

19



determined from the equations

Vi(z*, 6T + L(zF, A)d* + Va(zF) Ty = 0

h(z*) + Vh(z*)d* 0

by setting zF+t! = ¥ 4 dF, \¥*+1 = X\F 4 y¥ with Lagrange function I(z,)) = f(z) +
ATh(z) and L(z,]) its Hessian matrix with respect to z. In matrix form the above

equations are L(:ck,/\k) Vh(:c")T & i —Vl(:ck,)\k)T
Vh(z*) 0 H ]—[ —~h(z*) ]

k
y
If L(z*, \¥) is positive definite, (d*,y¥) can be solved explicitly (see p430 of [86]):

dk

i

~L7YI = AL (ARL AT Y ALY, — L AL (AR LY Af) Yy,

v = (ALPAD) (b~ ALp'Li)

where Lj, = L(z*,\%), Ay = Vi(z¥), I = VI(zF, X¥)T, hy = h(z*). It can be shown
easily that the d* constructed above is a descent direction for the simple merit func-
tion: m(z,A)=1|VI(z,A)|2+1|h(z)|%. The above suggests a procedure for extending
Newton’s method to minimization problems with inequality constraints. Consider the

problem

min  f(z) (2.3.15)

st.  g(z)<0. (2.3.16)

Given an estimated solution point z* and estimated Lagrange multipliers u*, one

solves the quadratic programming problem

min  Vf(zF)d + %dTLkd (2.3.17)
st Vg(z*)d + g(zF) < 0. (2.3.18)
where Ly is the Hessian matrix for the Lagrange function I(z*,pF, u*) = f(z*)+
(#*)T g(z*), The new point is determined by z**! = z*¥+d*¥. The new Lagrange

multipliers p**! are the Lagrange multipliers of the above quadratic programming

problem.
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Because the Hessian matrix of the Lagrangian L is not always positive definite
and L;l is generally hard to evaluate, Newton’s method is then modified by updating
a positive definite matrix to approximate L;l, or sometimes, Li, a method which
is called the quasi-Newton’s method, or the variable metric method. A number of
updating formulae have been suggested. Among them, BFGS is perhaps the most
popular one, due to Broyden [10], Fletcher [33], Goldfard [41] and Shanno [145]. It is

a modified version of the earlier Davidon’s formula [29].

The algorithm described above becomes the famous Han-Powell method [45,46,
86,121]. As a general purpose algorithm, the Han-Powell method has several desirable
features. First, it is globally convergent, if the new point is determined by z*+! =
zF+\kd* where A* is a nonunity stepsize obtained by performing a line search in the
direction of d*, using the merit function: 6,(z)= f(z)+r _7, max{0, g;(z)}. Second,
locally near the solution, if the step lengths are taken equal to unity, the iterative
process converges superlinearly. Third, like all quasi-Newton’s methods, the Han-
Powell method employs only first-order information in order to achieve superlinear

convergence.

However, extending the quasi-Newton’s method to solve optimization problems
in infinite-dimensional spaces is by no means a trivial matter. New difficulties are

encountered. Let us first consider the unconstrained optimization in Hilbert space
min  f(u)

where f is a functional defined on Hilbert space &. Denote by £(X,)) the Banach

space of all bounded linear operators mapping Banach space X" into Banach space ).

Let f’ and f” be the first and second Frechet derivatives of f respectively. Then by

definition, (1) f'(u) € L(U,R) for each u €U, (2) f"(u) € LU?, R), or equivalently,

f"(uv) e L(U,U*), where U* is the dual space of U. Riesz’s representation theorem tells

us that a real Hilbert space is identified with its dual by a linear isometry. So, for
Hilbert space U, there are V f(u) €U and F(u)€ L(U,U) such that

fi(u)(s)=(s,Vf(u)) Vsel
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and
ffu)(s)(t) = (s, F(u)t)  Vs,tel
where V f(u) is called the gradient of f, and F(u) is called the Hessian of f.
The first-order necessary condition that v* be the minimizing function is that

Vf(u*) = 8 eU. To solve it, the quasi-Newton’s method should give the following

iteration rule, given aj a stepsize from exact line search,
uk+1 = uk - akaVf(uk)

where operator H* is the approximation to the inverse of F(u¥). One of the difficulties
in applying the quasi-Newton’s method to infinite-dimensional spaces is how to update

H*. Horwitz [563] extended Davidon’s formula into a real Hilbert space,

)k A (HA

k+1  _  ppk _
B = B G my ~ ok, Hogh) (2.3.19)
y* = Vf(uFt) - Vi) (2.3.20)
& = uFtl_of (2.3.21)

where the initial value of the H operator is chosen to be any strongly positive linear
self-adjoint operator in U, (a, b) and a)(b denote the inner and outer dyadic products,
respectively, on the given Hilbert space. Note that, if the space is n-dimensional

Euclidean space, then
(@, b)=a"b and  a)(b=ab'

There have been similar attempts to extended the BFGS formula into a real Hilbert
space. For example, in [66,99,159]. Horwitz proved that[53], when f is a quadratic
cost functional, the sequence {u*} thus obtained converges strongly to the minimizing

element u*. Suppose now the following constrained optimization problem is considered
min f(u
mig f(u)

where f is a functional, and Q a closed subspace of Hilbert space /4. Because U =

Q@ Qt, with O+ the orthogonal complement of §2, there is a projection operator P
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of U onto QL. From a proposition discussed before, the necessary condition for @ to
be an optimal solution is that P(@& — AV f(@)) = 4, for each A€(0,00). Suppose now
Q is at least one dimensional. It is known that [85] the projection operator P is also
linear and bounded. Then the necessary condition becomes that P(V f(i)) = 6 € Q2.
For f still being a quadratic cost functional, it is proven in [53] that {u*} converges

to u* when v%¢ Qand H°=P.

If Q2 is just a convex set, not a subspace, the problem becomes more complicated.
In [30], an ad hoc approach is adapted to solve optimal control problems with bounded
controls, which combines the Horwitz’s algorithm for unconstrained problems with a
truncation rule and a saturation function. The algorithm is shown to be numerically

effective for some examples.

The most general constrained optimization problem in Hilbert space

r;gg} f(u) (2.3.22)
st. Gu)<o (2.3.23)

where operator G : U — Y, U and Y are Hilbert spaces, is equivalent to the problem

15;’13111} f(u) (2.3.24)
st. Gu)e Y- (2.3.25)

where Y_ is the negative cone in ). Define the Lagrangian functional as L(u, ) =
f(u) + A*(G(u)), where A* € Y*. From the generalized Kuhn-Tucker theorem, under
regularity conditions, the necessary condition for 4 to be an optimal solution is that

there exists a A €(Y*)+ such that

I
E

Ly(u, X*) = f'(u) + NG'(u)
A (G(w)

(2.3.26)

ll
e

(2.3.27)

Notice that the above necessary condition looks exactly like the one in finite-dimensional
spaces. The similarity suggests that the quasi-Newton’s method for solving the in-

equality constrained optimization in finite-dimensional space can also be imitated here.
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To solve the original problem, one instead solves the following quadratic programming

problem
: 1
min  f'(u*)(s) + 3 Bi(s, 5) (2.3.28)
st.  GuF)+G'(WF)sF <o (2.3.29)

1 _ u*, and By, an invertible and positive definite bilinear functional,

where s* = uk+
is the approximation of Ly, (u*,¥). To updated By, either Davidon’s formula or the
BFGS formula discussed above can be used. The above direction-finding problem is
generally difficult to solve. In [147], it is solved by solving its dual problem, using the

gradient projection method.

2.3.5 Penalty Methods

In nonlinear programming, penalty methods are a family of procedures for approxi-
mating constrained problems by unconstrainted problems. They are divided into two
classes: exterior and interior. The approximation is accomplished in the case of exte-
rior penalty methods by adding to the objective function a term that assigns a high
cost for violation of the constraints and in the case of interior penalty methods by
adding a term that favors points interior to the feasible region over those near the
boundary. There is a parameter € associated with those methods that determines the
severity of the penalty. It is shown in [86] that, as ¢ — 0, exterior penalty meth-
ods approach the solution of the original constrained problem from outside the active

constraints, and interior penalty methods from inside the feasible region.

The penalty methods can be easily extended to solve constrained optimal control
problems. For the problem setting at the beginning of this chapter, the exterior penalty
methods lead to the following family of problems with no path constraint, and no

terminal equality and inequality constraint:

min J(u,6) = K(a(ts)oty) + | Kalr)u(r)r)ir + Lp()
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where

Te() = ||geq(m<tf>,tf)||2+§;max2{o, Gio(a(t) 1)}
+ Zl /t:lma.xz{O, h;(;(r),u(r),r)} dr (2.3.30)
subject to )
#t) = fla(t),ult),t) (2.3.31)
s(t) = o (2.3.32)

Russell [139] considered problems where (a) f and L are linear in control u,
(b) state trajectories are constrained to a compact set G, (c) control values are
constrained to a convex and compact set 2, (d) there is no terminal constraint. Under
the assumption that an optimal trajectory is “approximable” from the interior of G
(see definition 3.1 in [139]), he showed that the following holds. If u,,(-) is a solution
obtained by the above exterior penalty method and z,, () the corresponding trajectory,
and € — 0, as k — oo, there is a subsequence of {u,,(-)} that converges to an optimal
control i(-) in the weak £, — topology, and the corresponding {z.,(-)} converges to

the corresponding optimal trajectory £(-) in the weak C — topology.

Cullum studied the more general case [27], in which (a) f and L are not nec-
essarily linear in control u, (b) terminal constraints are present. She proved that,
under certain conditions, if the above exterior penalty method is used to remove both
the state constraints and the terminal constraints of the original problem P, the se-
quence of unconstrained problems P,,, approximates problem PR, the relaxation of
P (see definition 4 in [27]). That is, the corresponding sequence of optimal costs of
P., converges to the optimal cost of PR, and there is a subsequence of {z,,(-)} that
converges to an optimal trajectory of problem PE. She also showed that the sequence
of P,, approximates the original problem P if the following additional conditions are
satisfied: (a) f is linear in control u; (b) L is a convex function of u for each z; (c) Q

is convex, a case which includes the one Russell studied.
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In summary, as in nonlinear programming, penalty methods are used to approx-
imate a constrained optimal control problem by solving a sequence of unconstrained
optimal control problems. However, unlike in nonlinear programming, the sequence of
solutions generated may not always converge to the solution of the original problem.
Finally, penalty methods exhibit slow convergence both in nonlinear programming and

in optimal control problems.

2.3.6 Differential Dynamic Programming Methods

Of the computational methods for solving optimal control problem, those that by-
pass the Pontryagin minimum principle and dynamic programming by using nonlinear
programming techniques or their extensions in function space, such as the projec-
tion method and some quasi-Newton’s methods, do not and cannot fully utilize the
special structure of optimal control problems. On the other hand, even though dy-
namic programming gives a complete solution conceptually, it can hardly be used as

a computational method due to the drawback known as the curse of dimensionality.

Jacobson and Mayne [61] have invented differential dynamic programming (DDP)
for solving discrete-time and continuous-time optimal control problems, which cleverly
combines the principle behind dynamic programming and the conditions supplied by
the Pontryagin minimum principle. Differential dynamic programming, which uses an
estimate for the change in cost due to a strong variation in control, decreases the cost

at each iteration.

Let us recall that, in most algorithms for solving optimal control problems, the
new control 4 is normally constructed from the old control u according to a formula

of the type

=utas (2.3.33)

where s is the search direction and a the step length. The s should be a direction
which makes the cost functional descend. Then a stepsize a is to be determined

which makes the largest reduction in the cost functional along direction s. However,
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a distinguishing feature of DDP is its use of strong variations in control. That is, the

new control is calculated according to the formula

w(t) = T(E) Vel (2.3.34)

u*(t) = u(t)  otherwise (2.3.35)

where %(t) minimizes the Hamiltonian function, I, is a subset of [0, 1], the full time
duration of the optimal control problems, having a measure of @, and a€[0, 1]. Here,
I, may be thought of as a step length. It is easy to see that u®(t) can differ appreciably
from u(t) for some ¢t even when the measure of I,, is small. This gives rises to the
terminology of “strong variations in control”. Strong variations in control provide both
a natural and a simple way to handle hard control constraints. It is worth noting that
the Pontryagin minimum principle itself was proven by employing two special strong

variations in control — temporal variation and spatial variation [4,120].

Gershwin and Jacobson [38], Havira and Lewis [48], and Mayne [94] made fur-
ther discussions on DDP algorithms for solving discrete-time or continuous-time con-
strained optimal control problems. Even though all those differential dynamic pro-
gramming type of algorithms have been found to be computationally effective, conver-
gence results were not available. It was mainly due to the fact that I,, was defined
to be the end segment [1—-a,1]. With this choice of I,, a decrease in cost cannot be
assured for all values of «, thus possibly resulting in a jam up before a local minimum

is reached.

Polak and Mayne [95,118] modified the method by choosing I, to be any subset
of [0, 1] having the following properties:

e ifae]0, /l:(Iu)], Iy C I
o ifae (N(Iu), 1], Iou D I
o fac(0,u(l,)), {tel, tel,,, t<t}={tel};

o ifac (u(ly),l), {tel,, tel\l, t<t}=>{tel}
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In the case without having terminal state inequality constraints, I, is defined as [95]):

I £ {t € [0,1] | H(a*(t), u(t), \*(t),1) - H(z*(2), u(t), *"(8), ) < 6(u)}

where
H(z"(0),u(t), 2(2),2) £ min H(2*(2),w, X(2), ), (2.3.36)
and
a(t) £ arg min H(z*(2), p, (1), 1), (2.3.37)
and
A ! —
O(u) = /0 (H(z"(t), u(t), A"(t), ) — H(z"(¢), u(t), A\*(t),1))dt. (2.3.38)

Now, the subset I,, may appear anywhere in the interval [0,1], rather than just at
the end of the interval as in the algorithms in [61]. By constructing I,, this way,
the first-order estimate of the change in cost, due to the strong variation in control
described above, will always be bounded above by af(u). By letting stepsize a be of
Armijo type:

ne

ﬂk(u,ﬂ) (2339)
min{k € I | J(u®) - J(u) < B*8(u)/2, B € (0,1)},  (2.3.40)

(4]

k(u,7) 2

it is then proven that there is a positive ¢< oo such that
J(u®) = J(u) < —[0(u))?/4ec. (2.3.41)

Then, by applying the general convergence theorems of Polak [116], the algorithms
were proven to be globally convergent [95,118]. However, it should be noted that
those algorithms converge to optimality conditions that are somewhat weaker that

those from the Pontryagin minimum principle.

In other developments, Virk [160,161] later extended the method in [95] to
systems incorporating delays. Ohno [108] proposed a different type of DDP algo-

rithm for solving discrete-time problems, whose constraints on control and state are
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in the forms of equalities and inequalities. In Ohno’s algorithm, the Kuhn-Tucker
conditions are first applied to the recursive relation of dynamic programming. Then,
Newton’s method is employed to find the control and the Lagrange multipliers sat-
isfying the condition. However, its convergence, ensured by the locally convergent
Newton’s method, is obviously not as strong as those convergence properties enjoyed
by the algorithms proposed by Polak and Mayne [95,118]. Murray and Yakowitz [103]
made a detailed comparison between Newton’s method when applied to discrete-time
unconstrained optimal control problems, and the method of discrete-time differential
dynamic programming described in [61]. Their main conclusions were (1) DDP does
not coincide with Newton’s method, but (2) they are close enough that they enjoy the

same quadratic convergence rate.

2.4 Computational Methods — Parameterization Approachs

The parameterization methods are techniques which convert the original optimal con-
trol problem into a finite-dimensional optimization by employing some special func-
tions to approximate control and/or state trajectories. Due to the availability of well-
developed nonlinear programming techniques and powerful computers, the parame-
terization methods are handy in dealing with optimal control problems with general
constraints. The parameterization methods are based on the theory of approxima-
tion. Different approximation methods give rise to many different parameterization

methods.

2.4.1 Methods of Approximating a Function

From the theory of approximation, the partial summation s»(t) = Y 7_o axdx(t) can
be chosen to converge to a well-behaved function f(t) on an interval [a, b], where {a;}
is a set of real parameters and {¢x(t)} is a set of some special functions which are
called the basis functions. In other words, when n is sufficiently large, s,(¢) is a good

approximation to f(t) on [a,b)].
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It is evident that a minimum requirement for the approximation to be valid is
that s,(t) converge pointwise to f(¢) on [a,b]. Uniform convergence, which is stronger
than pointwise convergence, is sometimes preferred. All in all, the interval of approx-

imation [a, b] must lie within the convergence domain of s,(?).

There is a wide class of basis functions possessing certain convergence properties
for well behaved f(t). Different choices of basis functions yield different approximation

methods.

Approximation by a Polynomial

Consider the basis functions {t*}. Then, the corresponding method is to approximate
f(t) by an n-th order polynomial. The convergence of the method is assured by the

famous Weierstrass theorem (see, for example, [85,122,135]):

Theorem 2.4.1 (Weierstrass) The space of polynomials is dense in Cla, b} — the
space of continuous functions on the interval [a,b]. Equivalently speaking, given f(t)
a continuous function and € a positive number, there ezists a polynomial P,(f,t) of
degree n(e€) such that

Pa(f8) - (D) < ¢ (2.4.1)

for any t€[a,b).

A major drawback of the method is that a high order polynomial, which is often
needed to achieve a good approximation, can display undesirable oscillatory behavior.
Let us suppose a polynomial P,(t) has order n higher than 1. Connect the two end
points P,(a) and P,(b) on the curve of P,(t) by the line:

Pp(b) — Py(a) —a
—————(b =) (t — a).

L(t) = Pa(a) +
Because Qn(t)éPn(t)—L(t) is still an n-th order polynomial, @,(t) can have n zeros
according to the Fundamental Theorem of Algebra. Consequently, the curve of P,(t)

can cross line L(t) as many as n times during [a, b], which means that P,(t) may be

very oscillatory.
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Approximation by Piecewise Polynomials

Instead of approximating a given function f(t) over an interval [a, b] by a single poly-

nomial, one may subdivide [a,b] by a mesh of points:
A: a=th<t1<-+<ty=b

and approximate f(t) by a different polynomial on each subinterval [t;_1,%]. The
polynomials at different subintervals are usually selected to have low orders to avoid

oscillatory behavior.

When the piecewise-polynomials are all of degree 0, the approximation is by
piecewise-constants, which is generally discontinuous at each division point t;. When
the piecewise-polynomials are all of degree 1, the approximation is by piecewise linear
segments, which can be made continuous at each division point ¢, while the derivative
at each t; is generally discontinuous. This kind of approximation sa(t) is often called
a linear spline with respect to mesh A. For some purposes, it is highly desirable that
the joints of separate arcs be as “smooth” as possible. Specifically, if it is required that
in each subinterval the approximation sa(t) be a polynomial of maximum degree 3,
that sa(t) agree with f(t) at each of the N + 1 points %, %, -,tn, and that the first
and second derivatives s/, (t) and s4 (¢) be continuous on {a, b], then sa(t) is called a

cubic spline, with respect to mesh A.

In any subinterval [tx_1, k], the cubic spline function sa(t) can be expressed by

the following formula, denoting hy =1t —tr_1,

t— )% (t -ty t—t_1)%(t—1t
o) = o LY ) _ Ot
te —1)2(t =ty + hi/2 t—tp—1)2(te =t + hy/2
+fk—1(k ) 2h§ 1+ b/ )+fk( k1) (223 + b/ )- (2.4.2)
k k

The values 841 2 8A(tk—1) and s}, 2 sa(tk) are unknowns needing to be identified. It
is clear that sa(t), s/ (t) and s4 () are all continuous at the interior of each [tg41, ]

It is also easy to verify that

sa(te=) = sa(te+),  sa(te—) = sa(ts+)
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for k=1,2,---,N—1. That is, both ss(t) and s/, (¢) are continuous at each interior
node ¢;. The requirement that s (¢) be continuous at each interior node #; leads to
the following linear difference equation [1,8,50]
1, (1 1 ), 1,
— s 2=t — s+ —s}_, =3
hk+1 k+1 i hk+1 k hk k-1

for k=1,2,--+-,N—1. Once two appropriate auxiliary conditions on s/, () are pre-

v — fra
h}

o1 — Jr

+3
hist

(2.4.3)

scribed, the above difference equation can be solved and its solution serves to determine
the cubic spline function sa(#x) at each subinterval of [a,b]. A common selection of

the two auxiliary conditions are the end conditions
so = f'(a), sy = f'(b), (2.4.4)

which means that the derivatives of the cubic function sa(%x) agree with the derivatives

of f(t) at both end points of [a,b]. Another common selection is

28+ 81 = 3%——@, SN_1+ 28y = 3(f—N—;LN_1—), (2.4.5)
1 N
which is equivalent to the end conditions
so=0, sy=0. (2.4.6)

A cubic spline which satisfies (2.4.6) is often called a natural cubic spline. Different
selections of the two auxiliary conditions give rise to many different forms of cubic

functions. A very efficient algorithm to solve (2.4.3) under general end conditions
23y + posy = co,  ANSN_1 + 28N = en, (2.4.7)

was given by Ahlberg et al (see p.14 of [1]). The following theorem shows the conver-
gence of the cubic spline with end conditions (2.4.4) (see Theorem 2.3.2 in [1]):

Theorem 2.4.2 Let {A;} be a sequence of meshes on [a,b] with lim;_, [|Ail] =
0. Let f(t) be of class C[a,b]. Let the cubic spline function sa (t) satisfy the end
conditions in (2.4.4). Then we have,

P - D) = oA p=0,1, i={0,1,-,00} (2.4.8)

uniformly with respect to t in [a,b].
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Notice from the above that the error between the first derivative of the cubic
spline s (t) and the first derivative of the function being approximated f(t) can always
be bounded by a constant for any sequence of meshes, as long as the first derivative
of f(t) is continuous. The convergence property of the cubic spline with general end
conditions (2.4.7) is discussed in Theorem 2.9.2 in [1]. When function f(t) is smoother,

better convergence results can be obtained. See, for example, the following theorem

in [44]:
Theorem 2.4.3 Let {A} is a mesh on [a,b]. Define
hzmzxx(tk.l.l — tk), (2.4.9)
and
B=h/ mljn(tk.'.l - t), (2.4.10)
for k=0,1,---,N—1. Let f(t) be of class C%[a,b]. Let the cubic spline function sa(t)
satisfy the end conditions in (2.4.4) or in (2.4.6). Then we have,
17 = oo = CollFDNecht™  p=10,1,2,3 (24.11)
with
Co=5/384, Ci=1/24, C,=3/8, Cz=(B+871)/2 (2.4.12)
There is another way to represent cubic spline functions. Let P3(A) denote the
space of all cubic spline functions sp with respect to mesh A. It can be shown that
(see, for example, Theorem 1.17 of [107]) P3(A) is a linear space of dimension N +3,
and it is spanned by the basis
{(L,t,5,8,t-t)3,-- -, (t —tn-1)}} (2.4.13)
where
(t—tx)} = max{0,(t—tx)°} k=1,---,N-1L (2.4.14)

So, any cubic spline function sp € P3(A) has a unique representation with respect to

the above basis

3 N-1
SA(t) = E aktk + Z bi(t — tk)?}-’ t € [a,b]. (2.4.15)
k=0 k=1
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Similar to the case in the space of R™, the basis of the finite-dimensional linear space
P3(A) is also not unique. A search for restricted support local bases for spline functions

leads to the B-splines studied by Schoenberg [144] and by Curry and Schoenberg [28]:

Theorem 2.4.4 For each k € {-3,-2,-1,0,1,.--, N —1}, there ezists a unique
cubic spline By, with respect to mesh A such that

Bu(t) >0 ift€ (tkrtets) (2.4.16)

=0 iftd (th,thsa)
and

t
/ " Bu(t) dt = 1. (2.4.17)
173

The spline By, in above theorem is called the cubic B-spline with support region

[Zk, Zk+4]. The next theorem is due to Curry and Schoenberg [28]:
Theorem 2.4.5 The set of B-splines

{B—37B—2’B—17B0,-",BN—I} (2418)
Jorms a basis of P3(A) on [a,b].

It follows from the above theorem that every spline sp € P3(A) has a unique

representation

N-1
sa(ty= ) arBi(t), t€la,b). (2.4.19)
k=-3

So, if a function is to be approximated by a cubic spline function corresponding to
N +1 mesh points, the approximation can then be carried out by a partial summation
of N+3 B-splines. It is clear that the value of any cubic spline function at a point
other than a mesh point can be represented by a linear combination of exactly four
B-splines. At the mesh points themselves, the number of basis functions required for
this representation reduces to three. Another nice property of the B-splines is that
[28] they are of “minimal support”, i.e. no basic functions can be found which have

smaller regions than those of the B-splines.
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When the mesh A is on the interval [0, 1], and it is equally spaced between
adjacent points, the construction of B-splines is greatly simplified. It is easy to check

that, the following piecewise cubic polynomial, with =0, 2y =1, h=1/N,

' 0 t € (—o00,1p]
(t—to)? t € (to, 1]
Bo(t) = | B3+ 3h%(t—t1)+3h(t—t1): - 3(t—t1)® te€ (t1,t2] (2.4.20)
4h® - 6h(t ~ t3)* + 3(t - t)® t € (t2,13)
B3 —3h%(t —t3) + 3h(t — t3)2 — (t = t3)® 1t € (t3,t4]
\ 0 t € (t4,00)

is really a cubic B-spline function, which satisfies the conditions in theorem 2.4.4
[104). Thus, the complete set of B-splines which forms a basis of P3(A) on [0, 1] are

the following translates of By:
Bi(t) = Bo(t — kh),  k=-3,-2,-1,0,---, N~1. (2.4.21)
The subspace P4(A) C P3(A) which is obtained by imposing the additional conditions
5a(0) = 5a(0) = 5a(0) = 0, sa(1) = 8a(1) = 3a(1) = 0, (2.4.22)

for any sa(t) € P3(A), has dimension N-3, and is spanned by the basis { Bo, ..., BN_4}.
The subspace P(A) C P3(A) which is obtained by imposing the additional conditions

54(0) = §a(0) = 5a(0) = 0 (2.4.23)

for any sp(t) € P3(A), has dimension N, and is spanned by the basis {Bo,..., BN—1}-

Approximation by Taylor Series

When f(t) behaves better than just continuous, it can be approximated by a special

type of polynomial — the Taylor polynomial

f@) = f(to) + f'(to)(t —to) + -+ + f‘">(to)(t—‘nf£)—". (2.4.24)

35



It is known that, if f(¢) is analytic at a point z¢, the Taylor series

3 f0(gg) E= 0L —kf")k (2.4.25)
k=0 :

converges to f(t) in a neighborhood of ¢y (see, for example, [12]). Major drawbacks
of the Taylor series approximation are that, (1) it can only be applied to sufficiently
smooth functions, because high-order derivatives are required to form the Taylor poly-

nomial; (2) its convergence rate is often very slow.

Approximation by Fourier Series

Most often, the basis functions {¢y(t)} are orthogonal functions with respect to some

weight function {p(¢)}, which is defined below:

Definition If a set of real functions {¢x(t)} has the property that over some interval
[a,b), finite or infinite,
b =0 ifm#n
[ p0)én(pnt) at (2.4.26)
o #0 ifm=n
then the functions are said to be orthogonal with respect to the weight function p(t)

on that interval.

Why are orthogonal functions preferred? Let us assume that the partial sum-
mation } p_, axdk(t), where {¢(t)} is a set of functions orthogonal with respect to
a weight function p(t) on an interval [a, b], converges uniformly to a function f(t) on

[a,b]. So, for any t€[a,b],
f) =3 adi(t). (2.4.27)

k=0
Multiply both sides of the above equation by p(t)¢r(t) and assuming that the order

of 72, and fab can be interchanged, we have

oo

[ smonnae =3 a; [ p)sn(tty e (2.4.28)

=0
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From the property of orthogonality, we finally have

b
for k =0,1,---. Then, the partial summation ) F_o ardx(t), with ai’s defined as

above, will be a good approximation to f(t) when n is sufficiently large. The simplicity
in determining the coefficients, the a;’s, which are called the orthogonal coefficients,

is one of many advantages of using orthogonal functions in approximating functions.

However, the orthogonality of the ¢;’s does not guarantee that the partial sum-
mation Y 7o axdi(t) converges to f(t), or even converges at all. Without an assurance
of convergence, the approximation of f(t) by using Y 7_, ar®x(t) does not make any

mathematical sense, regardless of whatever the ¢;’s are orthogonal or not.

Consider now trigonomic functions 1, cost, sint, cos 2t, sin 2¢, - - -, cos kt, sin kt,
. These functions are orthogonal with respect to the unit weighting function on
the interval [~=,7]. Correspondingly, a function f(¢) can be approximated by the
following trigonomic polynomial, which is called the Fourier polynomial,
1 n
f(t) = @0 + kE_:l(ak cos kt + [ sin kt) (2.4.30)

where the orthogonal coefficients, ay’s and §i’s are obtained by applying (2.4.29)

I, f(t)cosktdt 1 [~
= = — t e 23
b T = /_ f@ycoskea, (2.4.31)
2. f(t)sinktdt 1 /W )
= = - . .4-
Br [ sttt i f(t)sinktdt (2.4.32)

When n— oo, the Fourier polynomial becomes a Fourier series. The following theorem

concerns both the pointwise and the uniform convergence of the Fourier series (see page

106-107 of [142)):

Theorem 2.4.6 (1) If f(t) is of bounded variation in [—w, 7], then the Fourier
series converges to f(t) at every point of continuity and converges to the value 3(f(z—

0)+ f(24-0)) at every point of discontinuity. At both end points t=—n and t=mw, the

Fourier series converges to the same value 1(f(—m)+f(r)); (2) If f(1) is of bounded
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vartation in [, 7] and has only a finite number of discontinuities, its Fourier series

converges uniformly to f(t) in the interior of any interval in which f(t) is continuous.

The Fourier series was originally used to expand periodic functions. For a nonpe-
riodic function of bounded support, the expansion can still be carried out after making
a periodic extension of f(t) from [—m, ] onto the whole t-axis. If f(—7)# f(=), this
extension creats ‘jump’s at every kr throughout the t-axis. Because the Fourier series
is a linear combination of trigonomic functions which are both periodic and smooth,
it is then easy to see that the convergence of the Fourier series should be slow when
f(t) has ‘jump’s. Similarly, because the periodic extension of a nonperiodic function
f(t) with f(—m)# f(7) contains ‘jump’s at every km, the convergence of its Fourier

series should also be slow no matter how smooth the function is in [-7, 7].

(d) Approximation by Chebyshev Series

A more natural approach to obtain periodicity of a nonperiodic function is
through a variable change rather than through a periodic extension. Suppose f(t) is

defined on [-1,1], such a variable change is given by t=cos#. Then
f(t) = f(cos) £ g(6), 6 €[0,7). (2.4.33)

Now, g(#) is periodic as well as even. Expanding it into a Fourier series, all the sine

coefficients, (;’s, become zero and only cos kt terms remain,

1 oo
g(6) = 200 + kz=%ak cos k@. (2.4.34)
By letting
Tw(t) = cos(k cos™' 1), (2.4.35)

the Fourier cosine coefficients, aj’s, become
ap = l/ g(8) coskb do = / JOT() dt. (2.4.36)
m Vvi-
It can be easily verified that T%(t) is a k-th order polynomial which satisfies the fol-

-

lowing recurrence relation

To() =1, Ti(t) = ¢, (2.4.37)
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Ti41(t) = 2tTk(t) — Te-1(t), VE>1. (2.4.38)

It can also be shown that {Ti(t)} is a set of orthogonal functions with respect to
weight function (1 — 2)~'/2 on the interval [—1,1]

0 if m # n,
b T (D)T(t)
dt i — —
/ '\/i—_t 7|'/2 if m n 0,
T fm=n#0.

(2.4.39)

These Ti(t)’s are called the Chebyshev polynomials of the first kind [34,122,152,158].

Now, the Fourier expansion (2.4.34) can be rewritten as

@)= —aoTo(t) + Z ar Tk(2)- (2.4.40)
k=0
Because
1 ifk=0
Tk(t)z = cos2 kedo={ (2.4.41)
1vi-t t/2  ifk>0

the ax’s defined in (2.4.36) satisfy (2.4.29). Hence, those ay’s are exactly orthogonal
coefficients, and (2.4.40) is exactly an orthogonal expansion of f(t) by the Chebyshev
polynomials. Because the Chebyshev series can be viewed as being derived from a
corresponding Fourier series by a simple variable change, it should possess similar
convergence properties to those of the Fourier series. To study the convergence of the

Chebyshev series, let’s introduce s,(f,t) as

sn(frt) = —aoTo(t) + Z o Ti(t). (2.4.42)

k=0

The following theorem shows that s,(f,t) is the least squares approximations of f

with respect to the weight function (1 — t2)~1/2 (see p.166 of [136]).
Theorem 2.4.7 If f(1) is continuous on [—1,1], then

/ ((t)~sn(f,t)> \/_t—_ / ((t) pn(t)> ﬁ (2.4.43)

Jor every n-th order polynomial p,(t), equality holding only for p, =s,(f).
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Let’s now introduce a quantity measuring the smoothness of a function f, called

the modulus of continuity of f,

=

wn(é, f) SUp |f(z1) = f(3)] (2.4.44)

Ty,r2 G[—l ,l
lrl—mg |56

for §>0. Also, if w,(6, f) < C6%, where a>0 and C is a constant not depending on 4,
f is said to belong to the Lipschitz class of order a. It is clear that f is continuous on
[a,b] if, and only if, w,(6) — 0, as § — 0. The following theorem shows that, under a

condition which is stronger than continuity, the unform convergence of the Chebyshev

series is guaranteed (see p.168 of [136]).
Theorem 2.4.8 If the modulus of continuity of a function f satisfies

lim w(l> Inn =0, (2.4.45)

n—00 n

then the Chebyshev series of f converges uniformly to f on [-1,1]. In particular, if f
belongs to the Lipschitz class of order a for some a€(0,1], the Chebyshev series of f

converges to f uniformly on [—1,1].
Approximation by Legendre Series
A class of orthogonal functions {@x(t)} can be defined by Rodrigue’s formula:
dF
or(t) = (1 - tz)_aﬁ(l - )52, (2.4.46)

which generates orthogonal polynomials on the interval [—1,1] with respect to the
weight function (1—t2)%, for —1 < @< 0o. These orthogonal polynomials are called the
ultra-spherical polynomials. When a=—1/2, it generates the Chebyshev polynomials.
When a = 0, the polynomials being generated are called the Legendre polynomials.
It can be shown that a Legendre polynomial Pi(t) is a k-th order polynomial which

satisfies the following recurrence relation [152]

P(t) =1, Pt) =t (2.4.47)
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Pesa(t) = (2:: ll)th(t)— (E—_T_—T>Pk_1(t). (2.4.48)

Also, {Px(t)} is a set of orthogonal functions with respect to the unit weight function

on the interval [-1, 1], because

/ P (O)Pu() dt = 0 ifm # n, (2.4.49)
¢ 2/(2k+1) ifm=n.

So, {Px(t)} can be used to approximate function f(t)
ft) = Y arPi(2) (2.4.50)
k=0

where the orthogonal coefficients, a;’s, are obtained by applying (2.4.29)

1
-1 -

It has been shown that the resulting Legendre series possess similar convergence prop-

erties to those of the Fourier series and the Chebyshev series (see, for example, [142]).

Besides convergence, the rate of the convergence is equally important. If a
series converges fast, fewer terms are necessary to approximate a function. Suppose a

function f(t) is expanded by the basis functions, ¢x(t)’s on the interval [a,b]. That is,

1) = 3 andelt). (2.4.52)

k=0

If the ¢1’s have been normalized such that

max (=1, VE20, (2.4.53)

the rate of convergence of the above series then depends upon

> lakl. (2.4.54)
k=0

Small o4’s for large k’s means fast convergence. It is noted in [34] that, when the in-
terval is [—1, 1] and k is sufficiently large, the coefficients, oy, in the Taylor polynomial

can be approximated roughly by

oy ~ % &) 0); (2.4.55)
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the coefficients, ag, in the Legendre polynomial can be approximated by

vkr
o & orr F®0); (2.4.56)

the coeflicients, ai, in the Chebyshev polynomial can be approximated by

1

& ® opo F5)(0). (2.4.57)

It is also known that the best convergence rate for any Fourier series is generally in
the order of k3. So, among the above four series, the Taylor has the slowest rate, the
Legendre and the Fourier have medium rates, and the Chebyshev has the fastest rate.
So, the Chebyshev approximation method generally needs the fewest terms compared

to the other three methods.

Approximation by Walsh Series

Another example of orthogonal functions are the Walsh functions on [0,1). Consider
a function defined on the half open unit interval [0, 1) by
+1 fort€[0,1/2),

ro(t) = (2.4.58)
-1 forte[1/2,1].

Extend it to the real line by repeating periodically with period 1 and set ri(t) =
ro(2Ft) for k=0,1,---. The functions r4(t) are called the Rademacher functions. The
Walsh functions {wg(t)} are obtained by taking all possible products of Rademacher
functions. Set wo(t)=1. To define wi(t) for k > 0, represent the integer k£ by a dyadic

expansion, i.e., find a k' such that
k! ]
k=) €2 (2.4.59)
i=0
where ¢ =1 and ¢, =0 or 1 for 1 = 0,1,---,k'—1. Such a k' obviously satisfies

% < k< 2K+ Set

kl
wi(t) = [J(ri(e))". (2.4.60)

=0
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Each Walsh function wi(t) takes only the values of 1 or —1, and for £ > 1, is continuous
from the right. In particular, the Walsh functions form an orthonormal system in {0, 1)
with respect to the unit weight functions, because
1 =0 ifi#j
/ wilt)w;(t) dt 79 (2.4.61)
0 =1 ifi=j.
Correspondingly, function f() can be approximated by the following sequence of poly-
nomials, which are called Walsh polynomials,

n~-1

f@) = Y arwi(t) 2 sa(t) (2.4.62)

k=0

where the orthogonal coefficients, ax’s, are obtained by applying (2.4.29)

a = /0 Y ftywa(t) dt. (2.4.63)

Detailed descriptions of the Walsh functions can be found in {25,32,42,109,164]. When
n — 0o, the Walsh polynomial becomes a Walsh series. According to Walsh [164],
Paley {109], and Fine [32], if f(t) is continuous in [0, 1), the series syn(t) converges to
f(t) uniformly on {0,1). If f(¢) is not continuous, there is convergence in mean. The

following theorem states the general convergence of s, (t), instead of s3n(t) (see p47 of

[42D):
Theorem 2.4.9 If the modulus of continuity of a function f satisfies
n—00 n

lim w(l) Inn =0, (2.4.64)

then the Walsh series of f converges uniformly to f on[0,1). In particular, if f belongs
to the Lipschitz class of order a for some a €(0,1)], the Walsh series for f converges

to f uniformly on [-1,1].
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Approximation by Block Pulse Functions

Another similar example of orthogonal functions are the block pulse functions on [0, 1).

Consider functions defined on the half open unit interval [0,1) as

sty 41 (i—1)/n<t<ifn, (2,455

0 otherwise.

for i=1,---,n. The unit interval [0,1) is divided into n equidistant subintervals, and
the i-th block pulse function ¢;(¢) has only one rectangular pulse of unit height in the
i-th subinterval [(¢ — 1)/n,¢/n). It can be easily shown that the block pulse functions
form an orthonormal system in [0, 1) with respect to the unit weight functions, because
1 =0  ifid#j,
/ (1) (1) dt (2.4.66)
0 =1/n ifi=7j.
Correspondingly, function f(t) can be approximated by the following polynomial,
which is called the block pulse polynomial,

= N
HOEDIEUERRG. (2.4.67)
k=1
where the orthogonal coefficients, a;’s, are obtained by applying (2.4.29)
1
o =n / F()éa(t) dt. (2.4.68)
0 :

Detailed descriptions of the block pulse functions can be found in [62]. When n— oo,
the block pulse polynomial becomes a block pulse series. It can be shown [62,73] that,
for a real piecewise continuous function f(t), s,(t) converges pointwise to f(t), except

possibly at a finite number of discontinuous points.

Approximation by Other Orthogonal Functions

Other typical orthogonal functions include, for example, the Jacobi polynomials, the
Chebyshev polynomials of the second kind, the Laguerre polynomials and the Her-

mite polynomials. Detailed exploration of the analytical properties of these typical
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orthogonal functions can be found in [87,154]. These orthogonal functions can in fact

be employed in approximating functions.

Notice that, for a function f(t) defined on [a, b}, the variable change

b-a, (2.4.69)

b
= +a+

t
2 2

transforms f(t) on [a, )] into a new function g(¢') on [-1, 1]

()2 f(b tiy b - “t') = f(2). (2.4.70)
The variable change
t=a+ (b-a) (2.4.71)

transforms f(¢) on [a,b] into a new function g(¢') on [0,1]

g(t) = f(a + (b- a)t') = f(). (2.4.72)

Therefore, the above results can be applied to functions defined on arbitrary intervals.

2.4.2 Solving Optimal Control Problems by Control Parameteriza-

tion

Let us consider again the following optimal control problem on the fixed end-time

interval [0, T:

T
min go(u) = wo(z(T)) + ]0 ho(2(7), u(r), 7)dr, (2.4.73)

subject to the system constraint

&(t) = fl2(t),u(?),?), (2.4.74)
z(0) = zo, (2.4.75)

the control constraints
Urn < wi(t) < UM, i=1,---,m, (2.4.76)

45



for any t€[0,T], and the terminal constraints
g,-(u) = wt(m(T)) <0, i=1,0,1, (2477)

where z(t) € R™ is the state vector, u(t) € R™ is the control vector, and U™™", U™®

are real constant vectors in R™.

The most common parameterization method is to approximate the control vari-
ables so that the original optimal control problem can be converted into a nonlinear
programming problem. In principle, any of the approximation methods introduced
before can be employed here. In practice, controls are most often represented by
piecewise-polynomials [150,151]. Particularly, they are cubic spline functions [69,70,
71,81,104)], and piecewise-constants [40,137,143,155,156,157,168].

To approximate the control variables by piecewise-constants, let’s first uniformly
divide the time interval [0,7] into N subintervals [tx_1,%], with tx =kT/N, and k=
0,1,---,N. During each subinterval, control variables are approximated by constant

vectors
u(t) ~ ”k, te [tk—lytk]a (2'4'78)
for k=1,---,N. By denoting X as an indicator function

1 when t € I
Xty={ " (2.4.79)
0, otherwise
and denoting Iy = [tx-1,%], the approximation on control can then be equivalently
expressed as

N
u(t)~ Y pkay (1), te(o,T]. (2.4.80)
k=1
Thus, the control is parameterized by the following vector

=", -, W) e R, (2.4.81)

where c=mN. For the same equally distanced subdivision of [0, T], control variables

can be otherwise approximated by N+3 B-splines in the following form

ult) ~ %_:1 WBi(t), telo,T), (2.4.82)

j=-3
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where p?’s are real constant vectors in R™. Thus, the control trajectory u(t) € R™

during interval [0, T] is parameterized by the following vector
=T, @) R, (2.4.83)

where o =m(N+3). Of course, the control variables can also be approximated by the
Taylor polynomial, Fourier polynomial, Chebyshev polynomial, Hermite polynomial,
Jacobi polynomial, Legendre polynomial, Laguerre polynomial, and Walsh polynomial.

The approximations are all in the following form
NI
u(t) Y wei(t), telo,T), (2.4.84)
e~

where p?’s are real constant vectors in R™. Thus, the control trajectory u(t) € R™

during interval [0, T] is parameterized by the following vector
E=[w)", (") e R, (2.4.85)

where o =mN'.

After the control is parameterized by any of the above three methods, the orig-

inal system (2.4.74)-(2.4.75) become

i) = f(=(t),€,1), (2.4.86)
z(0) = a0, (2.4.87)

where z(t) €R" is the state vector, and £ € R’ the parameter vector, and the terminal-

state inequality constraints (2.4.77) becomes
Gi(¢) = &i(z(T€)) < 0, i=1,.-,r, (2.4.88)
or equivalently, by letting h;(z(7|€),£,7)=0,
3(6) = 5a(TO) + [ Che(rle) i <0, i=1.r  (2489)
For the piecewise-constants method, the control constraints (2.4.76) becomes

Urin < uk < umes, (2.4.90)
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fori=1,---,m,k=1,..-, N. For the B-splines method, because splines approximation
E;v:'__la ? B;(t) takes the exact value of the approximated function at each node t,
k=0,1,-.-, N, the control constraints (2.4.76) becomes

N-1
Urn < Y ul Bit) < UM, (2.4.91)

j=-3
fori=1,---,m, k=0,1,.--, N. For the third type of parameterization method, even
though the approximation Zf;’l p? $;(t) may not necessarily take the exact value of
the approximated function at each node t;, k =0,1,---, N, we still consider that it
does. So, the control constraints (2.4.76) becomes

N! .
Ut <Y el ¢i(t) < U, (2.4.92)
=1

for ¢t = 1,:--,m, k = 0,1,---,N. Clearly, among the above three methods, the
piecewise-constants approximation results in the simplest expressions of the control

constraints.

For each £ €R7, let z(-|€) be the corresponding solution of the system (2.4.86)-
(2.4.87). So, after the control parameterization, the original problem becomes the

following optimal parameter selection problem:

Problem (P,) Subject to the dynamical system (2.4.86)-(2.4.87), the control con-
straints (2.4.90) under the piecewise-constants approximation, (2.4.91) under the B-
splines approximation, (2.4.92) under the third type of approximation, and the in-

equality constraints (2.4.89), find a system parameter £ such that the cost function

T,
Go(§) = @o(2(T[€)) + /0 ho(z(71€), €, T)dr, (2.4.93)

is minimized over R°.

Clearly, problem (P,) is just a constrained nonlinear programming problem.
In order to solve it, the gradients V3.(§), :=0,1,---,7, or, the derivatives 9g;/9¢;,

1=0,1,---,7, j=1,---,0, must be supplied. There are two common ways to obtain
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those derivatives. One is by the finite difference method. The other is by forming the

Hamiltonian functions and the adjoint systems.

Each derivative can be approximated by a forward difference approximation,

that is,
agt' gi(fl . ',£j+Afj’ . "fa) - gi(£1 ° 'afj’ M ',fcr)
— ~ , 2.4.94
9¢; A¢; ( )
for ¢ =0,1,---,7, = 1,---,0. A more accurate approximation could be obtained

by using a central difference scheme, but that requires an extra function evaluation:
Gi(&1,- -, & — A, -+, &), Tt is clear that the evaluations of all §;(£), ¢ =0,---,r,
need only one integration of the system (2.4.74)-(2.4.75), while the evaluations of all
Gi(&1,- - EAE, -+, €6),8=0,---,7,j=1,--+,0 need o integrations. So, overall o+1
integrations of the system (2.4.74)-(2.4.75) are needed to evaluate all the derivatives.

However, all those integrations can be executed simultaneously.

Note that, when the control is parameterized by piecewise-constants, because
any change in u(t) during It = [tx~y,?] will not affect state trajectories before time
tk—1, the evaluation of the derivative ag.-/apf, t=0,1,---,7,5=1,---,m, k=1,---, N,
requires the integration of the system equations only from t;_, to ty, using the value

of z(tx—1), which corresponds to the nominal value of £, as an initial condition [137].

Let us consider another way of obtaining those derivatives. For ¢=0,1,---,7r,

let the corresponding Hamiltonian H; be defined by

Hi(z,£,q,t) = hi(z,£,8) + ¢ f(z,,1), (2.4.95)

and let ¢*(-|¢) be the solution of the adjoint system

~§E) = T G(e), 60 H6), 1) (24.96)
G(TE) = SEG(TIE)) (24.97)

corresponding to an { € R?. The following theorem shows how to compute the gradi-

ents of §;(£)’s:

49



Theorem 2.4.10  Consider the problem (P,). The gradient of §;(£) is given as

follows:

85(6) _ /T OHi((716), &, ¢'(71),7) (2.4.98)
0

ot 73

for each i=0,1,.--,r. Equivalently, the derivative 8G:(€)/0¢€; is given as follows:

8§i(€) _ [T (Ohi(x(r]€),€,7) . af(x(rl¢),€,1)
0¢; —/o ( 0¢; +4(lOT 0¢; )dT’

(2.4.99)

for each i=0,1,---,r, j=1,---,0.

Especially, when the control is parameterized by piecewise-constants, the expres-
sions for the derivatives can be further simplified. With £=[(u!)7,. -, (uV ) 1T ere,

o=mN, because

N
F=(€),6,1) = f(z(t), 3 p* ¥y, (1), 1), (2.4.100)
k=1
N
ho(2(t|€), €, t) = ho(z(t), Y u* X, (1), 1), (2.4.101)
k=1

and @;(-) =wj(+), the following corollary is a direct consequence of the above theorem:

Corollary 2.4.1 Consider the problem (P,). When the control is parameterized by

piecewise-constants, the derivative 8§;(¢)/0u* is given as follows:

gi t ; k : koo
Og;ff) = [k-l (6’%(-’”(;'52»,“ ,T) + q'(TIE)Taf(m(Ta'i}g’# ’ ))dT, (2-4.102)

for each i=0,1,---,7, k=1,---, N,

2.4.3 Solving Optimal Control Problems by Control and State Pa-

rameterization

An alternative to the control parameterization is to parameterize both the state and

the control variables. Let {#x(t)} be a set of some basis functions. For simplicity,
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both the state and the control are approximated by partial summations of N terms:

N
z(t) = Y pFoi(t) (2.4.103)

k=1

N
u(t) = Y BFe(t) (2.4.104)

k=1

where

p=[@), -, @) e R (2.4.105)
B=[(8")7,-,(BY)T]" e R (2.4.106)

with o, = aN, o, = mN. In most cases, the basis functions possess the following
integral property
¢ ¢
/ / (1) (dt)* ~ P*a(2) (2.4.107)
a a
k—times
where P is a square constant matrixs, ¢' () = (¢'(t), - -,¢N(t))T. P is called the

operational matrix of integration associated with ¢(t). Clearly, the form of P depends

on the particular choice of the basis functions.

There are basically two classes of methods utilizing the above property. One
class of methods aims at solving the linear quadratic regulator problem. By realizing
that the optimal control is a linear feedback of the state, and that the state and the
costate are the solution of a linear two-point boundary-value problem, approximating
both the state and the control by the forms of (2.4.103) and (2.4.104) will convert the

original linear quadratic regulator problem into a pure algebraic problem.

Another class of methods deal with more general problems with nonlinear cost
functions, nonlinear dynamical systems, nonlinear path constraints, and nonlinear
terminal constraints. By approximating both the state and the control by forms of
(2.4.103) and (2.4.104), these methods convert the differential dynamical system into
an algebraic equation, so that the original optimal control problem is converted into
a constrained nonlinear programming problem in which the algebraic equation serves

as an algebraic equality constraint.
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Typical examples of the above two classes of methods are, the Taylor series
method [52,102,114,115,133,134,153], the Fourier series method [31,112,113,130,131,
132}, the Chebyshev series method [23,82,111,162,163], the Legendre series method
[22,56,146,165), the Laguerre series method [55], the Hermite series method [65], the
Jacobi series method [83], the general orthogonal polynomials method [15], the block
pulse functions method [54,57,129], the cubic spline functions method [71], and the
Walsh series method [16,17,19,64].
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Part 11

New Algorithms






Chapter 3

A New Algorithm for Solving Optimal Control
Problems with Hard Control Constraints and

Terminal Inequality Constraints

3.1 Introduction

Computational techniques for solving optimal control problems, like their close relative
— optimization in finite-dimensional space, are iterative in nature. As pointed out
by Luenberger [86], referring to the latter case, the theory of iterative algorithms is
always dominated by the following three (somewhat overlapping) aspects. The first
aspect is the creation of the algorithm itself, which is capable of solving problems
as general as possible. The second aspect is the global convergence analysis, which
addresses the important question of whether the algorithm, when initiated far from the
solution point, will eventually converge to it. The third aspect is the local convergence
analysis, which concerns the rate of convergence around a solution. Understandably,
computational techniques for solving optimal control problems are also subject to the
above three concerns. It is always desirable to devise an algorithm for solving optimal

control problems which converges globally as well as fast.

Because a senera,l op'cimal control problem can be viewed as an optimization

of a functional in a general control space subject to system dynamics and some func-
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tional equality/inequality constraints, there is then a great deal of similarity in com-
putational techniques between optimization in finite-dimensional space and optimal
control problems. For optimal control problems without any constraint, there are gra-
dient methods [11,43,117], the projection method [43], the conjugate gradient methods
[74,75,117]. For problems with only nondifferentiable control constraints (for example,
the constraints which limits the magnitudes of control variables at any time), there
are conditional gradient methods [43,117]. People tend to study problems with only
differentiable functional constraints (i.e. the constraints which are differentiable in the
function space of control) in a Hilbert control space, such as LJ'[to,ts]. The reason is
that any real Hilbert space is identified with its dual by a linear isometry. Under this
property, the general Kuhn-Tucker condition can be represented in a much simplified
form. This allows the emergence of a family of quasi-Newton (or variable metric)

methods [36,53,99,147,159).

However, the most realistic and challenging optimal control problems are the
ones with both nondifferentiable control constraints and differentiable functional con-
straints in the control space L7 [to, /], instead of a Hilbert space LT'[to,t;]. Polak and
Mayne created a number of algorithms to solve the above general problems [95,96,97,
118,119]. Those algorithms are all globally convergent. Some converge to weaker op-
timality conditions [95,118]. Some converge to stronger conditions [96,97,119]. They
are all first-order. Due to the slow convergence locally around the solution it is then
desirable to devise an algorithm which not only is globally convergent but also has

rate of convergence better than that of the first-order methods.

Despite the emergence of many very successful first-order methods, such as [95,
118], etc, the development of second-order methods has been relatively slow. There are
two major reasons for this. One reason is that second-order methods require not only
the evaluation of the second-derivatives of the Hamiltonian function at every sampling
time, but also their storage. It is quite a burden computationally, Another reason
is that the minimization of the summation of the first and second variations is itself

not a simple problem. However, because second-order methods generally enjoy rapid,
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usually quadratic, convergence around the solution, many attempts have been made.

Early approaches were essentially of the type of neighboring extremal methods
(see, for example, [9,67], or the materials in Chapter 6 and Chapter 7 of [11]). Basically,
the objectives of those methods were to find the deviations from the nominal control,
in the presence of a small disturbance in the initial state and/or in the terminal
conditions of the state, so that the revised terminal conditions are met and the second
variation is maximized, while the first variation is still kept zero. Consequently, a
succession of linear two-point boundary-value problems has to be solved either by
finding the transition matrix between the two ends of the boundaries, or by sweeping
the two ends by solving a matrix Riccati equation. The major drawbacks of those
algorithms are that (1) extremal solutions are often very sensitive to small changes in
the unspecified boundary conditions (see Chapter 7 of [11]); (2) the control variables
must be unconstrained; (3) H,,(t) is assumed to be nonsingular for all t € [tg,1s]; (4)

no convergence analysis is provided.

Later, some second-order algorithms began to focus on minimizing the summa-
tion of the first and second variations, such as [13,100]. However, all the drawbacks

listed above, except (1), still remained.

Motivated by the success of the trust region approach in finite-dimensional op-
timization, [36] proposed an algorithm to minimize the summation of the first and
second variations, where the norm of the control variation is required to be bounded
by a positive number, called the trust region. The algorithm is shown to be globally
convergent, without assuming the nonsingularity of H,, during intermediate itera-

tions. However, the control variable is still assumed to be unconstrained.

In summary, as far as second-order methods are concerned, there seem to
have been relatively few attempts to devise globally convergent algorithms for solving
continuous-time optimal control problems, where the control and the terminal state

are constrained.

In the late 70’s, a promising algorithm, developed by Han [45,46] and Powell
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[121], emerged as a general purpose algorithm for solving optimization problems in
finite-dimensional space. The method replaces the original problem by a sequence of
quadratic programming problems, where the original cost functional is approximated
by a quadratic function, with the Hessian being replaced by a positive definite matrix
updated by a certain rule, and the inequality constraints approximated by a linear
function. One of the most important features of the Han-Powell method is that it is
globally convergent. Detailed descriptions of the Han-Powell method can be found,
for example, in [86,121].

In this chapter, an algorithm, with an approach similar to the Han-Powell
method in finite-dimensional optimization, is devised to solve continuous-time optimal
control problems where the control variables and the terminal states are constrained.
It is first noticed that the summation of the first and second variations is a second-
order approximation to the change of the cost functional due to a change in the control.
Further approximation produces a simple convex functional. Consequently, solving the
original complicated problem can be replaced by solving iteratively a much simpler
“direction-finding” subproblems and a line search along the “direction” found. We
then show that the solution of the minimization of the convex functional subject to
a linearized system dynamics, linearized terminal inequality constraints, and the orig-
inal control constraint, generates a descent direction of an exact penalty functional.

Global convergence analysis are then given.

Unlike the feasible directions type of algorithms proposed by Mayne and Polak
[98], and by Pytlak and Vinter [123], the algorithm in this chapter does not require
strict satisfaction of the original feasibility set at any intermediate iterations. However,
it will be shown in this chapter that, under certain conditions, the accumulation point
of a control sequence will be feasible and satisfy a first-order necessary condition of
minimizing the Hamiltonian function. Also, the direction finding subproblem in our

algorithm appears to be simpler than the ones in [98] and [123].

A special version of the results in this chapter has appeared in [91], and a

complete version would appear in [92].
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3.2 Problem Formulation

The dynamical system considered is described by the differential equation, defined on
a fixed end-time interval [to, tf],

(1)
z*(to)

f(="(t),u(?),?) (3.2.1)
o (3.2.2)

which is subject to the control constraints
u(t) € Q, Vi € [to, y), (3.2.3)
where 0 is a compact subset of R™,
Q={peR™| U™ <p; <UM*, i=1,---,m}, (3.2.4)
and the terminal inequality constraints,

gi(u) = hi(z¥(ts),t5) <0, t=1,.-,7. (3.2.5)

In the above, z%(t) € R" is the state of the system at time t € T = [to,ts], which

corresponds to the control u(t) e R™. Let the set of admissible controls be,
U={u|u:T — Q is continuous a.e. } C LT [to, 1], (3.2.6)
and the set of feasible controls be
FE{u|vel; gi(u)<0,i=1,---,1} C L"[to, ts]- (3.2.7)

Let F be the set of equivalence classes of functions in F which are equal almost

everywhere on [to,t5]. We may now formulate a constrained optimal control problem

as follows:

Problem (P). Subject to the dynamical system (3.2.1)-(3.2.2), find a control u €l
such that the cost functional

J(w) = K(z*(t;), 1) + /to’ L(2(r), u(r), 7) dr (3.2.8)
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is minimized over F.

Throughout, it is understood that the norm of any w € R” for some dimension

pis
lwll = max |wil, (3.2.9)
the norm of any w € L% [to,ty] is
[|wl] = ess sup [lw(®)]|, (3.2.10)
[t0.ts]
the norm of any H € RP*? is
p
|H| = 1“5‘?5’2; |hisl, (3.2.11)

the norm of any H € LEXP[to,ty] is

||H|| = ess sup [|H(t)||. (3.2.12)
[to:ts]

The following conditions are assumed to be satisfied.

Assumption 3.2.1 f:R"XR™"xT — R*, h:R"XR™X T—-TR, K:
RPxT - R, L:R"XR™"xT — R. [ and L, together with their partial
derivatives up to third-order with respect to each of the components of © and u, are
continuous for all (z,u,t)€R" x R™ X T. h and K are continuously differentiable

with respect to z;

Assumption 3.2.2  There ezists a positive constant M such that

(2w, )l < M1+ [|=]]) (3.2.13)
for all (z,u,t)eR" X A xT.
Remark: From the theory of differential equations, the system (3.2.1)-(3.2.2) has a

unique solution 2% corresponding to each » €U, and z“(t) is absolutely continuous

(see, e.g. [166]).
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3.3 Optimality Conditions

Let the Hamiltonian function of problem (P) be
H(z*,p*, u,t,p0) = po L(z*,u,t) + (p*)" f(z*,u,1) (3.3.1)

and its minimal function be

M(z",p% t,p0) = ;g{, H(z*,p", u,t,po). (3.3.2)

Also, let the costate function of problem (P) be

5) = = 2L (a4(0),5*(), ), 1,00), Vit 1] (3.33)

If problem (P) has no terminal inequality constraint, a necessary condition for opti-
mality is the well-known Pontryagin Maximum Principle [4,120]. A similar maximum
principle, which is given below, still holds when problem (P) has terminal constraints

in inequality forms [14,58]:

Theorem 3.3.1 Let u* € F be the optimal solution for the problem (P). Let z*(t) be
the solution of the system (3.2.1)-(3.2.2) with input u*(t) during [to,ts]. Then, there
exists an absolutely continuous costate p** (t) €R™, t€[to, 1 ], which is not identically
zero in [to,ts], a nonnegative constant scalar py >0, a constant real vector n* € R",

such that, for any t€[to,ts] (a.e.),

u® oH u* u* * *
= 8 (1) = (2 (1), p" (1), %" (1), £, p0) (3.3.4)
Mz, p* ,t,p3) = H(z*,p*",u*,1,p}) (3.3.5)
dM u* u* * oH u* u* » *
S (0,07 (0,680 = S @ @, OO, 6. (336)
Moreover, the following transversality condition holds,
u* * BK u* A *ahi u*
PV (tr) = p5 (2" (t), t5) + Do i (2" (8), 1) (3.3.7)
Jz e oz
with
nE>0 and ¥ hi(z* (t4),t5) =0 (3.3.8)

foralli=1,---,r.
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Remark If p§ = 0, then function L(z*",u*,t) will not appear in (3.3.1), nor will
K(z*'(f),ts) in (3.3.7). That means that the above optimality condition of prob-
lem (P) is irrelevant to the cost functional J(u), which is obviously “pathological”
[4]. Such problems require much more complicated analysis and techniques. We will
not treat such problems here. Thus, assume pjj # 0. When p§ # 0 (that is, p§ > 0), it
can be seen easily that the conclusions of the above theorem will not be altered by
assuming pj = 1. Therefore, throughout this chapter, we only consider the situation
when p} = 1. For abbreviation, let notation H(z%,p%, u,t) be H(z*,p*, u,t,po)py=1,

and M(mu’pua t) be M(wu7 pu’ tvpo)Po=1'

3.4 The Algorithm Utilizing Second-Order Information

Let v(t) be the variation of the control, u?(t)—u'(t), and let y(t) satisfy the following

linearized system equations
') = OrE+ O (34.1)
¥ (to) = 0 (3.4.2)
where f)(¢) and f{V(t) are evaluated at (z¥'(t), ul(%), t). Denote
AJ(ul)(v) & /t:’ HO() o(t) dt (3.4.3)

and

AY(u')(v) & %y”(tf)TKii (tr)y*(t5)
IO CIORTERG

d 3.4.4
7220 BR@) )\ o) t (344

1t v T T
I ACKONTON

2J4t
where Ha(,l)(t), Hag)(t), H,(:L)(t), H,(,i)(t) and H,g‘)(t) are evaluated at (z*'(), p*'(t),
u'(t), t), and Kg,-)(tf) is evaluated at (:v“l(tf), ts). In the above, z¥' (t) and p* (2)
are the state and costate of problem (P) corresponding to control u!(t). Note that,
when there is no terminal inequality constraint (3.2.5), the above AJ(u!)(v) is just the

traditional first variation, and AJ(u!)(v)+A2%/(u!)(v) the traditional second variation.
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If we let p*' (t) satisfy the following terminal condition,

pul(tf) = %I:—(xul(tf),tj), (3.4.5)

the following proposition then shows that for any u!, u? €U, AJ(u!)(v) is a first-order
estimate for J(u?)—J(u'), and AJ(u')(v)+A%(u!)(v) is a second-order estimate:

Proposition 3.4.1 There ezist ¢y, ¢z € (0,00) such that, for all u', w?€l,

| 0 - 1w - A | < allo? (3.4.6)
| 06 -3 - @)+ AT | < allv P G4

where v = u? — ul.
Proof: see Lemma A.8 in Appendix. o

Typically, for most computational techniques seeking the optimal control, an

initial control u° is selected and a sequence of new controls u!, u?,: -, u*

,- -, is gen-
erated, each improving upon its predecessor. In viewing the above proposition, a
natural and convenient way to find an improving control u**1 at the k—th iteration is
to minimize AJ(u*)(u**+1~uF) or AJ(u*)(uF+—uF) + A2 (uF)(uF+1—u*). The former
technique is often called a first-order method, and the latter a second-order method.

In what follows, only the second-order method is studied. That is, to solve the original

problem (P), the following “direction-finding” subproblem (P}) is solved repeatedly,
(P) min AJ(u*)(u—u*) + AV (uF)(u - u)
subject to the linearized system,

3 = PO+ P ok (3.4.8)

y"(to)

0 (3.4.9)

and the linearized terminal inequality constraints,

oh; .
hia ), t) + 5@ Ut 1) S0 =1, (3.4.10)
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with v* = u—u*.

Algorithm 1.

Step 0. Select a ug€lUd. Set k=0.
Step 1. Compute state z** by forward integrating (3.2.1)-(3.2.2).

Step 2. Compute costate p“k by backward integrating (3.3.3) from terminal condition
(3.4.5).

Step 3. Solve the “direction-finding” subproblem (P}).
Step 4. If its solution is such that @* =u*, stop. Otherwise, go to Step 5.
Step 5. Compute a suitable stepsize A¥ >0, according to some stepsize rule.

Step 6. Set uF*! = uk L \k(4¥ —uF). Set k=k+1 and return to Step 2.

However, the above “direction-finding” subproblem (P[)’s are still difficult to
solve. Further simplification is needed, while still preserving the approximation order
of two. Because Ky ;(ts) is real and symmetric, there exists a constant matrix A;

which is semipositive definite, such that

¥ (t0) " Kaa(tr) y"(t1) < 4¥(20) T Aay* (7). (3.4.11)

Also, because ( :":3 Z"‘E‘;) is real and symmetric, there exist two time-varying ma-
uz uu(t

trices A3(t) and A3(t) which are positive definite, such that, for any t € [t, /),

T
y*(?) Hyo(t) Hyu(t) ¥'(t)

<9 (OTA(D5°(1) + o) As(t)o(2). (3.4.12)
o(t) | \ Huo(t) Huu(t) |\ o(t)

Let v = u? — u!, denote
ty
Ja(v) & KM@ (tg), 1) + / L (r), 0(r), T dr (3.4.13)
0
with
KO (), t0) = 240t TAD 422 3.4.14
2(y(f),f)—2y(f) 1Y (ty) (3.4.14)
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0,50, = EO@)(0) + 55°0) AL 05 ()

+%v(t)TAgl)(t)v(t). (3.4.15)
Proposition 3.4.2 There ezists a ¢ € (0,00), such that,
J(u?) = J(u) < Jp(u?-u!) + cu?—ut|? (3.4.16)

for all ul, v?elUd.

Proof:  The proof is done by applying (3.4.11), (3.4.12) and (3.4.13) to Proposi-
tion 3.4.2. a

The above shows that J(u?—u!) is a "one-way” second order approximation of
J(u?)—J(ul), when u? is close to u!. Together with the fact that its terminal term and
integrand terms are all convex functions, Jo(u?~u') is therefore an easier approxima-
tion of J(u?) — J(u!) to compute with than AJ(uF)(uF+1—uk) + A2 (uF)(ub+1—uF). Tt
reminds us of the similar case in finite-dimensional optimization handled by the quasi-
Newton method or the Han-Powell method where the Hessian, which is not necessary
positive definite, is iteratively replaced by an updated positive definite matrix to facil-
itate both the computation and the convergence analysis. Hence , instead of solving
the original problem (P), the following new “direction-finding” subproblem (P}') is
solved repeatedly,

(P) min I (u - o)

subject to the linearized system,

1) = Py + 1P ) (3.4.17)

¥ (to) = 0 (3.4.18)

and the linearized terminal inequality constraints,

oh

hi(z*(ts), 1) + aw"(w“"(tf),tf)y”"(t,) <0 i=1,--, (3.4.19)

-~

where vF = y—u*.
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Algorithm 2.

Step 0. Select a ug€U. Set k=0.
Step 1. Compute state z** by forward integrating (3.2.1)-(3.2.2).

Step 2. Compute costate p“k by backward integrating (3.3.3) from terminal condition
(3.4.5).

Step 3. Solve the “direction-finding” subproblem (P).
Step 4. If its solution is such that #* =uF, stop. Otherwise, go to Step 5.
Step 5. Compute a suitable stepsize A¥ >0, according to some stepsize rule.

Step 6. Set u**! =uF 4 X¥(@*F —u*). Set k=k+1 and return to Step 2.

Remark Clearly, set 0, defined in (3.2.3), is convex. Because u*(t), ©*(t) €, and

WD) = () + @) -t (1))
(1= Xk () + Neak(d),

a convex combination of uf(t) and @¥(t), we then have u**1(2) € Q for any t €[to, 1]
and for any A € [0,1]. That is, the algorithm defined above will always generate a
sequence of admissible controls, uf €U, k=1,2,---, as long as the initial control 4 is
admissible. It is also important to note that the control sequence {u*}{2,, generated
by Algorithm 2, may not always belong to the original feasible set F, defined in (3.2.7).
However, as will be seen later on, {u* }52 o would ultimately stop at, or converge to, a

feasible control which satisfies some optimality conditions.

An advantage of the above algorithm is that the original constrained nonlinear
problem is solved by solving a sequence of constrained linear quadratic optimal control
problems, which are much simpler than the original one. Besides, at iteration k, the
existence and uniqueness of the solution of the constrained linear quadratic problem
is always guaranteed, as long as the feasible set ¥} is not empty (see Chapter 5 for

details), which is not the case for problem (P}). Also, as will be seen later in this
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chapter, the algorithm generates a descent direction of an exact penalty functional,
and, under some conditions, the accumulation point of a control sequence satisfies
the first-order necessary condition of minimizing the Hamiltonian function. So, in
all respects, the above algorithm can be regarded as an analog to the quasi-Newton

method or the Han-Powell method in finite-dimensional optimization.

Another advantage of the above algorithm is that, for each subproblem at the
k-th iteration, its hamiltonian function, which is quadratic in both state z(¢) and
control u(t) for any t € [to,y], is a strictly convex function in control u(t). So, the

optimal control of every subproblem can never be singular.

However, unlike the finite-dimensional case where the “direction-finding” sub-
problem is a quadratic programming problem which can be solved in a finite number
of steps, the exact solution of the above “direction-finding” subproblee (P]') at each
iteration may require an infinite number of steps. Practically, the iterations can be
stopped after some finite number of steps after the optimal solution is approached

within a certain accuracy range.

It should also be pointed out that after K ,(ts) is replaced by its approxima-
: Hex(t) Hzu(D)\ ; : s (Ax(e) 0
tion Ay, and (H“(t) H.m(t)) is replaced by the block diagonal matrix ( A As((t)), the
second-order local convergence rate may not hold any longer. However, intuition tells
us that the new local convergence rate should be at least first-order, and possibly

superlinear, depending upon the tightness of the approximations.

3.5 Descent Properties

Let @* be the optimal solution of the “direction-finding” subproblem (P}'). Let 7* =
@* —u*, and y* be the solution of the linearized system (3.4.17)-(3.4.18) with input
7*. Then, according to Theorem 3.3.1, there exists a constant transversality vector

n* €R" satisfying

720 and nf(h,-(x“"(tf),tm%%(z““(tf),tf)y"'“(tf)))=0 (3:5.1)
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forall :=1,---,r, and a costate function q‘_’k (t) of the “direction-finding” subprob-

lem (P}') satisfying

’i_lk 6H2 Q—Ik ﬁk oy
- t = ’ y )t
q" (1) 3y (v ,q",7%1)
o* 0Ky,
t;) = Z2(y™(t),t
g (ts) gy W (tn)t)

+ 3t (i) + SEE " 1),

=1

such that, 4*(t) minimizes Ha(y" (), ¢” (t), u—uF(t),t) with respect to u at any
t € [to,ts]. In the above, H; is the Hamiltonian function of the “direction-finding”
subproblem (P}'). So,

Hay(y™ (1), 4% (1), 5%(2), 1)
L Ly (1), (1), 1) + ¢ (TGP 7 (1) + fP (@) 7H®)
= (0,00, 00,0 750 + 3" OTAP (09" 1)

5P OTAPOFO + ¢ OTUPO "0 + PO TF@)  (352)

and
@) = BT 0+ APy (1) (3.5.3)
o* (k) g% ! k 3h,‘ u® T
) = AP )+ LG ) (3:5.4)
=1

and #*(t) is the solution of
min{ H, ('), 4%(0), p(0), (- (1)
3 (=) AL (= (1)
33" OTAP O 0 + ¢ OTUDO 3 0 + FPOW- )},

for any t € [to,t7]. Equivalently, @*(¢) is the solution of the following quadratic pro-

gramming problem:

. 1 ra® & T }
gty A SuTAD @490
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where
(1) = Hy(a*(1), v*(2), p*(), )" — AP () (1) + £P @) ¢ (1),

for any t € [to,t;]. By the Kuhn-Tucker Theorem, there exist nonnegative vector
functions 8*(t) and v*(t) such that,

Hy(2¥(t), u* (1), p*' (1), )"

+ASP ()@ (1) — wk() + SR )T (1) + B*(1) — ¥(t) = 0 (3.5.5)

where
BENT(@E)-UM®) = 0 i=1,-,m (3.5.6)
OO -ak@) = 0 i=1,-m (3.5.7)

for any t€[to, ).

Next, we show that ©¥, the solution of the “direction-finding” subproblem (P}'),

turns out to be a descent direction of the exact penalty functional §, : ¥4 — R,

0,(u) 2 I(w) + 93 i(u) (3:5.8)
=1
where
pilu) £ max{0, gi(u)} = max{0, hi(=*(ty), 1)} (3.5.9)

and p is a positive number.

Theorem 3.5.1 Let @* be the solution of the “direction-finding” subproblem (Pl),
and %(t) = @*(t)~u*(t). Ifn*, a constant vector satisfying optimality condition (3.5.1),
satisfies

In*ll < p (3.5.10)
and 9* #0, then there ezists a \*€(0,1], such that, for all 0 <A< A%,

+
0,(uf + A\o*) — 0,(u*) < -% / "ar () TAP (1)5k(1) dt < 0. (3.5.11)
1

0

67



Proof:  The proof here is similar in spirit to the proof of descent property by Han

[46] in the finite-dimensional space. Let
I®2 {5 gi(u*) >0} = {i: hi(@(ts)t) >0},

WS (i: gi(wh) =0} = {i: hi(e*(ts),2) =0},
w2 {i: gi(v*)<0}={i: h,-(a:“k(tf),tf) <0}

From Lemma A.1 in the appendix, the mean-value property,

gi(u* + A5%) — gi(uh)
= hi(*"P(tp), 1) - hi(2*(t9), 1)

= Tt y) - 2(1))

1 0%h; ,_ kyy\pk k
+ [ =53, 1))~ (1)) dr
where Z(7,15) = m“k(tf)+r(w“k+’\'7k(tf)—x“k(tf)). According to Lemma A.2 in the
appendix, both z“k(tf) and :c“k""\‘_’k(tf) are bounded, because u*,u* + \oF € U, for
any A€[0,1]. So, Z(7,1y) is also bounded, for any 7 € [0,1] and any X € [0,1]. The

continuity of %%'—, %—1’?—, and the boundednesses of z**(t 7) and Z(7,ts), imply that there

exist ¢/,¢” > 0, such that,

gi(uf 4+ A5%) — g;(u¥)

ahi w ' u AT u _
= G2t T) — (1) + ¢l + ATE) - |

Ohi, . ok kg u* - _
G (), t)Y 7 (1) + |2 P (1) =2 () =9 (1) I| + €| A2
Oh;, & ok _
< 5. (1), t0)y" (15) + eX? [|7%)2.

The last inequality comes from Lemma A.3 in the appendix, with some ¢> 0, because

vk "

y™*" is a solution of the linearized system (3.4.17)-(3.4.18) with input AF, y** = Ay?".

Moreover, from the linearized terminal-state inequality constraints (3.4.10), we have

%(w“k(tf),tf)yﬁk(tf) < —hi(2*(t5), t7) = —gi(ut).
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Therefore, for any A€(0, 1],
gi(uF + A% — gi(w*) < —Agi(uF) + cA? ||5F||2. (3.5.12)

(1) For any i€ I*), Because g;(u) is continuous in v, by Lemma A.4 in the appendix,
there exists a A} € (0,1), such that, for all A € [0,A¥], gi(u*+A5*) > 0. Then, from
(3.5.12),
iu® + 25%) - i) = gi(u¥ + 235%) - gi(uF) < —Agi(uF) + X ||,
(2) For any i€ I(¥). From (3.5.12), for any A€[0, 1],
gi(u* + A0%) - gi(wF) < =Agi(u¥) + eA? |BH(| = eX? [l5¥|%,
we have,
pi(u* + AT*) — pi(ub) < eA? ||okj2.
(3) For any i€ [(%), Because gi(u) is continuous in u, by Lemma A .4 in the appendix,
there exists a Ak €(0, 1], such that, for all A€[0, A4], gi(uF+25%) <0. Then,
pi(u* + 2*) — pi(uF) = 0-0=0.
Therefore, there exist A%, A5 €[0,1), & >0, such that, for all A€ [0, min{}¥, A}],
0,(u* + AT) — 8,(u)
= J(F 4+ 27 - J(WF) + p Y (piuF + ATF) - piut))
i=1

< J(uk 4+ 2A5F) - J(uF) - p Z Agi(u®) 4+ &pA? ||5*||%. (3.5.13)
ieI(¥)

From Lemma A.5 and (3.5.5),
J(u* 4 25F) — J(u¥)

M B 0,0k (0), 950, 050 e +

IN

IA

Y /ttf 5k(t)TA§k)(t)17k(t) dt — ) /tt/ qak(t)TfISk)(t)T)k(t) dt

t t
_,\/t g B (1) "5k (t) dt + A/ g 7*(@)To (t) dt + &' A? ||F||%.
0 to
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Because

BE)TRR@) = )T (R (2) - uk(2))
= BO)T(@H () — U™ + BE@) (U™ — uk(2)) > 0 (3.5.14)
- — Y N ——

=0 >0 20

and

TOTE) = POTEE) - WH()

= FE)T(@HE) - U™") +44(@) (U™ - uk(2)) <0, (3.5.15)
=0 >0 <0

we then have,
t
T+ MR~ J(F) < -2 / ToR @) TAR t)ok(2) dt
to

t
- /t TEOTI® @)k dt + @02 |FFP. (3.5.16)

k is an optimal pair for the “direction-finding” subproblem (P, yﬁk (®)

Because y%* , @
satisfies (3.4.17) and (3.4.18) with input #*(¢) = @*(¢) —u*(¢), and the corresponding
costate function ¢7" satisfies (3.5.3) and (3.5.4), with 7* a constant vector satisfying
(3.5.1). We then have,
d [ ok o* gk ok Lk
F(FOTT0) = PO FO T
——— N
(3.4.17) (3.5.3))

= ()T FP @) () - v (1) TAP 1)y ().

So,

[ 0T 0w a

0

= = = - ty -
= )W) - F) v )+ [ O AP @37 ) at
N——— _—:6—" to ~~ -~

(3.5.4) >0
o+ £ 5k r oh; .k ok
2 ¢ ) A ) + 3ok S ), 1) (t)
~ =1 ~— ,
20 (3.5.1)
> = > nfa(u*) - 3 gk aiut) - Y nfgi(uh)
ieIth) iel® T el
> — Y nfg(u¥). (3.5.17)
i€ I(k)
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Combining (3.5.13), (3.5.16) and (3.5.17), we finally have that, there exist A5 € (0, 1],
and &,¢" >0, such that, for all A€ [0, A%],

0,(u* + %) - 6,(u*)

ty
<_,\/ (T AR D55 (1) di + ) E_ ) gi(uF) +(p+3")02 [|5¥2
< o ” (1) A" (1)o7 (t)dt + ‘.EEI(:")(W,< P).‘I(': ) +(@p+2")A |77
<0 >

t
Y /t "ok ()T AP (8)5k (1) dt + (Fp+E)A2 [|F]2.
0

IN

Hence, there exists a small enough A* €(0, 1], such that, for all 0< A <X¥ and 3* #0,
ko yaky _ ky « A Y kT AR ek
0,(u” + AT%) — 0,(u") < 5 7°(t) Ay (t)v"(t)dt < 0. (3.5.18)
to

O

Corollary 3.5.1 Assume that there is no terminal constraint. Let @* be the solution
of the “direction-finding” subproblem (P!'), and %*(t) = @*(t) — u*(t). If 5* #0, then
there exists a \¥ €(0,1], such that, for all 0< A< ¥,

J(uF + A5%) — J(uF) < -% /t N 7 () TAP (1)5* () dt < 0. (3.5.19)

Proof: When there is no terminal constraint, ¢;(u) is always zero, and the constant
vector ¥ in Theorem 3.5.1 can be considered as a zero vector. So, 6,(u) becomes J(u),
and condition (3.5.10) is automatically satisfied. The proof is then done by applying
Theorem 3.5.1. o

Remark Theorem 3.5.1 shows that, when @* #u¥, 5(t) = @*()—u*(t) is a descent

direction of the exact penalty functional 6,(u) at the k-th iteration. Corollary 3.5.1

k k k

shows that, when there is no terminal constraint and @* # u*, 7% = @*—u* is a descent

direction of the the cost functional J(u) at the k-th iteration.

Remark The descent properties shown in both Theorem 3.5.1 and Corollary 3.5.1
will always hold, as long as matrix A; is semi-positive definite, Az(t) is semi-positive

definite for all ¢ € [to,1¢], and As(t) is positive definite for all ¢ € [to,?s], regardless
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of whether the inequality relationships (3.4.11)-(3.4.12) are satisfied. However, those
inequalities are crucial for the rate of convergence of the algorithm. Intuitively, tighter
approximations by (3.4.11)-(3.4.12) make the rate of convergence of the algorithm
closer to second-order; while looser approximations would destroy the second-order

properties and make the algorithm behave more like a first-order algorithm.

3.6 Stepsize Rules

Ideally, the best stepsize at each iteration is the one which minimizes the exact penalty

function 6,(u*+ A(@*—u*)). That is, at the k-th iteration,
)\kza,rgxgig 0, (uk+ (@ —u*)). (3.6.1)

From Theorem 3.5.1, whenever @* # u*, the stepsize defined above is a positive number.
However, the calculation of the above exact stepsize is very expensive. In practice,

inaccurate line search has to be used.

Let us recall that for optimization in finite-dimensional space, a practical and
popular line search method is Armijo’s rule. Let f be a differentiable function: R™ —
R. Consider now a search of the smallest integer I > 0, made over the semi-infinite

line emanating from z* in the direction d*, such that
f(a* + (Hd*) = f(a*) < ol (V£(a"), d*),

where @, { are two parameters chosen a priori in (0,1). ¢’ is then called an Armijo
stepsize.

In our optimal control problem, we would like to perform a line search on the

k k

exact penalty function 6,(u), starting from » = »* in the direction 7. However,
because 8,(u) is nondifferentiable with respect to «, the above Armijo’s rule cannot
be applied directly. Instead, the following Armijo-like line search is adopted: find the
smallest integer I;, > 0 such that
i
8,(u* + C*k) — 0,(uF) < —aclk / % (1) TAP (t)ak (1) d. (3.6.2)

to

72



Clearly, whenever 7 £ 0, the above integral is always positive, because A:(,k)(t) is always
a positive definite matrix for any k>0 and any t € [to, t7]. According to Theorem 3.5.1,
whenever ©* #0, there exists a AF €(0, 1], such that, for all 0 < A < AF,

i
0,(uF + %) - 0,(u*) < ‘% / ToR )T AP t)ak(2) dt < 0.
to

So, whenever 7* £ 0, the above Armijo-like line search is always well-defined, and the

stepsize A¥ = (' is always a positive number.

3.7 Convergence Properties

In this section, the following three convergence aspects of Algorithm 2 described in

this chapter will be discussed;

o If the control function u* at the k-th iteration satisfies some optimality condi-

tions, would Algorithm 2 terminate automatically? Moreover, does u* belong to

the feasible set F?

o If Algorithm 2 terminates at a finite k-th iteration, does the control function u*

satisfy some optimality conditions? Moreover, does u* belong to the feasible set

F?

o If Algorithm 2 runs for infinite iterations, does the accumulation point u* of the
control function sequence {u"}i‘_’__0 satisfy some optimality conditions? Moreover,

does u* belong to the feasible set F?

The first two questions are answered by the following theorem. The last question is

very involved, and takes the most of this section for the answer.

Theorem 3.7.1 The necessary and sufficient condition for Algorithm 2 to terminate
at a finite k-th iteration is that u* € F, and, for any t €[to, 5], u*(t) satisfies the Kuhn-

Tucker necessary conditions of

min H(z*(t), p, 5* (1), )
LEN
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where z* is the state of the system corresponding to u*, and ﬁ“k s a costate of the
system corresponding to a:“k, uk, and ﬁ“k(t ) satisfies transversality condition
sk 0K , .« 7 Oh;, .k T
() = -37(9’“ (tr),ts) + D nf (-5;;1(93” (tf),tf)) (3.7.1)
1=1

with ¥ €R™ a nonnegative constant vector such that
k .
nf hi(e¥(t)t)) =0,  i=1,--e,r (8.7.2)
On the other hand, whenever Algorithm 2 terminates at the k-th iteration, u* € F.

Proof: The proof of the “necessary” part is easier than that of the “sufficient” part.

(1) (“necessary” part) Let @* be the optimal solution of the “direction-finding”
subproblem (P}'), corresponding to u*, z* pvt Ak, AL Ak Let oF = @F —u¥, and
y‘_’k be the solution of the linearized system (3.4.17)-(3.4.18) with input #*. Because

Algorithm 2 terminates at a finite k-th iteration, we have
(1) = u*(t)

almost always on [to,tf]. By (3.4.17)-(3.4.18), we then have y‘_’k(t) =0 for any t €
[to,ts]. Then, according to the optimality conditions of the “direction-finding” sub-
problem (P}') described in section 3.5 and the fact that y7"=0, there exists a function

q’_’k(t), a nonnegative constant vector n* € R” and two nonnegative vector functions

B*%(t) and v*(t), such that,

ok hi(z*(ty),t5) =0,  i=1,---,r, (3.7.3)

and
-t = PO (3.7.4)
) = Sot(GEeren) 3.7

and
Vo H(z(t),v* (1), 00, ) + FOO ¢ (1) + B*(t) — 75 (1) = 0 (3.7.6)
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where

pE)(EE(t) - UM = 0, i=1,---,m (3.7.7)
AU —ak@) = 0, i=1,---,m (3.7.8)

for any t€[to,ts]. Let ﬁ“k(t)é p*"(t)+¢"(t). Equation (3.7.6) then becomes
VuH (1), uh(2), 7(0), 1) + B4 (1) — 7*(9) = 0. (3.7.9)

Because p“(t) satisfies (3.3.3) and (3.4.5), ¢”'(¢) satisfies (3.7.4) and (3.7.5), for any
t€[to, ts], we find that

suk _ oOH ok uF ok

p (t) - —%(92 ’ y U )t) (3710)
L K, . " o [Ohi T

Py = G “(tf),tf>+zn£°(a—z(w "(tf),tf)). (3.7.11)

i=1
The above means that i)“k(t) is another costate function for the original problem (P)
besides p“k(t), and, above all, ﬁ“k(tf) satisfies transversality condition (3.7.11) and
(3.7.3). Clearly, equations (3.7.9), (3.7.7) and (3.7.8) imply that (u*(t), 8%(¢),v*(2))

is a Kuhn-Tucker point of

min H(z*(t), u, 5(t), 1)
ueld
for any t€{to,ts]. The proof of the “necessary” part is now complete.

(2) (“sufficient” part) Because, for any t€ [to,ts], u*(t) satisfies the Kuhn-Tucker

necessary conditions of
. K .k
min H(z* (t), g, p* (1), 1),
HED

there exist two nonnegative vector functions v*(¢) and £*(t), such that,

Vo H(z*(t), uk(2), 5(1), 1) + v*(t) - €5(t) = 0 (3.7.12)

and
Vzk(t)(uf(t) - Ui:maa:) = 0, i= 1,---ym, (3'7'13)
gort-ut@) = 0, i=1,---,m. (3.7.14)
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k

Because ii* solves the “direction-finding” subproblem (P{') and #* = #*—u¥, according

to the optimality conditions described in section 3.5, there exist nonnegative vector

functions B%(t) and 7*(t), such that,

Vo H(2" (1), u*(t), *'(2), 1)
+AP ()(ak(E) - wk (@) + FOOT (@) + 85 - ) =0 (3.7.15)

where

pEa) k@) - UMes) = 0, i=1,--,m, (3.7.16)

ey omr -ak@t) = 0, i=1,---,m, (3.7.17)
for any té€[to, t;]. Combining (3.7.12) and (3.7.15), we then have
AP )7 (t) = —FP ) T¢™ (t) - B(2) + () + v* () - €K (2).
Then
[ 0TAP @@= [ 0TS0k &

+ /t v (—ﬂk(t)Tﬁ"(t) + R () THH(E) + vF () TR (2) - fk(t)Tﬁ”(t)) dt. (3.7.18)

Because
TR = V)T (M) - wF(2)
= YER)TU™= - &*(1)) + v (1) (@ () - U™) < 0 (3.7.19)
) 3 T % T
and

@) = TR - )

= @TU™™ — uk(2)) +€4(2) " (@) - U™™) 2 0, (3.7.20)
A e -’ v/ v
=0 20 20

and, from (3.5.14), (3.5.15):

AE)ToE ) 20, A7) <0, (3.7.21)

76



we then have,

/tt' o+ ()T AL (2)ok () dt < - / 7 O P 0) (3.7.22)

0

Recall, from section 3.5, that

[ FOTiPerd 2 - Xk me).

0 ieI(k)
According to (3.7.2), we know that

k
Y- af hi(a*(t),t5) = 0.
ieI(k)

So,

/ Y ()T S @yt de > 0.

to

Applying the above into (3.7.22), we then have,

/ Y gk )T AP (1)ok(1) dt < o. (3.7.23)

to
However, since Agk)(t) is a positive definite matrix at any ¢ € [to, ts], (3.7.23) can hold

only when
o (t) = 0,
almost always on [tg, tf], or
a+(1) = Wh(2),

almost always on [to,?;], which means Algorithm 2 will terminate automatically at

the k-th iteration. The proof of the “sufficient” part is now complete.

(3) (“feasible” part) Clearly, whenever Algorithm 2 terminates at a finite k-th

iteration, we have
a*(t) = uk(2)

almost always on [to,t]. By (3.4.17)-(3.4.18), we then have y7(t) =0 for any t € [to, t5).

So, the linear terminal inequality constraints (3.4.19) become

hi(z*(ts),tf) €0,  i=1,---,r, (3.7.24)
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which means that u* belongs to the feasible control set F defined in (3.2.7). The

proof of the “feasible” part is now complete. O
We now turn to study the case when Algorithm 2 runs for infinite iterations.

Because the set (2 is compact, the control u(t) and the state z*(t) are uniformly
bounded during [to, ;] (see Lemma A.4 in the Appendix), which implies that the exact
penalty functional 8,(u) is bounded below. So, for any sequence {u*} generated by
Algorithm 2, the corresponding sequence {0’;}, which is monotonically decreasing, is
bounded below. That means that {0’;} has a convergent subsequence. However, the
convergence of the sequence {0’;} is less important and interesting than the convergence
of the control sequence {u*}. Next, we would like to find out that, whether the
accumulation point of {u*}, if there is one, belongs to the feasible set F and satisfies

some optimality conditions.

Let us first denote the optimal control problem

in, 39 Auwen)+ [ (0700 + L0 Aaltu(o) + ) As() )

subject to the linear system

It

y(t)

y(to)

A(t)y(t) + B(t)(u(t) - w(t)) (3.7.25)
%o (3.7.26)

and linear terminal inequality constraints
ci+dyt)) <0 i=1,--,r (3.7.27)

by £(Q, A, B,¢,d, e, Ay, Az, A3, w, yo). In the above, A, B, ¢, d, e, A1, A3, A3 and w are
all given, and Ay, Ay(t), are convex matrices, and A3(t) is a strictly convex matrix. It
will be seen in the next chapter that the solution of £(Q, A, B, ¢,d, e, A1, Az, Az, w, y0)

always exists and is unique.
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Definition Let @ be the unique solution of £(R, 4, B, ¢, d, e, A1, Az, A3, w, yo). We say
i is stable, if, for any €>0, and any £(Q, A', B', ¢, d', €', A}, A}, A4, w', yo) satisfying

max{||A-A"l|, || B-B'[|, ll~<'ll, }d~d"l}, lle~€'ll, [ Ar-AL[l, |Az=A3 ]}, [|As-A3 |, [lw-w'|]} < e,
there exists a positive number §, such that,
la—-a|| <6

where @’ the unique solution of £(Q, A', B', ¢/, d’, ', A}, A}, A%, w', yo).

In order to obtain the global convergence result, we shall make the following
additional assumptions throughout the remainder of this section.
(a) For any X(Q, A, B,¢,d,e, A1, Ay, A3, w,yo) problem encountered, its solution is
always stable.

(b) For any transversality constant 7 € R", its norm is always bounded by p, the
penalty parameter of the exact penalty functional §,(u) defined in (3.5.8).

(c) There exist ayy, a2 >0, such that, for any k, any veR™,

ap v v < vTAgk)v < ayq v 0.

(d) For positive definite matrices Agk) € LX[to,t4] and A:(,,k) € LT ([to, ty], let their
updating rules be such that, Agk) and A:(;k) converge respectively to positive definite

H.’I-'I H.Tu

. (k)
matrices A3 and A3, whenever ( ) converges.

ur Huu

Theorem 3.7.2  Suppose that the infinite sequence {u*} generated from Algorithm 2

has an accumulation point u*, that is, there exists a {ji} C {k}, such that,
w* — u*

in the L3 [to,ts] topology. Then, u* € F, and, for any t € [to,ts], u* satisfies the

Kuhn-Tucker necessary conditions of

min H(z% (1), u, Pu‘(t), t),
HEQR
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where z*" is the state of the system corresponding to u*, and §*" is a costate of the
system corresponding to T*°, u*, and §*°(t;) satisfies transversality condition
~r® 3K * T 0h » T
7 (t5) = 5% (t9) tp) + Yo (’aj(“«‘" (tf),tf)) (3.7.28)
=1

with n”* €R"™ a nonnegative constant vector such that
n hi(e®(ty),t1) =0, i=1,.--,7 (3.7.29)
Proof: Because u’* converges to u* in L7 [to, ;] topology, both z* and p* converge

in L% [to,ts], according to Lemma A.5. That is

] Ik * Ik *
wl* — ’U,*, p¥* o g , pu — pu

The convergence of ui*, z7 , pi* and the continuity assumptions on Hyg, Hyu, Huzy Hyy
k . . -
then imply that ( Haz ”"‘)( ) converges. So, from condition (d), there exist positive

uzr Huu

definite matrices A€ L% [tg, ts], A3 € LT¥™[ty, 1], such that,
A S A i=2,3.

Also, from [46], condition (c) implies that there is a {j;} C {jr} and a positive definite
matrix A]€R™" such that that

!
Ik *
A — Al
In summary of the above convergence results, we have
!
wk - u*, " > 2

and
A A3, Ao A3, A A
Let @* be the solution of the “direction-finding” subproblem (P['), corresponding to
u*, 2%, p*) A}, A}, A%. Because the “direction-finding” subproblem (P/') is of the type
of
X(Q,A4,B,c,d,e, A1, Az, A3, w, Yo)
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defined before, its solution is always assumed to be stable. We then have
Q-l,jl'c — ur.
Equivalently, for v = ufk — @ and v*=u*—a*,
’T)jlle — 7",
After reindexing, we may assume
k

oy, TF-oa T -9, ¥ —-z¢, p* —p

and

Af = Ay, AS— A3 Ao

without losing any generality. Again from the optimality condition of the “direction-

finding” subproblem (P]'), when y" and @* is its optimal solution pair corresponding

to u*, z*, p*, A}, A}, A3, there exists a nonnegative constant vector 7* € R" and two

nonnegative function vectors §*(t) and 7*(t), such that,

m (hi(zu‘(tf)atf) + %(w“‘(tf),tf)yﬁ'(tf))> =0, i=1,---,r

and
@M = 0T+ AP0y (1)
"1 = AP+ (e, i
q¢" (tr) 1YY () ;n(ax( (tr) f))
and
V. H (24 (2), u*(t), p* (1), 1)
A ()@ () - w () + £ TG (W) + B7(2) = 77 (1) = 0
where

ﬂ:k(t)(ﬁ’:(t) - U:nax) = 0’ 1= 1’ cer, M

YU - wH(2))

||
L
LY
I
\:—l
3
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(3.7.32)

(3.7.33)

(3.7.34)
(3.7.35)



for any t€[to,ts]. We now claim that
7*(t) =0
almost everywhere on [to,ts]. Suppose not. Because

lin*ll < o,

according to condition (b), Theorem 3.5.1 applies. So, there exists a A* € (0, c0), such
that,

ty
O(u* + A5*) — O(u*) < -12\- / 7*(t) T A3(2)7*(t) dt
to
for any 0< A < A*. Because the stepsize A\* is defined by
A* = arg 01<n/\i1<11 O(u* + A(@*—u")),

it is clear that
A* > min{A*,1} > 0.
Let

* 14
NN

to

€ 7*(1) T A%(1)T*(2) dt.

Because \* >0, * # 0, and A%(¢) positive definite for any t € [t,,ts], we have €* > 0.
Then

O(u* + X*7*) — 0(u*) < —€*. (3.7.36)
Because f(u) is a continuous functional in uf, ), and
uf + N*F - u* AT,
then, for sufficiently large k,
O(u* + X*5F) — O(u* 4 1*7") < 52- (3.7.37)

Summing (3.7.36) and (3.7.37), we get

*

B(u* + X*5%) — B(u*) < —%. (3.7.38)
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By the definition of ¥, we then get
O(ut + Xo%) < 0(ut + X7) < (u') - 5 (3.7.39)
So,
O(uFtt) < O(u*), (3.7.40)

which contradicts the fact that {#(u¥)} is a monotonically decreasing sequence. The

claim that * = 0 is now proved.

Because now @* = u*, by (3.4.17)-(3.4.18), we then have y”(t) = 0 for any
t€(to, ts]. So, the linear terminal inequality constraints (3.4.19) become

hi(z¥(t5),t5) <0, i=1,---,r, (3.7.41)

which means that u* belongs to the feasible control set F defined in (3.2.7). Further-
more, by the fact that y*" = 0, the optimality conditions (3.7.30), (3.7.31), (3.7.32)
and (3.7.33) become

n hi(z¥(ty),t;) =0, i=1,--,r, (3.7.42)

and,
-i"(t) = £OTE® (3.7.43)
) = Lir(Geenn). (3749

and,
VL HE (1), 00,50, + fOOTE O+ ) - @) =0 (3.745)

for any t€[to,s]. Let 5*'(¢) ép“‘(t)+q‘7'(t). Because p*'(t) satisfies (3.3.3) and (3.4.5),
¢”’(t) satisfies (3.7.43) and (3.7.44), we have that

P = -%—I:(w“',ﬁ“',u*,t) (3.7.46)
ot 0K u* T * 8h1 u* T
p*(ts) = a—z(w (tg)ts) + D _mi (-5;:—(:1: (t,),t,«)). (3.7.47)

i=1
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That means that 5*'(t) is another costate function for the original problem (P) besides
p*'(t), and, above all, 5*"(¢;) satisfies transversality condition (3.7.47). Then, (3.7.45)

becomes
V. H(z*(t), w*(t), 5% (2), 1) + B*(t) — v*(t) = 0. (3.7.48)

Clearly, (3.7.34), (3.7.35) and (3.7.48) indicate that, (@*(t),8*(t),7*(?)) is a Kuhn-
Tucker point of

min H(z*(t), &, 5 (t), 1),
pEN

for any t€[to,ts]. The proof is now complete. a
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Chapter 4

A New Algorithm for Solving Optimal Control
Problems with Hard Control Constraints,
End-point Inequality Constraints, and a

Variable Initial State

4.1 Introduction

The ideas behind the algorithm developed in Chapter 3 can be further extended to a
much more general optimal control problem which has not only hard control constraints
and terminal-state inequality constraints, but also a variable initial state vector, some
components of which are allowed to vary within a constraint box while the remaining
components are fixed. As will be seen later, the problem being considered in this
chapter can include the optimal control problems in the most general setting, namely,
the problems which are subjected to control constraints, path constraints, end-point
constraints, a variable initial state, and a a variable vector of design parameters, within

a fixed end-time or free end-time interval.

Similar to the procedure in Chapter 3, the algorithm being described in this
chapter is first based on a second-order approximation to the change of the cost fune-

tional due to a change in the control and a change in the initial state. Further ap-
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proximation produces a simple convex functional. An exact penalty type of function is
employed to penalize any violated end-point inequality constraints. We then show that
the solution of the minimization of the convex functional, subject to linearized system
dynamics, original hard control constraints, original constraint box for some initial
state variables, and linearized end-point constraints, generates a descent direction of

that exact penalty function.

4.2 Problem Formulation

The dynamical system considered is described by the differential equation, defined on

a fixed end-time interval [to, 1],

% %0(1)

f(z* (1), u(t),t), (4.2.1)
(l?u’wo(to) = Xg. (422)

There are n,, components of the initial state vector ro which are allowed to vary
within a constraint box, while the remaining n—n,, components are fixed. That is,

there is an index set I, C {1,---,n} such that
20 €S ={veR" | X" <v; < X", i € Iy; vi = a0, (fixed), i & I,, }(4.2.3)

where S is compact. The dynamical system (4.2.1)-(4.2.2) is also subject to the control

constraints
wt)eQ={peR™ | UM < p; KUM=, i=1,---,m} (4.2.4)
where  is compact, and the end-point inequality constraints,
9i(u, o) = hi(zo, 2 (t5)) < 0, i=1,---,7 (4.2.5)

In the above, z*:%0(t) € R™ is the state of the system at time t € [to,?s], which
corresponds to both the control u(t) € R™ and the initial value of the state zo. Let

the set of admissible controls be,

U={u]|u:[to,t] = Q is continuous a.e. } C L [to, s}, (4.2.6)
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and let I/ be the set of equivalence classes of functions in & which are equal almost
everywhere on [tg,%7]. Let the combined set of feasible controls and feasible initial

states be
F& {(u,z0) |u€l,z0 €S, gi(u,20)<0,i=1,---,7 }. (4.2.7)

We may now formulate a constrained optimal control problem as follows:

Problem (P). Subject to the dynamical system (4.2.1)-(4.2.2), find a control u€f

and an initial state zo €S such that the cost functional
t
J(u,20) = K (20, % (t5)) + / ! L(@®%o (), u(r), 7) dr (4.2.8)
to

is minimized over F.

Throughout, it is understood that the norm of any w € R? for some dimension p is

llwll = max |[wil, (4.2.9)
the norm of any w € L2 [tg, tf] is
Jull = ess sup lu(®)l (4.2.10)
[tOvt,f]
the norm of any H € RP*? is
P
1711 = g 3 sl (4:2:1)
the norm of any H € LEXP[to, 1] is
||H]|| = ess sup ||H(2)]- (4.2.12)

[tOvt]]

The following conditions are assumed to be satisfied.

Assumption 4.2.1 f:R" X R™ X [to,tf] > R"*, hi:R*"XR"—>R,i=1,--,7,
K:R*"XR® >R, L:R"XR™KXl[tg,ty] > R. f and L, together with their
partial derivatives up to third-order with respect to each of the components of x and
u, are continuous for all (z,u,t) € R® x R™ X [to,t5]. hi and K are continuously

differentiable with respect to both z¢ and x;
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Assumption 4.2.2 There ezists a positive constant M such that

1 f(z,u, )]l < M(1 4+ ||z]|) (4.2.13)
Jor all (z,u,t)eR™ x Q X [to, ).
Remark: From the theory of differential equations, the system (4.2.1)-(4.2.2) has

a unique solution z* ®(t) on interval [to,ts] corresponding to each u € U and each

zo €S, and z'®°(t) is absolutely continuous (see, e.g. [166]).

4.3 Optimality Conditions

Let the Hamiltonian function of problem (P) be
H(z“’“,pu’z”,u,t,po) = po L(a:“‘“,U,t) + (p“’“)Tf(a;“’“,u,t) (4.3.1)

and its minimal function be

Mz (t),p“ " (1),t,po) = ;irelfl H(z“%(t),p*“ " (t), i, t, Do) (4.3.2)

Also, let the costate function of problem (P) be

520(1) = =28 (g (1), p =), u(t) 1, o). (433)

If problem (P) has neither variable initial state nor end-point inequality constraints, a
necessary condition for optimality is the well-known Pontryagin Maximum Principle [4,
120]. A similar maximum principle, which is given below, still holds when problem (P)

has both variable initial state and end-point inequality constraints {14,58]:

Theorem 4.3.1 Let (u*, z3) € F be the optimal solution for the problem (P). Let
z¥"%5(t) be the solution of the system (4.2.1)-(4.2.2) with input u*(t) during [to,1y]
x

and initial state af. Then, there exists an absolutely continuous costate () eR™,

t€[to,ty], which is not identically zero in [to, 5], a nonnegative constant scalar p5>0,
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three constant real vectors n* €R”, 1* € R™, k* € R"™, such that, for any t€[to, 5] (a.e.),

su®, rd 0H u*, 3 u* * *
=-p’ o(t) = _a—a:_(m ! o(t),p ' o(t), u (t)’ t Po) (4'3'4)
M(z*"%5(t),p* %5 (1), t,p5) = H(*"75(2),p*> % (t), u*(t), 1, Pj) (4.3.5)
dM u. z‘ u‘ x‘ * aH u. z‘ u' z' * ™
7(‘” ' o(t),p ! o(t), t,Po) = _a't_(x ' o(t),p ’ o(t), C (t),t,po). (4'3'6)

Moreover, the following transversality conditions hold,

u, ) - 0K * _utxt . * ahi * _u* ) * *
P 3(t0) = B8 (e, 2 H(t1)) ~ Yo (e, 2 () - (- K7) (427)

=1
and
‘T * 0K * ut ) - * Ohi * u%zd

P % () =m 6—%‘(%, T To(1r)) + Z_;m %’;(370’ g "0(15)) (4.3.8)

with
n >0 and nf hi(zj, *07(t)) =0 (4.3.9)

foralli=1,--- r, and

=K =0, Vi & I, (4.3.10)

and
¢; 20 and ¢f (o] — X*) =10 (4.3.11)
Kf>0 and KI(XM™"—zof) =0 (4.3.12)

for allic,,.

Remark If pj = 0, then function L(z*"%0(t),u*(t),t) will not appear in (4.3.1),
nor will K(z3, 2*"%(t;)) in (4.3.7)-(4.3.8). That means that the above optimality
conditions of problem (P) are irrelevant to the cost functional J(u, xo), which is
obviously “pathological” [4]. Such problems require much more complicated anal-
ysis and techniques, We will not treat such problems here. Thus, assume pj #

0. When p§ # 0 (that is, p§ > 0), it can be seen easily that the conclusions of
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the above theorem will not be altered by assuming p§ = 1. Therefore, through-
out this chapter, we only consider the situation when p§ = 1. For abbreviation,
let H(z“%0(t),p“%(t),u(t),t) be H(z*(t),p*%(t),u(t),t,po) with pp = 1, and
M(z*=(t), p"*(t),t) be M(z"=(t),p"*(t),1, po) With po=1.

4.4 The Algorithm Utilizing Second-Order Information

Let v(t) be the variation of the control, v(t) = u?(t)—u!(t), w be the variation of
the initial state, w = 2 — 2}, and let y*'*(t) satisfy the following linearized system

equations

M ORENN SOV ORS00 (44.1)
¥ (t) = w (4.4.2)

where fél)(t) and f{V(2) are evaluated at (z*'%5(t), ul(2), t). Denote

AT 28)(0, ) 2 (Kol 24 0) + p458(00) [ HO(@)0(0) dt (4.43)

T
1 w Kﬁ},?u., K:S:})l' w
A% (u} 7)(v, w) 2 0w T |
¥y (tf) K-‘t]-"r‘o K-‘L'J:l'f Yy (tf)

T
1 (v (D0 HRO) (v
+3 A dt  (4.4.4)
to v(t) Huig(t) Huu(t) v(t)
where K1), (1), Ka(:},)zf(t), Kg)z,(t) and Ka(glf)x,(t) are evaluated at (¢}, z*3%(t;)), and,

Hél)(t), H,S,}g)(t), Hg(g})(t), H.g)(t) and H,(,})(t) are evaluated at (z%3%0(t), p* =0 (t), ul(2),

t). In the above, £*:%5(t) and p*’%(t) are the state and costate of problem (P)

and

">

corresponding to both the control u!(t) and the initial state z§. If we let p* o0 ()
satisfy the following terminal condition,

pR() = 55 e e ), (145)
the following proposition then shows that for any u!, u? € U, AJ(u} z§)(v,w) is a
first-order estimate for J(u2 23)—J(ul 2}), and AJ(u} 2})(v, w)+AY (u} 2§)(v, w) is

a second-order estimate:
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Proposition 4.4.1 There exist ¢;, c3, €3, ¢4, €5, Cs, ¢7 € (0, 00), such that, for any u?,

u €U, any z}, 3 € S,
| 762 28503 ) -2t 2w, w) | < arllvlPealiollwlbesliwl? (446)
and

| J(u? 23)—J(u! 2}) - AJ(ud 23)(v, w) - AV (! z}) (v, w)
< eallolPresllollwli+esllvll-lwl*+erfwl®  (44.7)

where v = u? - ul, w = 2% — 1.

Proof: See Lemma B.5 in Appendix. a

In viewing the above proposition, a natural and convenient way to find an
improving control u%*! and an improving initial state m’é“ at the k—th iteration is
to minimize AJ(uf z%)(u—u*, zo—2zk) or AJ(u* zk)(u—u*, zo—2k) + AL (uk zf)(u—
u*, 29—xE). The former is, of course, a first-order method, and the latter a second-
order method. In what follows, only the second-order method is studied. That is, to
solve the original problem (P), the following “direction-finding” subproblem (F}) is
solved repeatedly,

(P;) uezrlng:es A.I(u’ﬁ m’é)(u-—uk,wo—mg) + A2J(u’§ :vg)(u—uk,xo—z’g)

subject to the linearized system,
) = SR + FP0) o (448)
() = ot (4.4.9)
and the linearized end-point inequality constraints,
hilah, 2578 (10)) + o (ah, w4 (10 + O 0k, 2o (11)g (1) < 0
aito 6a:f

(4.4.10)

k k

fori=1,---,r, with vF = u—uF, wF = zo—2zk.
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Algorithm 1.

Step 0. Select 23€ S, u®€U. Set k=0.
Step 1. Compute state %% by forward integrating (4.2.1)-(4.2.2).

Step 2. Compute costate p“k""g by backward integrating (4.3.3) from terminal condition
(4.2.2).

Step 3. Solve the “direction-finding” subproblem (P}).
Step 4. If its solution is such that (@* zX)=(uf z§), stop. Otherwise, go to Step 5.
Step 5. Compute a suitable stepsize A¥ >0, according to some stepsize rule.

Step 6. Set zft! = 2k 4 A¥(zk — k), vkt = wF+ N¥(@F —u*). Set k=k+1 and return

to Step 2.

However, the above “direction-finding” subproblem (P})’s are still difficult to

solve. Further simplification is needed, while still preserving the approximation order

K.‘Dozo K:l:oz'j

of two. Because ( ) is real and symmetric, there exist two constant matrices

zg20 Kzf.'rf
A4, which is positive definite, and A3, which is semi-positive definite, such that

T
Ktoxo K.’l:ox
( N )( ')( N ) < wTAyw+y" ¥ (ty) T Ay ¥ (2y). (4.4.11)

yv’w(tf) K:c,:r:o Kx,z, yu,w(t!)

Similarly, because ( g"g; z"‘g;) is real and symmetric, there exist two time-varying
uzr uu

matrices Az(t), which is semi-positive definite, and A4(¢) which is positive definite,

such that, for any t€[to, ],

-
yv'w(t) H“"(t) H""“(t) yu,w(t) v, w TA v, w TA v
( o(t) ) (Huz(t) Hw(t))( olt) ) S Y As(B)y" (1) + o(t) Aa(t)o(?)-

(4.4.12)

Denote

A Y, w tl v, Ww
Ja(u, ) (v, w) & K (w, g (1)) + /t IO (1), o(r), )dr  (4.4.13)
0

with

K0, 1(t)) = (Keolohys33(11) + 9% (10)7 )
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1 1
+3 wT A + Syt ATAD yow(ty) (4.4.14)
1 v, w
L@ (@), 0(0),8) = D@ 0(e) + 59" () A @y* (1)
+ %v(t)TA,(,l)(t)v(t). (4.4.15)

Proposition 4.4.2 There ezist c;, ¢y, ca, ¢4 € (0,00), such that, for any v!, u? € U,

any zg, ©3 € S,

J(u?, zd)~ J(ul, 25) = Jo(u', (v, w)
< allvlPrelloffol+elvl-lwl*+ellw|®  (4.4.16)

where v = u? — v}, w =z} - z}.

Proof: The proof is done by applying (4.4.11), (4.4.12), (4.4.13) to Proposition 4.4.1.
a

The above shows that Ja(u!, z3)(v,w) is still a second order approximation of
J(u?, z3)}-J(u!, z}), when (u? z) is close to (u! z§). Together with the fact that its ter-
minal term and integrand terms are all convex functions, Jo(u!, z3)(v, w) is therefore
an easier approximation of J(u?, z3)—J(u', z}) to compute with than AJ(u} z§)(v, whH
A% (u! z})(v,w). It reminds us of the similar case in finite-dimensional optimization
handled by the quasi-Newton method or the Han-Powell method where the Hessian,
which is not necessary positive definite, is iteratively replaced by an updated positive
definite matrix to facilitate both the computation and the convergence analysis. Hence,
instead of solving the original problem (P), the following new “direction-finding” sub-
problem (P[') is solved repeatedly,

(P) i . Ja(ut, ab)(u - v¥)(ao - o)

subject to the linearized system,

P = PO o+ POt (4.4.17)
y”ﬁwk(to) o (4.4.18)
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and the linearized end-point inequality constraints,

ohs

hi(zh, 2% (15)) + -

(2, 235 (1)) + %(wé, 48 (1) (1) < 0
(4.4.19)

fori=1,---,r, with v* = u—uF, w* = zo—z5.

Algorithm 2.

Step 0. Select z3€ S, u®el. Set k=0.
Step 1. Compute state z¥%%6 by forward integrating (4.2.1)-(4.2.2).

Step 2. Compute costate p“k’fg by backward integrating (4.3.3) from terminal condition
(4.2.2).

Step 3. Solve the “direction-finding” subproblem (F}).

Step 4. If its solution is such that (@* ZK)=(uf z&), stop. Otherwise, go to Step 5.
Step 5. Compute a suitable stepsize A\¥ >0, according to some stepsize rule.

Step 6. Set zf*! = x4+ MF(z5—2k), w1l = u* £ AF(@F —uF). Set k=k+1 and return

to Step 2.

Remark Clearly, set Q defined in (4.2.4) and set S defined in (4.2.3) are convex.

Because u*(t), w*(t)€Q, and, z&,zk€ S,
uk (1) = wk (1) + AE(@F () —uF(2)) = (1 - A)uk() + AFak(e)
and
ekl = ok P AR@EE—2k) = (1- M)l + A3

So, we have uFt1(t) € Q for any t € [to,t;] and for any A €[0, 1], and, wg"‘l € S for
any A€ [0,1]. That is, the algorithm defined above will always generate a sequence

of admissible controls, uk €2/, k=1,2,--- and a sequence of admissible initial states,

zf €S, k=1,2,- - -, because both the starting control «° and the starting initial state zJ
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are admissible. It is also important to note that the sequence {u*, z§}$2,, generated
by Algorithm 2, may not always belong to the original feasible set F, defined in (4.2.7).
However, by the arguments similar to the ones in the global convergence analysis on
the algorithm in Chapter 3, {u¥, z§}$° , should ultimately stop at, or converge to, a

feasible control which satisfies some optimality conditions.

Remark It is important to note that there are two kinds of constraints which are
dealt with differently by the above algorithm: sets &/ and S are the kinds of constraints
which must be satisfied during any intermediate iterations; while the constraints, rep-
resented by end-point inequalities (4.2.5), can be violated at intermediate iterations.
However, as will be seen in section 4.5, by employing an exact penalty type of func-
tion to penalize any violated end-point inequality constraints, we can show that the
solution of problem (P}’) generates a descent direction of that exact penalty function.
So, iteration after iteration, the algorithm monotonically decreases the value of that
penalty function, until all the terminal-state constraints are satisfied and the cost

functional is minimized.

An advantage of the above algorithm is that the original constrained nonlinear
problem is solved by solving a sequence of constrained linear quadratic optimal control
problems, which are much simpler than the original one. Besides, at iteration k, the
existence and uniqueness of the solution of the constrained linear quadratic problem
is always guaranteed, as long as the feasible set Fj is not empty (see Chapter 5 for
details), which is not the case for problem (P}). Also, as will be seen later in this
chapter, the algorithm generates a descent direction of an exact penalty functional.
So, in all respects, the above algorithm can be regarded as an analog to the quasi-

Newton method or the Han-Powell method in finite-dimensional

Another advantage of the above algorithm is that, for each subproblem at the
k-th iteration, its hamiltonian function, which is quadratic in both state z(¢) and
control u(t) for any ¢ € [tg,%/], is a strictly convex function in control u(¢). So, the

optimal control of every subproblem can never be singular.
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However, unlike the finite-dimensional case where the “direction-finding” sub-
problem is a quadratic programming problem which can be solved in a finite number
of steps, the exact solution of the above “direction-finding” subproblem (P[') at each
iteration may require an infinite number of steps. Practically, the iterations can be
stopped after some finite number of steps after the optimal solution is approached

within a certain accuracy range.

It should also be pointed out that after K;,(ts) is replaced by its approxima-
. Hgzz(t) Hzu(t)) i . Az(t) o
tion Ay, and (H“(') me) is replaced by the block diagonal matrix ( A As((t))’ the
second-order local convergence rate may not hold any longer. However, intuition tells
us that the new local convergence rate should be at least first-order, and possibly

superlinear, depending upon the tightness of the approximations.

4.5 Descent Properties

Let (@*, &) be the optimal solution of the “direction-finding” subproblem (P}'). Let

oF =k —uk, DF =7k -2k and 47 %" be the solution of the linearized system (4.4.17)-

(4.4.18) with input »* and initial state @F. Let
A k ok Oh; k ok Oh; uk ok
mf(w, ys) = hi(ag, &% (1)) + a—z;(wlé, T %0 (ts)) w + gx—;(fvﬁ, T4 (1)) yy

for i=1,.-.,7. Then, according to Theorem 4.3.1 applied to the “direction-finding”
subproblem (P}'), there exist three constant transversality vectors n* € R", (¥ € R",

k¥ € R™, satisfying

720 and ¥ wh(ak, y" (1)) = 0 (4.5.1)
for i=1,---,7, and
F=kb=0, Vigl,, (4.5.2)
and
F >0 and Lf-‘(i:’g‘ - X"y =0 (4.5.3)
k¥ >0 and wKE(X™"-3zE)=0 (4.5.4)
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for all i € I,,, and a costate function ¢7>%" (t) of the “direction-finding” subprob-
lem (P}') satisfying

— () = a£’< "ot (1), ¢ (1), 5H(2), 1)
ok o K, k k
" (to) = e o, g7 (15)) - (F - k¥) — Em a_” (@, ¥ (t5))
=1
(1) = —(w Ly (¢ ))+Zm "(w , 17 (1))

=1

-k—

such that, @*(t) minimizes H;(y" ?*(t), ¢ T°(t), u—u*(t),t) with respect to u at any

t € [to,t7]. In the above, H; is the Hamiltonian function of the “direction-finding”
subproblem (F}'). So,

Hy(y™ 7 (0), "7 (1), 74(2), )
2 L™ (@), 5(1), 1) + T O TP @) 97 (1) + £ (1) 9(2))
= B0, (0, 0 74(0), 1094 (0) + 5977 () TAP (0" (1)

+30 O TAP @) + T OTUP O () + P @) (455)

and

=T = BOTE O+ AP @) (4.5.6)
() = ~Ku(eb, et ) - pio ) - AP (487)
L o f Ok ks T
(@ = 10 = o (b, k) (458)
=1
o " k(R k akgr, \T
() = Ag"’y“*'w"(tf)+2nf(a(m’a,w*’ﬁ(tf))) (4.5.9)
=1

and ﬁk(t) is the solution of

m{H (a*=b(8), uk(8), p5=52), ) (u— k(1))
+-(u—u’°(t)) AP @)~k (1))

+; FOTALO O + 07U O O + OG- HO)],
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for any t € [to,t;]. Equivalently, @*(¢) is the solution of the following quadratic pro-

gramming problem:

1

- T A (K) &)\ T }
ymin Tl Sum,{2u A7 (Op +0™(1) p

where
b9)(2) = Hy(2¥473(2), uk (1), p75(2), 1) T — AP ()uk(t) + P @) 77 (1),

for any t € [to,ts]. By the Kuhn-Tucker Theorem, there exist two nonnegative vector

functions B¥(t) and v*(t) such that,
H(2*55(t), u* (1), p (1), )7
AP @)@ () - w* (1) + FORTT T (1) + 851) - 1) =0 (4.5.10)
where

BT (@) - U™ = 0 (4.5.11)
YHOTU™" - @k (1))

(l
=]

(4.5.12)

for any te€[to, ty].

Next, we show that (¥, @*), the solution of the “direction-finding” subprob-

lem (Py), turns out to be a descent direction of the exact penalty functional 6, :

UXS - R,

0,(u, zo) = J(u, zo) + pZ(p,-(u, Zo) (4.5.13)
1=1
where
@i(u, z0) = max{0, gi(u, To) } = max{0, hi(zo, 2 (,))} (4.5.14)

and p is a positive number.

Theorem 4.5.1  Let (@, z§) be the solution of the “direction-finding” subprob-
lem (P}), and T*(t) = k() - u*(2), o* = zk—zk. If n*, a constant vector satisfying

optimality condition (4.9.9), satisfies

7"l < o, (4.5.15)
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and if (v% @F)#£0, then there exists a Ak €(0,00), such that, for all 0< A< ¥,

0,,(uk+/\17k x’(§+)\ﬂ)k) - 0,,(u’ﬁ zg)
t
<- (wk)TA“‘) 5 % [ TP wtma <o (@se)
to

Proof: Let
IME (i gi(ub, 28) >0} = {i: hi(ah, 25%t5)) > 0},

I (i gi(ub, o) =0} = {i: hi(eh, 2" ¥ep) =0},
B2 {4 gi(uk, zk) <0} = {4 hi(ah, e7(1tp)) < 0 ).

From Lemma A.3, the mean-value property,

gi(u* 4+ 20%, 2§ + A0¥) - gi(u¥, of)
= hi(a§ + M, @ PTERI ))  pi(ah, 28H(ey))

= gho(zo, we(ts))(A5*) + a—(xo, A1) Pt ) — 28 =8(1))

+ /0 (l—T)—aw—?:(:Eo(r,to), #(r, 1)) dr (A5*)?
1 2. kyyik k .k 2
=) ol o) o) dr 69 0) - 25 )

where Z(7,to) = af +T(A@*), &(T, ;) = z“'izg(tf)+‘r(z“k+>“_’k(tf)—:c“k’zg(tf)). Because
xlg, a:'5+/\'wk €S, w* is bounded implying Zo(7, %) is bounded for any 7 €[0,1] and any
A€[0,1). Furthermore, from Lemma B.1, because u*,u*+ \o* €U, zk, 2k + Aok € S,
for any A€[0,1], both z¥* xg(tf) and z“k+’\f""’g+’\“-’k(tf) are bounded. So, Z(7,ty) is also
bounded, for any 7 €[0,1] and any A€[0, 1]. Hence, by using in addition the continuity
55—;—, a’; , and —;L there exist ¢, ¢}, ¢}, cy > 0, such that,
Ty
gi(uF 4 25X 24 AT*) - gi(uk 2k)
ah .’E u T, vy AW
—(f 2578(t7)) (\¥) + -—( z§ a*3°5(1)) A1)
+ ¢ [| g TR 1) gt z°(tf)—yA"’M” @l

+ g I ABF (|2 + e || X0® | - | Aa* || + || Ao* |2
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Oh; uk gk _ oh; uk ok o Ak
< BB ok ovtelle) ) + DB ok ovhel()) )
0 Tf
+ e X | D |7+ e22? || 7 | - | 2" || + ead® | 5* |17

The last inequality comes from Lemma B.3, with some ¢y, ¢, ¢3 > 0. Because y**5 2"

is a solution of the linearized system (4.4.17)-(4.4.18) with input A%* and initial state
ATk, y"‘_"5 Mk /\y‘_"s 7 Moreover, from the linearized end-point inequality constraints
(4.4.10), we have
oh; k ok _ Oh; Kk Kok
o ok 7))+ ek b)) )
< —hi(ah 2*36(ty)) = —gi(u} f).
Therefore,
gi(uF+ 275 2§+ Aa*) — gi(u; 25)
< —Agi(ut ak) + e X | T | + A2 (|5 | | 0 | + cad? || 0¥ 2. (45.17)
(1) For any i€ I(%), Because g;(u, o) is continuous at any u € U, z¢ € S, according to
Lemma B.4, there exists a A; >0, such that, for all A€ [0, )], g;(uw*4+A7% 2E+A@*)> 0.
Then, from (4.5.17),
pi(u* + 20, af+A0%) — pi(uF, 2f)
= gi(u* + M08 2+ A0¥) — gi(uf 25)
< =Agi(uf 25) + el (| @8 |1 4 €20 || 5 || - | @F || + ead?|| 7|
(2) For any i€ I*). From (4.5.17),
gi(u* + Ao% 2k Aa)

< (L= X) gi(ut o8) +er N2 | 0¥ [P + cad? (| 3% | - | @ || + cah?[| 0% |1
=0
= e[ 8* |7 42X |5 || | &F || 4 coX? || 5|

we then have,
ei(u* 4+ MoE 2k A*) — pi(uF, 2)
= max{ 0, g:(vF + A\o* zE+A@F)} - 0

< A2 || BF |2 + coX2 || TF || - | @F || + cah? || BF ||2.
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(3) For any i € I®), Because g;(u, zo) is continuous at any u € U, z¢ € S, according to
Lemma B.4, there exists a A, >0, such that, for all A€[0, Xg), g;(u*+Av% z§+Ad*) <0.
Then,

i(u* + MDY 25+ A0¥) — il 25)
= max{0, gi(uv* + A5* 2k + Aw¥) } — max{0, gi(uk zf)} = 0-0.
Therefore, there exist c}, ch, c3 > 0 such that,

0,(u* + \o* 2E 4+ Aw*) — 0,(uk 2k

T
= J(uF 4208 b+ A0F) - J(uk 28) + p D (pi(uF + 208 a§+A0*) — @i(uf 2F))

=1
< J(uk 208 af+A0%) - J(h 2f) — pA Y giluh of
ieI(k)
+ ¢ pAT (| @ |2 + ¢ A (|3 | - | @ | + ¢ oA (| 7 |17 (4.5.18)

From the proof of Lemma B.5 and (4.4.6) of Proposition 4.4.1, there exist cf, c§, 3 > 0,
such that,

J(u* + 255 zf 4+ A0*) — T(uF 2k
(Kl 580 + 94807t 4 [ HH 0,040, PO, 0040
ST N[ N2 5
From (4.5.10),
J(uF + A% 2+ AdF) — J(uk of)
s *(Kzo(wé, 2598 (1)) + p“"’fé‘(tof)ﬂ”‘ -4 /f’ HOWNOLYOL
o
Y A O OO Y OO TR JARRORAOY
+ e[| 1%+ eh A2 (| 5 |- ) @[] + ¢ X2 || 5|17
Because
BFOTEH(E) = BH()T (@ () - uH (D)

BEO)T(@H(2) - U™e7) + BF() (U™ — uk(2)) 2 0,  (4.5.19)
% I T
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and

YT () = YR T (@ (1) - (1))
= 0@ -y + ﬁ(ﬂt_)f(U’""" —uk(t)) <0, (4.5.20)
=0 >0 <o

we then have,

J(uF + 255 2k + AaF) - J(uk zk)
< X(Kun(ab, 258 () + 9544 00) ) 2*

t ty
-3 [T HFOTAP @@ - ) [ T P k)
to to
AR P+ e N2 F |- | F | + ¢ A2 5 2. (4.5.21)

Because (% w*) is an optimal pair for the “direction-finding” subproblem (P, ¥ (1)
satisfies (4.4.17) and (4.4.18) with input 9*(t) = @*(t)—«*(¢) and initial state @w* =
Z§—xf, and the corresponding costate function ¢%% %" (t) satisfies (4.5.6), (4.5.7) and

(4.5.9) with three constant vectors ¥, 1%, k* satisfying (4.5.1), (4.5.2), (4.5.3) and
(4.5.4). We then have,

d ok ok L ok 7k ok ok =k ok
_d_t(qv,w (t)Tyv,w (t)) - qu,w (t)T gv (t) +yv,w (t)T q-v (t)
N e
(4.4.17) (4.5.6))
B QN RTO L O B OO W TG PR O

Therefore,

t
|7 T @k ar
0

ok T ok tf -
= @) V) - ) ¢ ) + [P TAP @y ) dt
Ny s’ Lo NS g to ; —
(4.5.9) (4.5.7) =k >0
2 ¢ A ) AP 4 (Kelab, ) + 2o 1) b
>0

T

+ 30t (Goateh, o)t + ) ) + (- T

(4.5.1)
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:
> (Keo(ohya®et(t) + 958 )T ) = 3 nbhab, «*45t1))

i=1
+ (wk)TAgk)wk + (F — kF) Tk, (4.5.22)

From (4.2.5),
t
[ TP at
to
> (Kaoloha®iet1) + 945500)T )0 = 3 nboi(ul of

e J(k)
_ k _
- Y taehak) - 3 ut gi(uk of) + (@F)TAP B + (F - )Tk
ieI(k) —0 ie f(k) >0 \-?6_/
(eoab et 8t0) + 245 (0)T )0 = 3 nbatut ab)
1€ I(k)
+ (@) TABP B 4 (k- kF) Tk, (4.5.23)

v

Combining (4.5.18), (4.5.21) and (4.5.23), and letting ¢, = cjp+cf, €2 = c4p+cj, we
then have
0,(uk+ 258 zk 4 Ak) — 0, (uk k)
t
< A(@*)TAPGF - A / TR OTAP ()5F (1) dt — A — F) T
to

+AD (¥ —p) gi(u” 28) + @ NP || 2% ||2 + &2 || o8 || - || 9F || + &A% || oF |2
. N e e
€Ik >0

1
< A (@*)TAP G — A / THOTAD )5 (t) dt — A(F — £F) Tk
to
+ e[| oF |7 + &A% || 7 || - (|95 || + 22 (| ¢ 1%

Because
(F) ok = (F)T (26 - 25)
= (F)T(@§ = X™) + (L )T(X ™ —5) 2 0, (4.5.24)
— - (S .
=0 >0 >0
and

(¥)Ta* = (k%) (25 - 25)

= (RT(@ = X +(E)TET ~2) < 0, (4.5.25)
=0 >° <0
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we finally have

0,(u* + 25" 2f+20*) — 0, (uk k)
t
< =A (") TAP GF — A / To O TAW (1) (1) dt
to
+ad? | o |12+ e[| 7| - | 9 || + &A% | 75| (4.5.26)

Because the constant matrix Agk) is positive definite, and the time-varying matrix
A;(,k)(t) is positive definite for any ¢ € [to, ], there exists a small enough ¥ € (0, ),

such that, whenever (7% @) #0,

0,(uF 4+ 25" ok Awk) — 0,(uk 2F)

A

t
< - %(w’“)TAY"w’“ -3 / T TAP @) () dt < 0 (4.5.27)
to

for all 0 < A< A, ]

Remark If the initial state z¢ is not allowed to vary, the above Theorem 4.5.1 is

reduced to Theorem 3.5.1 shown in Chapter 3.

Remark If the control u is not allowed to vary, the problem considered in this
chapter is reduced to the special problem of finding the optimal initial state of a
constrained dynamical system, which is itself a useful practical problem. After an
easy specialization of the algorithm described in this chapter, it can be used to solve

that problem as well. Please see section 4.10

Remark Theorem 4.5.1 shows that, whenever (@* @*) # (u* w¥), (7% @*) = (¥ -

u* ®F —w*) is always a descent direction of the exact penalty functional 8,(x, o) at

the k-th iteration.

Remark The descent property shown in Theorem 4.5.1 will always hold, as long
as matrix A; is positive definite, A, is semi-positive definite, A3(t) is semi-positive
definite for all t € [to,ts], and A4(2) is positive definite for all ¢ € [to,t;], regardless
of whether the inequality relationships (4.4.11)-(4.4.12) are satisfied. However, those
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inequalities are crucial for the rate of convergence of the algorithm. Intuitively, tighter
approximations by (4.4.11)-(4.4.12) make the rate of convergence of the algorithm
closer to second-order; while looser approximations would destroy the second-order

properties and make the algorithm behave more like a first-order algorithm.

4.6 Stepsize Rules

Similar to the discussion in Chapter 3, at each iteration k, we would like to perform
a line search on the exact penalty function ,(, zo), starting from (u, zo) = (u¥, z§)
in the direction (&%, @*). The following Armijo-like line search is adopted: find the
smallest integer [ >0 such that

0, (uf+ (M0, g+ a¥) - 0,(u*, 25) < —a('*RF (4.6.1)
where
t
R* = (") TAPak 4 / Tk T AP (t)o* (1) de (4.6.2)
to

and a, ¢ are two parameters chosen a priori in (0,1). ¢'* is then called an Armijo
stepsize. Clearly, whenever (% 117")#0, the above R* is always positive, because Agk)
is always a positive definite matrix, and A:(;k) (t) is always a positive definite matrix
for any t € [to,5]. According to Theorem 4.5.1, whenever (7% @w*) # 0, there exists a
AF€(0,00), such that, forall 0 < A < Xk,

0,(u* + Ao*F) — 0,(u*) < —-;\—R" < 0.

So, whenever (7" #*)#0, the above Armijo-like line search is always well-defined, and

the stepsize \*=('* is always a positive number.

4.7 Special Case: Free End-Time Optimal Control Problem

It will be seen in this section that a generally constrained free end-time optimal control
problem can be easily converted to a constrained fixed end-time problem with two more

state variables, one of which has a fixed initial value and the other of which has an
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initial value which is allowed to vary within an interval. To see this, let us consider
the following dynamical system defined on interval [tg,ts] where t; can vary within
[T], Tz] for some T3 > Ty > ty:
#t) = f(a(t)ut)), (4.7.1)
.’E(to) = 9. (4.7.2)

There are n;, components of the initial state vector ¢ which are allowed to vary
within a constraint box, while the remaining n—n;, components are fixed. That is,

there is an index set I, C {1,---,n} such that
2o €S ={veR"| X" <v; < X, i€ Iy; v; = xo; (fixed), i ¢ Iy, }. (4.7.3)
The dynamical system (4.7.1)-(4.7.2) is also subject to the control constraints
W) eQ={peR™ | UM < UM, i=1,-;m},  (4.7.4)
for any t€[tg,ts], and the end-point inequality constraints,
gi(u, To) = hi(zo, 2(t5)) <0, i=1,---,7 (4.7.5)
Let the set of admissible controls be,
U={u|u:l[to,ts] » N is continuous a.e. } C L [to,y], (4.7.6)

and let I/ be the set of equivalence classes of functions in & which are equal almost
everywhere on [tg,ts]. Let the set of combined feasible controls, feasible initial states

and feasible final time be
Fé {(u, z0,t5) |u €U, 20 €S, t; € [T1,T), gi(u,20) <0, i=1,-+-,7}. (4.7.7)

We consider the following free end-time constrained optimal control problem:

Problem (Pfrec—end—time).  Subject to the dynamical system (4.7.1)-(4.7.2), find
a control u € U, an initial state ¢ € §, and a final time t; > t;, such that the cost

functional

J(u,0,17) = K(=o, a(t)) + /’ L(a(r), u(r), 7) dr (4.7.8)
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is minimized over F.

In what follows, a transformation due to G. Leitmann [77,118] is used. Let 7 be
the new time variable defined on [0, 1}, and the old time variable ¢ be a function of 7,
that is, t=1(7). Introduce two additional state variables

di(r)

a(t) = t(r) and B(r) = o

(4.7.9)

Introduce a new state vector z(7) = (z(r)", a(r), 8(r))T € R*t2. Then, one has the

following new dynamical system defined on the fixed end-time interval [0, 1}:

&(r) = B(r) f(z(r),u(r),7) (4.7.10)

a(r) = pB(r) (4.7.11)

B(r) = 0 (4.7.12)
and its initial state is

2(0)=(zg, «(0), B(0))". (4.7.13)

So, the above dynamical system can be equivalently expressed as the following,

#(1) f(2(7),u(T), 1), (4.7.14)
2(0) = z. (4.7.15)

The new end-point inequality constraints become

9z:(u, 20) = gi(u, o) <0, i=1,--+,7 (4.7.16)

and

T1 S a(l) S Tz. (4.7.17)

The new initial state constraints become

20 € S; = { (20,2(0), (0)) € R™*? | 2o € S; a(0) =10 (fixed); B(0)€[0,2]} (4.7.18)
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for a big enough real number Z. Also, the new feasible set becomes

A ~ .
Fo={(u,20) | v€lU, 2 €S;, g24(u,20) <0, i=1,---,7; 1 La(l)<T7 }.
(4.7.19)
Then, the above free end-time constrained optimal control problem is converted into

the following fixed end-time constrained optimal control problem:

Problem (Pfized—end—time). Subject to the dynamical system (4.7.14)-(4.7.15), find

a control u €U, and an initial state 29 €S,, such that the cost functional

J(u,20) = K,(z0, z“’“’°(1))+/01 L,(z“*(7),u(T),7)dr

i

K(2o, (1)) + /0 " B(r) - L(a(r), u(r), ) dr (4.7.20)

is minimized over F,.

It is clear now that Algorithm 2, described in sections 4.4 and 4.5, can be used

to solve constrained free end-time optimal control problem as well.

4.8 Special Case: Optimal Control Problems with Path Constraints

Let us consider the following path constraints,
éi(z(t),t) <0, i=1,--,1, Vi€ lto,ty], (4.8.1)
where the time interval [t,ts] is fixed. Define:

2 -
Le(§) = (E+efte when{2 -~ (4.8.2)
0 when £ < —e¢

Introduce ! additional state variables: z,4(t), i=1,---,!, be such that

bui(®) = L (6(0,0),  i= 1000, Vi€ [ ]

Then, the above state path constraints can be well approximated by the following

end-point constraints:

wn+i(tf)"7$0’ i=1,--,1,
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if the two positive constants € and v are chosen appropriately.

It is clear now that Algorithm 2, described in sections 4.4 and 4.5, can be used

to solve optimal control problems with path constraints.

4.9 Special Case: Optimize a Constrained Optimal Control Problem

over Some Design Parameters

In practice, there is often a need to optimize a constrained dynamical system over not
only its control and initial state, but also over a number of design parameters. It will
be seen in this section that Algorithm 2, described in sections 4.4 and 4.5, can be used
to solve that problem as well. To see this, let us consider the following dynamical

system defined on a fixed end-time interval [to, ¢s]:

getor(t) = f(a*"P(t),p,u(t), 1), (4.9.1)

:Eu’zo’p(to) = 9. (492)
In the above, pe R™ is a vector of design parameters which are constrained as follows,
peES,={peR™ | PM" < p; < P, i=1,---,n,} (4.9.3)

where S, is compact. Also, there are ng, components of the initial state vector zo which
are allowed to vary within a constraint box, while the remaining n—n;, components

are fixed. That is, there is an index set I, C {1,---,n } such that
20 €Spy = { ¥ ER™ | X" < y; < X%, 4 € Iy v; = wo; (fixed), i ¢ I, } (4.9.4)

where S;, is compact. The dynamical system (4.9.1)-(4.9.2) is also subject to the

control constraints
ut)eQ={peR™ | UM < u; <UM™®, i=1,---,m} (4.9.5)
where § is compact, and the end-point inequality constraints,

gi(u, 2o, p) = hi(zo, p, " P(t5)) <0, i=1,--,m (4.9.6)
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In the above, %% P(t) € R™ is the state of the system at time t € [to,%;], which
corresponds to the control u(t) € R™, the initial value of the state zo € R™, and a

vector of design parameters p€ R™#. Let the set of admissible controls be,
U={u|u:[to,ty] > Qis continuous a.e. } C LT [to, ], (4.9.7)

and let & be the set of equivalence classes of functions in & which are equal almost
everywhere on [to,ts]. Let the combined set of feasible controls and feasible initial

states be
A ~ .
F={ (% z0,p) | v €U, x0 € Szy, P € Sp, 9i(u,T0,p) <0, 1=1,--+,7 }. (4.9.8)

We may now formulate a constrained optimal control problem as follows:

Problem (Pyesign—parameters). Subject to the dynamical system (4.9.1)-(4.9.2), find
a control u €Y, an initial state zo €S, and a vector of design parameters p€ S;, such

that the cost functional
t
J(u,20,p) = K(zo0, p, s ?(t1)) + / L@ mor(r), pu(r),r)dr  (4.9.9)
to

is minimized over F.

Introduce a new vector z(t)=(z(t)", #(t)7)" € R**", where #(t)=p € R", for

any t€[tg,ts). Then, one has the following new dynamical system defined on [to, t5]:

&(t) = f(=(t),(),u(?),), (4.9.10)
&ty = 0 (4.9.11)

and its initial state is
2(0)=(zg,p")". (4.9.12)

So, the above dynamical system can be equivalently expressed as the following,

(1)

L (242 (t), u(t),t), (4.9.13)
29%(0) = z. (4.9.14)
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The new end-point inequality constraints become
gzi(¥, z0) = gi(u, zo, p) < 0, i=1,.-,71. (4.9.15)
The new initial state constraints become
20 € S; = { (20, p) € R"™ | 20€S8,,; PES, }- (4.9.16)
Also, the new feasible set becomes
Fo 2 {(u20) | vel, 20€ S, gu(,20) <0, i=1,--,7 }. (4.9.17)

Then, the above constrained optimal control problem with design parameters is con-
verted into the following constrained optimal control problem without design param-

eters:

Problem (Pyithout—design—parameters).  Subject to the dynamical system (4.9.13)-
(4.9.14), find a control u €U, and an initial state zo €S, such that the cost functional

J(u,20) = Ky(20, 2" %(ts)) + /t:f L,(z2“*(7),u(t),7)dr (4.9.18)

is minimized over F,.

It is clear now that Algorithm 2, described in sections 4.4 and 4.5, can be used

to solve constrained optimal control problems with design parameters.

4.10 Special Case: Optimize a Constrained Dynamical System over

Its Initial State

In practice, there is also a need to optimize a constrained dynamical system over its
initial state. It will be seen in this section that Algorithm 2, described in sections 4.4
and 4.5, can be used to solve that problem as well. To see this, let us consider the

following dynamical system defined on a fixed end-time interval [to,s]:

&% (t) f(@®(1),1), (4.10.1)

.’Dwo(to) = Tg. (4102)
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There are n;, components of the initial state vector zo which are allowed to vary
within a constraint box, while the remaining n—n;, components are fixed. That is,

there is an index set I, C {1,--:,n} such that
go€S={veR"| X" <y; < X, i € Iy; v; = xo; (fixed), i ¢ I, }. (4.10.3)

The dynamical system (4.10.1)-(4.10.2) is also subject to the end-point inequality
constraints,

gi(zo) = hi(zo, °°(t5)) <0, i=1,---,1 (4.10.4)

Let the set of feasible initial states be
FE{zo|z0€S, gi(zo) <0, i=1,---,7}. (4.10.5)

We consider the following optimization problem:

Problem (P,pi—init). Subject to the dynamical system (4.10.1)-(4.10.2), find an

initial state zg€ S such that the cost functional
J(z0) = K(2o, 2 (17)) + /t Y L™ (r), ) dr (4.10.6)
0
is minimized over F.
It is obvious that if we do not allow the control u to vary, i.e., by letting v=0, all
the previous results shown in sections 4.4 and 4.5 are immediately reduced to results

of the above problem. The specialization of those results is omited here because it is

a straightforward process.
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Chapter 5

Computational Methods of Solving

Constrained Linear Quadratic Problems

5.1 Introduction

In Chapter 3 and Chapter 4, the algorithms which can solve generally constrained
optimal control problems were developed. A common feature of those algorithms is
that it is required to solve a “direction-finding” subproblem, which is a a generally
constrained linear quadratic regulator problem (LQR), at each iteration. On the other

hand, the constrained LQR problem is important in its own right.

The goal of this chapter is to study the following constrained LQR problem:
minimizing a quadratic functional, subject to a linear dynamical system, hard control
constraints, hard initial state constraints, and linear end-point constraints. Two spe-
cial properties which are related to the problem are presented: (1) the existence of an
optimal control solution; and (2) the uniqueness of the optimal control solution. In

addition, some computational techniques are investigated.
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5.2 Problem Formulation

The dynamical system considered is described by the linear differential equation de-

fined on a fixed end-time interval [to, t}:

T < (t)

y*<(0)

A@)y4() + BE)(u(t) - a(2), (5:21)
¢-¢. (5.2.2)

There are n¢ components of vector ¢ which are allowed to vary within a constraint
box, while the remaining n—n¢ components are fixed. That is, there is an index set

I.c {1,.-+,n} such that
CeES={veR" | XM <y, < XM, iel; v;i=((fixed), igl} (5.2.3)

where § is compact. The dynamical system (5.2.1)-(5.2.2) is also subject to the control

constraints

u(t)€Q= { ”’ERm | Uémin Sﬂ‘t < U:ma:z:’ 1= 19""m} VtE[to,tf], (524)

1

where  is compact, and the linear end-point inequality constraints
gi(w, Q) =i +(d)T(¢ - )+ () Ty () <0,  i=1,-m (5.25)

In the above, @(t) is a given piecewise continuous function defined on the interval
[to,s], and ¢a given vector in R". Also, y%¢(t) € R" is the state of the system
(5.2.1)-(5.2.2) on [to,ts], which corresponds to u(t) € R™ and (€R"; ¢;, t=1,---,7,
are some given real numbers; d; and e;, i=1,---,r, are some given vectors in R". Let

the set of admissible controls be,
U={u]|u:[ty,ts] - Qis continuous a.e. }, (5.2.6)

and let If be the set of equivalence classes of functions in & which are equal almost

everywhere on [tg,ts]. Let the set of combined feasible controls and feasible initial

states be

FE{(w,()|vel, (€S, gi(u,()<0, i=1,---,r}. (5.2.7)
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We may now formulate the optimal control problem as follows:

Problem (P). Subject to the dynamical system (5.2.1)-(5.2.2), find a control veld
and an initial state (€S such that the cost functional

go(w, €) = w(¢, y*<(tp)) + /t " (Ll(y“"(r),r) + Ly(u(r), r))dr (5.2.8)

is minimized over F.

The following conditions are assumed to be satisfied.

Assumption 5.2.1 A(t) and B(t) are, respectively, real piecewise continuous n X n

and n X m matrices defined on [to,t];

Assumption 5.2.2 w:R" X R"™ — R is convez and continuously differentiable in
both ( and ys; Ly : R™ X [to,t5] — R, is continuous on R™ X [to,ts], and convezx
and continuously differentiable in R™ for each t € [to,t5]; Lo : R™ X [to,t5] = R, is
continuous on R™ X [to, 5], and strictly convez and continuously differentiable in R™

Jor each t€[to, ty].

Under Assumption 5.2.1, it is well-known from the theory of linear systems that
[18,63], for each u € U, there exists a unique absolutely continuous solution to the
system (5.2.1)-(5.2.2) which can be expressed in terms of the fundamental matrix of

the differential equation (5.2.1). More precisely, for any t € [to, t5],

40 = 8t O+ [ 8B - i) (529)

where ®(t,7), the fundamental matrix of the differential equation (5.2.1), is a real

continuous 7 X n matrix defined on t, 7 € [tg, t5], and satisfies the following system:

aq»gtt,r) = A@)®(t,7), Vi,T € [to,ts], (5.2.10)
®to,to) = I (5.2.11)
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5.3 Existence of the Optimal Control

Let S) be a given subset of R"*!, §; be a given subset of R2". For every (y,t) € 51,
let U(y,t) be a given subset of R™, and let M C R™*™*! be the set of all (y,u,t)
with (y,t) € Sy and u € U(y,t). For each fixed (y,t) € S1, let the extended velocity
set V(y,t) C R*™ be the set of all (22, 2) with 2°> fo(y,u,t), 2= f(y,u,t) for some

v€U(y,t). We consider the problem of the minimization of the cost functional
o tr
I, Q) ==&y )+ [ P un, e (53D)
0
with y“¢(t)€R™, u(t) € R™, for any t € [to, 1], satisfying

9C(t) = fyn (1), u(t), 1), 1€ fto,ts] (ace.),
(“(t)t) € 81, u(t) € Uy “(t),t), t€ [to,tf] (ace.),
(€, y¢(ts)) € 52,
fo(y“¢(t), u(t),t), L—integrable in [to,%].

(5.3.2)

A pair (u, ¢), which satisfies all the requirements (5.3.2) and u(-) is measurable, is
said to be a admissible pair. Let £ be the class of all admissible pairs (u, ). The
following is the famous Filippov Existence Theorem (see, for example, Section 9.3 of

Cesari [14], or, Section 4.2 of Lee and Marcus [76]):

Theorem 5.3.1 (Filippov) Let S; be compact, S; closed, M compact, w lower
semicontinuous on Sy, fo(y,u,t), f(y,u,t) continuous on M. Assume that, for almost
all t, the set V(y,t) is convez in R1*™ for each fired (y,t) € S1. Then the functional
J(u, ¢) given by (5.3.1) has an absolute minimum in the nonempty class & of all

admissible pairs.

Next, we are going to apply the above Filippov Existence Theorem to show that,
under a mild condition, the existence of a solution of the optimal control problem (P)

defined in Section 5.2 is always guaranteed.

Theorem 5.83.2 Assume that the feasible control set F is nonvoid. There always

exists a solution to the optimal control problem (P) defined in Section 5.2.
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Proof: Since ®(Z,7) is a real continuous nxn matrix defined on ¢, € [to, 7], with

fixed to and ty, there exist a constant 0 <k < oo such that
|®(t, to)l| < k
for all t€[to, ). Then, according to (5.2.9),

o<l < k(¢ +1¢

+ /t:' I B(r) |l | w(r) || dr + /t:' | B(r) || || &) | dr),

Because u(t) €,  is compact, ( €S, S is compact, and, B(t) and 4(t) are piecewise

continuous on [tg,ts], there exists another constant 0 < k¥’ < oo such that
Iy <@l < ¥
for all € [to,27]. So, there exist compact sets 51, S2 and M, such that,

(y»¢(t),u(t), t) € M, (y“<(t),t) € S1, tE€ [to,t5] (a.e.),
(¢, 9*¢(ty)) € S2.
Notice that the assumption on the nonvoidness of the feasible control set ¥ implies the
nonvoidness of the class of all admissible pairs £. Based on the above observations and
the Assumptions 5.2.1-5.2.2, theorem 5.3.1 will hold if we can show that, for almost
all ¢, the set V(y,t) is convex in R'*" for each fixed (y,t)€ 5.

For any fixed (y,t) € S1, select arbitrarily two points ¢1, g2 from the corre-
sponding V(y,t), with ¢ = (29, 2) € V(y,1), corresponding to some u;(t) € Q, and
g2 = (29, 22) € V(y,1), corresponding to some uy(t) € Q. For an arbitrary A € [0,1],
denote = Au;+(1—A)ug. Then,

Az + (1= Q)22
A(L(y, 1) + La(ua(2), 1)) + (1 = A)(La(y, ) + La(u2(?), 1))
> L](y,t) + Lz(Aul(t) + (1 - /\)Ug(t), t)
Ll(y, t) + L2(ﬂ(t)7 t) (5'3‘3)

v

by the convexity of Ly(u,t) in ». Similarly,

Az + (1 - A)Zg
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A(A(t)y + B(t)(ua(t) — a(2))) + (1 = A)(A()y + B(2)(ua(t) — a(2)))
A(t)y + B(t)(Aur(t) + (1 = Mua(t)) — B(t)a(t)
A(t)y + B()(a(t) - a(2)). (5.3.4)

Combining relations (5.3.3) and (5.3.4), we then have
A+ (1= Mgz € V(1)

corresponding to control @(t) = Aui(t)+(1—A)uy(t) € R, since R is a convex set.
Therefore, the set V(y,t) is convex in R!*" for each fixed (y,t) € §;. The proof is
then finished when theorem 5.3.1 is applied. a

Remark: Inspecting the above proof of the existence theorem for the optimal control
problem (P), it is worth to notice that the convexity assumptions on both w(y* ¢(t5))
and Ly(y*“ (), t) have not been used. Therefore, for the following more general prob-

lem of the minimization of the cost functional

2
J(n, ¢) = w(y™ < (to), v (¢)) + /t foy™$(r),u(r),T)dr  (5.3.5)
0
with y*¢(t)€R™, u(t)€R™, for any t€ [to, 1], satisfying

§4(2) = A(y*(1),1) + B(t)u(t), t€ lto,ty] (ae.),
(y“¢(1),1) € S1,  u(t) € U(y™4(t),t), tE€ [to,ts] (a.e.),
(¢, y4(ts)) € S2, (5.3.6)
A(y*<(t),t), B(t), i(t) piecewise continuous in [0, 4],
So(y*¢(t), u(t),t) convex in u(t), and L—integrable in [to,1/],

it can be easily shown that the extended velocity set V(y,t) is always convex in R!*+"
for each fixed (y,t) € S1. Therefore, as long as S, §2, M being compact, w lower semi-
continuous on S2, fo(y,%,t), f(y,u,t) continuous on M, and class £ of all admissible
pairs not empty, theorem 5.3.1 holds. Then, the existence of the optimal control of

the above problem is guaranteed.
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5.4 TUniqueness of the Optimal Control

We know that the general linear quadratic optimal control problem defined in Sec-
tion 5.2 can be viewed be viewed as an abstract optimization problem in function
space

(J}‘;Q;J(“’ ¢)

where F is the feasible set defined in (5.2.7). The following proposition shows that

the problem enjoys some convexity properties.

Proposition 5.4.1 J(u, () is a convez functional on L% [to,t]xR™. If we identify
all the elements of L [to,ts] which are equal almost everywhere on [to,ts], J(u, ()

becomes a strict convex functional. Moreover, the feasible control set F is conver.

Proof:  Denote y*¢(t)s by the unique solution of the system (5.2.1)-(5.2.2) corre-
sponding to u(t), Vt € [to, ts], and (. For any uy,us € L% [to,ts], and any (1,(z € S,
and any A€[0,1]

y)‘ul-l-(l—/\)uz, A H1-A)E2 (t)
= B(t, to)(AC + (1= A)Ca) + /t “B(t, 7)B(r)in(r) + (1= Nyua(r) — (7)) dr
: 0
- /\(<I>(t,to)C1 + /to &(t, 7)B(r)(us(r) — &(r))d‘r)

+H1- A)(@(t,to)cz + /tt &(t, 7)B(r)(ua(r) — i(r)) dr)
= A4 (t) 4 (1 - A)y> (1), (5.4.1)

Then,

J(Au1+(1=A)ug, A +(1-2)Co)
= WA+ (1= A)Gy, yrurtINu AHING ()
+ /t:l La( y,\u1+(1-,\)u2, AMrH1-N)Co (t),7)dr
N [’ LaQa(r) £ (1 — Naug(r), 7) dr
= wAG+H1=A)C, A4 (t) + (1 - Ny*@(ty))
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+ /tt’ Ly(Auy(r)+(1=A)ug(r), r) dr

+ [ B + (1= ), Ty dr
< Xy (1) + (1 - )l (17))
ty
+/t (ALl(yul’Q(T), ) +(1- /\)Ll(y“z’“(r),r))dr

+ /t Y (ALg(ul(r), )+ (1 - A L(ug(r), ‘r))dr (5.4.2)

by the linearity of system (5.2.1)-(5.2.2), and the convexities of w(y*<(t;)), L1(y*¢(2), )
and Ly(u(t),t). So,

J(Aur+(1=N)ug, AG+(1-A)2) < AJ(u1,¢1) + (1 = N (ug, (2),

which implies that J(u,() is a convex functional on L [to, ;] x R™.

If, however, we identify all the elements of L™ [to,?;] which are equal almost
everywhere on [to,¢s], let us select arbitrarily uy,us € L [to, 4], u1 # uz. Then, the

measure of the set of ¢ when u,(t) differs uy(t) will be a positive number, that is,
m({t | u1(?) # ua(2), t € [to, 5] }) > 0.
Then,
i
7 BaOun(r) + (= Nyua(r), ) dr
0
¢
</ ’(,\Lz(ul(r),r)+(1 - A)Lg(uz(r),r))dr. (5.4.3)
to
Applying (5.4.3) to (5.4.2), we then have
J(Aur+(1-A)uz, A +(1-2A)G) < AT (u1, () + (1= A)J (uz, (2),

which implies that J(u,() is a strict convex function.

To show the convexity of F, let us select arbitrarily (u1, (1), (ug, (2) € F, and
A€[0,1]. Then,

’Ml(t),UQ(t) € Q, Vi € [to,tf],
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and

¢+ (di) TG+ (&) Ty 9 (ty)
¢+ (di) ¢ + (&) Ty 2(ty)

IA
o

IA
o

for i=1,---,r. From the convexities of  and S, we have
Aug(t) + (1= ANuz(t) € Q (5.4.4)
for all t € [to,s], and
Ao+ (1-X)¢ € S. (5.4.5)
From the linearity relation (5.4.1), we have
& + (d) TG H(1=A)G) + (e) Tyrert(iAea XkiNG) (g )
= i+ (d)TAGHI=N)G) + () T (t5) + (1 = Ny* (1))
= Aei + (d) TG+ () Ty (1) + (1= A)(ei + (d) G2 + (e) Ty (1))
< 0. (5.4.6)

According to (5.4.4), (5.4.5) and (5.4.6), we know that (AurH(1-M)uz, AGH1-A)G) € F,

which implies that the feasible control set F is convex. o

The following proposition concerns with the global property of a local minimizer
of a (strictly) convex functional. The “convex” part of the proof can be found in [85],

while the “strictly convex” part of the proof is an easy extension to the “convex” part.

Proposition 5.4.2 Let f be a (strictly) conver functional defined on a conver subset
S of a normed space X. If T is a local minimizer of f, then Z is a (unique) global

minimizer of f.

Proof:  Since 7 is a local minimizer of f, there exists an open set N containing Z

such that

f(&) < f(z), VzeSnN.

121



Since set N is open, for any z €5, # %, we can always find an @, 0<a <1, such that

Z+a(z—Z) € §N N. We then have
f@) < f(Z+a(z - 7)) = f(1- @)z + az)
(1) ¥ f is convex, then
f(@) < (1-a)f(Z) + af(2).
Since 0<a< 1, we then have
f(@) < f(=2),
which implies that Z is a global minimizer of f.

(2) If f is strictly convex, then

f(@) < (1-a)f(Z) + af().
Since 0 < a< 1, we then have

(&) < f(z),

which implies that Z is the unique global minimizer of f.

a

Theorem 5.4.1 If we identify all the elements of LT [to, ty] which are equal almost

everywhere on [to,ts], then any local minimum (u*,(*) of the optimal control problem

(P) will be the unique global minimum.

Proof: It is a direct consequence of proposition 5.4.1 and proposition 5.4.2.

5.5 Computational Methods

u|

In this section, we only concentrate on a special case of the problem formulated in

Section 5.2:

wlC, (1))
L0 = y{OTEN )

La(u(),t) = T()Tu(t) + 3u() RE)u()
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where K, is symmetric and positive definite, K, symmetric and semi-positive definite,
Q(t) symmetric and semi-positive definite for any ¢ € [to,ts], R(t) symmetric and
positive definite for any t€[to, ty].

If there is neither control constraint nor end-point inequality constraint nor
variable initial state, the optimal control problem we study is just the classical linear
quadratic regulator problem, whose optimal control is in state feedback form and
can be computed by solving matrix Riccati equations [2,4,72]. Equivalently, for a
constrained problem whose (u, ) is interior to ¥, the problem can be treated as
though it is an unconstrained one. If, however, some constraints could be satisfied on

their boundaries, other methods should be used.

Let us first consider the problem where there is only the control constraint
(5.2.6), i.e. there is neither the end-point inequality constraint (5.2.7) nor the variable
initial state (5.2.3). In [5], Barnes developed an algorithm for computing the optimal
control of such problems. In his algorithm, the original problem (P) is replaced by a
sequence of subproblems of minimizing the first order Taylor approximation of the cost
functional (5.2.8). Consequently, the subproblems are the ones whose Hamiltonian
functions are linear in control. He has shown that, if the subproblems are solved
exactly and iteratively, and if the controls are updated in the right way, the sequence
of control functions will converge pointwise to the unique optimal control. However,
a very important prospect has been overlooked. That is, if there exists singularity at
some k-th iteration, which is likely to happen, the subproblem could not be solved

easily. So, the effectiveness of the algorithm is seriously affected.

Due to the availability of well-developed nonlinear programming techniques and
powerful computers, a practical and handy way to handle the generally constrained
optimal control problem seems to be the one which converts the original problem into
a finite-dimensional optimization. In Chapter 2, many commonly used parameteri-
zation techniques have been surveyed. In this chapter, only control parameterization

techniques are used to solve the Problem formulated in Section 5.2,
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5.5.1 A Parameterization Method

In this section, a sequence of approximating problems (P,), p=1,---,00, are con-
structed from problem ( P) by discretizing each control variable by piecewise constants.

For each p, the interval [to,?/] is subdivided by a mesh of Ny+1 points:
AP: o=t <B < << <ty =ty
The partition I?, corresponding to each AP, is defined by
IP={Il: k=1,---,Np},

where I =[t}_,,t}]. The AP’s are chosen such that the following two properties are

satisfied: (i) AP*! is a refinement of A?; (ii) by denoting |IT|=|t} —1}_,|,

lim max_|If|=0.
p—roo k=1,---,Np

Corresponding to each partition Z?, let P be a set which consists of all the piecewise

constant controls expressed by

Np
w(t) =Y p*Xpe(t) (5.5.4)
k=1

for t € [to,ts], where A7 is the indicator function defined in Chapter 2. When u(t) is
approximated by uP(t) during [to,ts], the control function is then parameterized by
the vector [(;ﬂ”l)T, e (;L”'NP)T]T, pP*eR™ k=1,---,N,. Let

& = [(uP)T,- -, (uPN*)T,¢T]T € RoF

where 0, = mN,+n. After the control is parameterized by piecewise constants, the

original system (5.2.1)-(5.2.2) becomes

Np

(1) = A@)y(tl6) + B() Y wPrxpp(t) + B(2) (5.5.5)
k=1

y(tl) = ¢, (5.5.6)

where B(t)= B(t)i(t), and the control constraints defined in (5.2.4) becomes

U{nin S”’?,k < U:naa:, 1=1,---,m, k=1""’NP' (557)
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The constraints on initial state are still the same as before
(e€S={veR"| X" <y, < XM, icly v;=(i(fixed), igl ). (5.5.8)

Let y“<(:|é?) be the solution of the above system (5.5.5)-(5.5.6). Then, the linear

end-point inequality constraints (5.2.5) becomes
Gi(€P) = ci+ (d) ¢+ (&) Ty(tsl€?) <0, i=1,,r (5.5.9)

Let =P be the set of all those £P vectors which satisfy the constraints (5.5.7) and (5.5.9).

We may now formulate the approximating problem as follows:

Problem (P,). Subject to the dynamical system (5.5.5)-(5.5.6), find a vector £ =
[(uP))T, -+, (uPM2)T,¢T]7 such that the cost functional

Bo(E) = 3CTKC+ gt Kaa(tlE)
(3 (r|s>TQ(r)y(r|£>+T(r)Tz:up'kxp(r))
TS () R (T xp(n))dr (5510
+f (Z# 2) ()(kz_::lu ()i (6510

is minimized over =P.

In the following, we assume that the interval [to, ;] is subdivided uniformly by
Np+1 points. According to (5.2.9), the solution of the system (5.5.5)-(5.5.6) becomes

y(tel) = G(k)E - G(k)

where
G(k) = [ /t " ®(te, 7)B(r) dr, -, /tt* &(tx,7)B(r) dr, 0,..., 0, (D(tk,to)]
Gk = /: ®(ty, r)B(r)a(r) dr

Thus, by using the rectangular integration rule, the cost functional in (5.5.10) becomes

the following quadratic function

l(€) = 36T + 5 (G- CO%)) K (GO0E - Gy
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+ 55 (ks - 606" ate (Gtkse - 610

k=0
Np-1 h Np-1
+hY T(t) w* + 5 30 (W) R() WP,
k=0 k=0

The above problem (P,) can then be approximated by the following quadratic pro-

gramming problem:

Problem (QP,). Find a vector £&P = [(uP)7,. .., (u#M)T ,¢T]T € R™Netn such
that

min  go€) = €TME+77E (5.5.11)
st. G&)=a;+BTE <0 i=1,-r (5.5.12)
where
Np-1
M=h)_ G(k)TQ(t)G(k) + G(N,)T K3 G(Ny) + h diag[ R(to), - - -, R(tn,—1), K1),
k=0
Np-1
y=h [T(to)", -, T(tn,-1)",0]" =k Y G(k)TQ(t) G(k) — G(N,)T K3 G(Ny),
k=0
and
a; = ¢; — e;rG'(Np), B; = G(NP)TC,' +[0,:--,0, d;-r ]T
fori=1,.--,r.

Notice that, because R() is symmetric and positive definite for any k =
0,---,Np, — 1, Ky is symmetric and positive definite, Q(¢x) is symmetric and semi-
positive definite for any £k = 0,---,N, — 1, and K; is symmetric and semi-positive
definite, matrix M is therefore symmetric and positive definite. The problem (Q P;)
above is therefore a standard quadratic programming problem, which can be solved

efficiently by the active set method within finite steps.
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Chapter 6

Numerical Examples

6.1 Introduction

To apply the algorithm described in Chapter 3 or in Chapter 4, it is essential to solve
the “direction-finding” subproblem (P}/). For the special case where there is neither
control constraint, nor end-point constraint, nor variable initial state, the “direction-
finding” subproblem (P}') is just a classical time-varying LQR problem which can be
solved by integrating two Riccati equations. For the case where there is only the control
constraint (5.2.6), but there is neither the end-point inequality constraint (5.2.7) nor
the variable initial state (5.2.3), it can be solved by a convergent algorithm proposed
by Barnes [5], or by an effective first-order strong-variation algorithm proposed by

Mayne and Polak [95].

For optimal control problems with terminal constraints, a convenient way to
solve the “direction-finding” subproblem (P]') is to parameterize the control variables
by piecewise constants so that (P]') is converted to a quadratic programming problem
(see Chapter 5 for details). The advantages of this convertion are that (1) any solution
of a quadratic programming problem with N variables can be obtained in no more
than N steps; (2) quadratic programming problem is usually solved by an active set
method which involves only matrix manipulation, so it can be solved efficiently, (3)

there are many good codes available. Some of them are freely available, for example,

127



a Fortran code gld.f by Schittkowski and Powell.

For optimal control problems with path constraints, they can always be con-
verted, approximatedly, into optimal control problems with only terminal constraints

by introducing some extra state variables (see Section 4.8 for details).

In this chapter, five examples, which have fixed initial state, are solved by ap-
plying the algorithm described in Chapter 3. The examples in section 6.2 have neither
terminal nor path constraint; while ones in section 6.3 have either terminal or path

constraints.

6.2 Without Terminal and Path Constraints

In this section, three examples without terminal and path constraint are solved. As a

comparison, four types of simulations are tried:

e type-A: using only the first-order strong-variation algorithm proposed by Mayne
and Polak [95];

o type-B: using the algorithm described in Chapter 3 whose “direction-finding”
subproblem (P]) is solved by Mayne and Polak’s first-order strong-variation

algorithm;

o type-C: using the algorithm described in Chapter 3 whose “direction-finding”

subproblem (P}') is solved by quadratic programming;

¢ type-D: using the algorithm described in Chapter 3 whose “direction-finding”
subproblem (P[) is solved by integrating two Riccati equations (for uncon-

strained LQR).

In all cases, the stopping criteria are set to be —6H™™ < 10~3 and —0(u) < 1072,
where [95]

sH™n(w) = sup (T(0) = H(alt), (1), u(t), 1))
te[tmt!]
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0(u) = 713- /t:’(ﬁ(t) — H(a(t),p(2), u(t),t)) dt

where A=t;—1 and

-ﬁ-(t) = Elelg H(z(t), p(), 15 1), Vi € [to, t4]-

Clearly, § F™™(u) and 6(u) < 0 for any u €Y. The approximation schemes for matrices

A1, Ay(t) and A3(t) are quite primitive:

A1 = )\kIan
Aa(t) = max{1, 0.01Ax(¢)} nxn

A3(t) = max{1, 0.012,() Mxm

for any t € [to, ts]. In the above, A; is the largest eigenvalue of matrix K.z, Ax(t) is

the largest eigenvalue of matrix (””(‘) H“(')), for t € [to,ts]. In the following, N* is

Huz(t) Huu(t)
denoted by the number of iterations before termination, and u* by the final control.

Example 1. Consider the optimal control problem

5
min J(u) = %/ (w%(-r) + z3(1) + uz(‘r)) dr
0
subject to dynamics described by Van der Pol’s equation,
21(2) = z2(2)
£(t) = z2(t)(1 - 23(1)) — 21(2) + u(?)

with the initial condition

z(0) = (1.5, 1.5)7.

The initial control has been set to be
u’(t)=0, Vtelo,5).

The sampling number is set to be 200. Notice that, the first-order algorithm alone

terminates before reaching the stopping criteria with no further improvement, and,
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type | N* | J(u*) 6(v*) | SH™"(u*)
A | 45 | 4.423059 | -0.001134 | -0.003152
B | 11 | 4.421777 | -0.000438 | -0.002431
C | 4 | 4.420835 |-0.000002 | -0.000022
D | 5 |4.423215 | -0.000941 | -0.003902

101 T T T T T T

i 1 .
0 5 10 15 20 25 30 35 40 45

Final Control u*(t)

L
N -

Figure 6.1: Results of Example 1, dotted line for type- A, dashdot line for type- B, solid
line for type-C, dashed line for type-D.
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it converges much slower than the other three types of simulations. However, please
be aware that only the number of iterations are compared here, not the CPU time.
The new algorithm described in this dissertation is, of course, more computational

intensive than first-order algorithms.

Example 2. Consider the same dynamics and cost functional as in Example 1,

except that the control is now constrained by
-1<u(t) <1, vt € [0, 5].

Notice that, the first-order algorithm alone converges much slower than the other two
types of simulations. Once again, please be aware that only the number of iterations
are compared here, not the CPU time. The new algorithm described in this dissertation

is, of course, more computational intensive than first-order algorithms.

Example 3. Consider the same dynamics and control constraint as in Example 2,

except that the cost functional is a nonlinear one

min  J(u) = %/05 (cosz(:cl(r)) + sin2(w2(r))) dr.

—1<u<1

Obviously, because the Hamiltonian is linear in the control, the optimal control must be
bang-bang (assuming there is no singularity). Notice that, final values of —6(u*) from
both type-A and type-B are smaller than 10~3, while the final values of —&H™"(u*)
are larger than 10~3. Notice that, type-A and type-B terminate before reaching the
stopping criteria with no further improvement, and, the first-order algorithm alone
converges slower than the other two types of simulations. Once again, please be aware
that only the number of iterations are compared here, not the CPU time. The new
algorithm described in this dissertation is, of course, more computational intensive

than first-order algorithms.
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lteration number

type | N* | J(v*) 0(uv*) | SH™"(u*)
A | 40 | 4.553104 | -0.000312 | -0.001221
B 9 | 4.553078 | -0.000037 | -0.000804
C 10 | 4.553684 | -0.000156 | -0.009200
)
5 20 25 30 %

ot
[2a]
T

Final Control u*(t)
S
n__o

0
-
T

1

Figure 6.2: Results of Example 2, dotted line for type- A, dashdot line for type- B, solid

line for type-C.

25 3

Time (sec)
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type | N* | J(u*) O(v*) | SH™"(u*)
A 17 | 2.166657 | -0.003459 | -0.138943
B 6 | 2.149522 | -0.000155 | -0.016705
C | 11 | 2.149594 | -0.000085 | -0.005073

3-5 T L) T 1 1 L ¥ 1 T

2 0 2 4 6 8 10 12 14 16 18

Iteration number

-
4

o
n
T
1

Final Control u*(t)
(=)

=)
L >

Figure 6.3: Results of Example 3, dotted line for type-A, dashdot line for type-B, solid
line for type-C.
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N*| « v | J(u*) x3(1) -7
14 | 0.02 | 0.01 | 0.1763 | —1.074 x 10~©

Time (sec)

Final State x*(t)
=)

S n e

L) L) v

4
el
T

0
—

Figure 6.4: Results of Example 4, dotted line for initial results, solid line for final

results, dashed line for path constraint.
6.3 With Terminal And/Or Path Constraints

The following two examples have either terminal or path constraints. In both cases,
the parameter p in the exact penalty function 6,(u), defined in Chapter 3, is set to
be 5. In the following, N* is denoted by the number of iterations before termination,

and »* by the final control.

Example 4. Consider the optimal control problem

min J(u) = /01 (x%(r) + 23(7) + 0.005 * u2(‘r)) dr
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subject to the dynamical system
£1(t) = 22(2)
9(t) = —z1(t) + u(?)
with the initial condition
2(0) = (0, -1)7,

the control constraint

-20<u(t) <20, Vtelo,1],

and the continuous state path constraint
B(z(t),t) = zo(t) — 8(t — 0.5)2+0.5<0,  Vte[o,1].

According to Section 4.8, the above state path constraint can be converted into a state

terminal constraint by the following transcription: Define

2 -
L6) = (E+€)?*/4e when £ > —¢ (63.)
0 when § < —e¢

Let a new state variable x3(t) be such that

io(t) = L(d(a(t),t),  VEe[o,1]

Then, the above state path constraint can be well approximated by the following

terminal state constraint:

1153(1) -7 S 07

if the two positive constants € and v are chosen appropriately. The initial control has
been set to be

w’(t)=0, Vte[o,1].

The sampling number is set to be 30.

Example 8. In [141]7 a realistic and complex Problem Problem of transfering contaln-

ers from a ship to a cargo truck at the port of Kobe was considered. The container
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crane is driven by a hoist motor and a trolley drive motor. For safety reasons, the
objective is to minimize the swing during and at the end of the transfer. The problem

can be modeled as the following optimal control problem [155]:
min J(u) =45 [ 1 (xg(r) + zg(r)) dr
subject to the dynamical system
£1(t) = 9z4(t)
&a(t) = 9z5(t)
£3(t) = 9ze(t)
E4(t) = 9(17.2723(t) + u1(t))
E5(t) = uy(t)
fo(t) = -%(t) (27.08z3(t) + 25(t)ze(t) + ul(t)>
with the initial state condition
z(0) = (0, 22, 0, 0, -1, 0)7,
the terminal state condition
z(1) = (10, 14, 0, 2.5, 0, 0)7,
the control constraints
-2.83<uy(t) <283, Vtel[ol],
~0.81 < uy(t) <0.71,  Vte[o,1],
and the continuous state path constraints
2.5 <z4(t) <25, Vte(o,1],
-1.0< z5(t) £ 1.0, Vte|[0,1].

For two appropriately chosen positive constants € and 7, the above terminal state con-

dition can be well approximated by the following terminal state inequality constraint:

(z1(1) = 10)? + (z9(1) — 14)? + 22(1) + 22(1) + (z5(1) — 2.5)* + z2(1) < 7.
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Let a new state variable z7(¢) be such that
d7(t) = Le(a(t),)
for any t€[0, 1], where

Le(2(t),t) = Le(24(t) = 2.5)) + Lo(—24(t) — 2.5))
+Le(z5(t) — 1.0)) + Lo(~24(t) — 1.0))

for any t€[0, 1], where L.(-) is as defined in the last example. Then, the above state

path constraint can be well approximated by the following terminal state constraint:
z7(1) =72 <0.
The initial control has been set to be
4°(t) = (2.0, 0.5)7,  Vvte|o,1].

The sampling number is set to be 70.
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N*le=m=72| J(u*) | (2i(1), 23(1), 25(1), z3(1), 25(1), z5(1)) | =7(1)-72
60 0.005 0.00472 | (9.942,14.003,-0.030,2.489,-0.002,-0.025) | 1.631 x 10~7
10 4
% ______7.-_:"_ _______
%) )
2 0.5 1
Time (sec)
1

uz(t)

Figure 6.5: Results of Example 5, dotted line for initial results, solid line for final

results, dashed line for path constraint.

138




Part III

Applications to Biomechanics






Chapter 7

The Optimal Control of a Movement of the

Human Upper Extremity

7.1 Introduction

Because the number of muscles spanning each joint usually exceeds the number of de-
grees of freedom defining joint motion, the human and animal musculoskeletal system
is mechanically highly redundant. In addition, many muscles can affect more than one
joint, which causes complex dynamical interactions. Therefore, finding the muscle ex-
citation patterns which provide the desired movement is difficult by trial and error for
even the simplest case [84,170]. On the other hand, optimal control theory provides
a unified and systematic tool for solving such problems, provided the performance

measure is known.

Due to the complexity of human locomotion, dynamics models always have the
following characteristics: high dimension, severe nonlinearity, complex coupling, and
constraints. The nonlinearities are introduced by the generalized gravitational force
terms, generalized inertial terms, and by the nonmlinear behavior of muscles. The
coupling becomes more evident when the mechanical system is closed-loop, and when
some muscles can affect more than one joint. The constraints include the limits on
controls, the joint limits and the terminal constraints. Clearly, except for some special

cases [79,80,88), finding closed-form optimal control solutions is almost impossible. A
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8,

Figure 7.1: The human upper right extremity modeled as two rigid segments — the

arm and the forearm, including the hand, moving in the vertical plane of the scapula.

numerical approach has to be adopted in most cases.

In this chapter, the skeletal and muscular dynamics of the human upper extrem-
ity are studied by using optimal control theory. The algorithm, which was developed
in Chapter 3 and is capable of handling generally constrained optimal control prob-
lems, is employed to compute the activity which occurs in each muscle of the upper
extremity when the goal is to move the arm from an initial resting position so as to
touch and stop at a target with the tip of the index finger while the muscular stress,
the joint constraint forces, and the neural excitations are minimized. The results ob-
tained from the simulation describe all the major dynamic events that take place in

the upper extremity when the movement is attempted.

Most results in this chapter have appeared in (89,90].

7.2 Neuro-Musculo-Skeletal Model

The human upper extremity is modeled as a two-segment, planar, articulated linkage,
with the arm as one segment and the forearm including the hand as the other. The
proximal end of the arm is also assumed to be a pin joint (see Figure 7.1). All

movement of the system is restricted to the vertical plane of the scapula.
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Figure 7.2: The schematic description of the actuation system that represents the
human upper extremity musculature, which is from Anderson’s “Grant’s Atlas of

Anatomy”.

A total of twelve upper extremity musculotendon units provide the actuation.
They are: (1) teres major, (2) latissimus dorsi, (3) triceps brachii (long and lateral
heads), (4) pectoralis major (clavicular head), (5) pectoralis major (upper sternal
head), (6) pectoralis major (lower sternal head), (7) supra spinatus, (8) middle del-
toid, (9) biceps brachii, (10) triceps brachii (medial head, (11) brachialis, and (12)
brachioradialis (see Figure 7.2 which is from [3]). The biceps brachii, brachialis and
brachioradialis, which are on the anterior side of the elbow joint, are the three main
elbow flexors. The triceps, which is on the posterior side of the elbow joint, is a main

elbow extensor.

FEach musculotendon actuator is modeled as a two-state, lumped-parameter en-

tity, in series with tendon. Driving the musculotendon model is a first-order represen-
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Figure 7.3: Mechanical representation of a muscle.

tation of excitation-contraction (activation) dynamics.

7.2.1 Skeletal Dynamics

The dynamical equations governing the motion of the upper extremity were derived

using Newton’s laws. The analysis yields the following differential equation:
A(6)6 = B(6)6* + C(6)g + D()F, (7.2.1)

where 8, é, 6 are 2x1 vectors of segment angular displacements, velocities, and accel-
erations; F; is a 12x1 vector of tendon forces; D(6) is a 2Xx 12 moment-arm matrix
which transforms muscle forces into joint torques; A(f) is a 2x2 inertia matrix; B(6) 92
is a 2x 1 vector describing both the centrifugal and Coriolis effects; C(6) is a 2x 1
vector describing the gravitational effect, and g is the gravity constant. The details of

equation (7.2.1) can be found in [39].

7.2.2 Musculotendon Dynamics

Figure 7.3 depicts the lumped parameter model for the muscle and tendon. It contains
a spring-like tendon through which the muscle force is exerted on the bones to generate

movement. The muscle is in series (off axis by the pinnation angle @) with the tendon,
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Muscle Force-Length Curve

Figure 7.4: Force-length relation.

and is assumed to consist of three components: an active force generator representing
the muscle contracile mechanism, a parallel elastic component representing the passive
muscle elasticity, and a parallel damping component representing the viscousity of the
muscle fiber fluids. The pathlength L, is the total length between two end-points
where the muscle is attached. This model is a modification, by including muscle mass,
by He and Levine [49] of the dimensionless model developed by Zajac et al [169]. It
was assumed that all muscle fibers are equal in length, parallel to each other, and
oriented at the same pinnation angle a. The muscle volume was assumed to remain
constant, or equivalently, muscle thickness L,, was assumed to remain constant during

stretch or contraction.

The tendon is modeled as a nonlinear spring which exhibits an exponential
force-length relation at small tendon lengths, and a linear relation for longer tendon

lengths:

A, (ekte(Le=Lg) _ L, <L, <L
Ry =1 M ) ekl (7.22)
kt(Lt - Ltc) + E(Ltc) L > L‘c

where F} is the tendon force, L; the tendon length, L, the tendon length at rest, L,,
the tendon length at which the tendon force shifts from a nonlinear relation to a linear

one, and Ay, k;_, k; are stiffness coefficients.

The active muscle force is the product of three independent factors: (1) the

force-length relation f(L,,), (2) the force-velocity relation g(L,,), and (3) the muscle
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Muscle Foroe-Velocity Curve

Figure 7.5: Force-velocity relation.

activation level a:

Fa = sz(im)g(v)a (7'2'3)
where L., = L,,/L,, v = L, /Vynaz, F, is the active muscle force, F, the maximum
isometric force, L, the muscle length at which F, is achieved, V,,,, the maximum
shortening velocity, a the muscle activation level. The force-length relation is shown

in Figure 7.4. There can be approximated by many different curve fitting techniques.

Currently, the following curve-fitting formula is used:
f(Lm) = sin(bs L7, + boLum + b3) (7.2.4)

where b; = —0.9062, b, = 4.5009, and b3 = —2.0239. The force-velocity relation is
shown in Figure 7.5. There can also be approximated by many different curve fitting

techniques. Currently, the following curve-fitting formula is used:
g(v) = 1 + arctan(cyv® + c2v? + c3v) (7.2.5)

where ¢; = —1.3166, c; = —0.4027, and ¢3=2.4541. The passive muscle force is assumed
to take effect at length L,, > L., and is generated by a stretch of muscle fiber without

electrical stimulation, increases exponentially with respect to muscle fiber length L,,
(110}
Fp(Ly) = Ap(eFreIm=Ls) _ 1) (7.2.6)

where F; is the passive muscle force, L,, the length of muscle, and A,, kp, the stiffness

coefficients. The damping force satisfies that

Fy=kql,, (7.2.7)
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where ky is the damping coefficient. Although Fj has negligible effect on the muscle
dynamics, it was included in this musculotendon model for the sake of completeness.
The total force of a muscle is the sum of the passive force F}, the active force F, and
the damping force Fy. According to Figure 7.3, the musculotendon dynamics is the

following;:

.. - .2
MpL,, = Ficosa— (F, + F, + Bp,L,,) cos’ a + MZL"' tana (7.2.8)
m

and

& = arcsin 22 (7.2.9)
L,

where L,, is the muscle thickness which is assumed to be a constant. Detailed deriva-

tion of the above equation can be found in [49].

The above musculotendon model includes two sets of parameters. One set uses
non-specific muscle parameters. These parameters are assumed to be identical across
all the muscles modeled. The other set includes following four muscle-specific param-
eters: F, the maximum isometric force, L, the muscle length at which F, is achieved,
M,,, the muscle mass, and L,, the tendon length at rest. The details of the parameters

of the twelve muscles studied can be found in [39)].

7.2.3 Activation Dynamics

The activation dynamics describes the relation between the neural excitation to the
muscle and its mechanical activation. The corresponding physiological process within
the muscle is the release, diffusion, and uptake of the Calcium ions that control the
production of sliding forces between the intermuscular filaments. The most important
characteristics of activation dynamics are the different time constants for activation
and deactivation, the low pass filter property, and the saturation of activation. It is
assumed that the activation dynamics is independent of muscle contraction dynam-

ics. The following first-order, nonlinear differential equation is used to describe the
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Figure 7.6: System diagram of the neuro-musculo-skeletal control system

activation dynamics:

i(t) = ——(amaz — a(t))u(t) + ——(amin — a(®))(1 - u(t)) (7.2.10)
Trise Tfall

with
0<u(t)<1 (7.2.11)

where u(t), Vt € [to,1;], taken as the rectified electromyogram (EMG), is the neural
excitation to the muscle, a(t) the excitation level of the muscle, 75 the rising time
constant of the excitation, Tgn the falling time constant of the excitation, @mq-(=1)
the higher limit of the activation level, api,(=0) the lower limit of the activation level.
Obviously, 0<a(t) <1. The above activation dynamics has the following features: (1)
the mechanical activation follows EMG asymptotically, and is bounded between 0 and
1; (2) the rising of activation is faster than its decaying (7yise < Tran); (3) different
muscles can have different time constants Tijge, Tran, i.e. faster muscles have faster

responses.

7.2.4 Complete Dynamics

It is clear that tendon force is the interface between the musculotendon dynamics
and the skeletal dynamics, muscle activation couples the activation dynamics and
the musculotendon dynamics. Figure 7.6 illustrates such relations. By combining
the equations of the skeletal, musculotendon and activation dynamics, we obtain the

complete dynamics for the neuro-musculo-skeletal control system (NMSCS) of the
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human upper extremity. It can be described by the following vector form equation:

(t) f(z(t),u(t), 1), (7.2.12)
2(to) = zo. (7.2.13)

In the above, z=[z;,: -, z40] is the state vector of the system which consists of angles
and angular velocities of both the arm and the forearm, the lengths, velocities and
activations of the twelve muscles described above. u={[uy, -+, u;2] is the control vector

of the system, where u; is the neural excitation signal of the i-th muscle.

7.3 Optimal Control Formulation

The purpose of this chapter is to find the activity which occurs in each muscle of the
upper extremity when the goal is to move the arm from an initial resting position so
as to touch and stop at a target with the tip of the index finger while the muscular
stress, the joint constraint forces, and the neural excitations are minimized. This can

be precisely formulated as the following constrained optimal control problem:

Problem. Subject to the dynamical system (7.2.12)-(7.2.13), the hard control con-
straints 0<u; <1,i=1,---12, and four terminal-state equality constraints z1(ts) =0{,
za(ty) =05, i1(ty) = &2(tf) =0, find a control vector u = [uy,---,u2)" such that the

cost functional
ty
J(u) = / h(2) dt (7.3.1)
to
with

h(t) = s(t)TWIS(t) + FA/B(t)TW2 FA/B(t) + FN/A(t)TW3 FN/A(t)
+TA/B(8)TW, TAB() + TNIAE)TWs TVA() + u(t) Weu(t)  (7.3.2)

is minimized over control space.

In the expression of the cost integrand (7.3.2) above, the vector s= [31, Sy 612]T

represents the muscular stress: s; = F} /F}, where F} is the i-th tendon force, and F}
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the maximum isometric force of the i-th muscle, i =1,--+,12. The vectors FA/E =

(F2 £/ EIP) ana PN < [EVA EYIA ENVA,

2 consist of three directional

components of the bearing forces at the elbow joint and the shoulder joint respectively;
the vectors T74/B =[T1A /B T.f /B A/ B] and TN/A = [TN/ 4 TN/ 4 N/ 4] consist of three
directional components of the bending moments at the elbow joint and the shoulder
joint respectively. Bending moment is the muscle’s tendency to rotate a body segment
about an axis that is perpendicular to the joint axis, and bearing force is a bone-to-
bone interactive force at a joint, which includes shear, stress and tensile forces (see
pages 72-74 of [39] for details). The vector u = [uy,-++,u12]" represents the neural
excitation. W; and Ws are 12 x 12 diagonal constant weighting matrices, and W;,

1=2,3,4,5 are 3 x3 diagonal constant weighting matrices.

The following discussion elaborates the rational for adopting the above cost
criterion. When the upper extremity moves in a motion plane due to muscular activity,
each active muscle produces forces parallel to its longitudinal axis. In general, the
forces produced by different muscles are not parallel nor do they lie in the same
plane. Thus, they can have components that produce moments about an axis which
is perpendicular to the joint axis. Such moments do not make any contribution to the
joint’s motion, and at least some of them may be harmful to the integrity of the joint
because they exert pressure which attempts to bend the assumed joint axis. Also,
for the most part, the bearing forces at the joint center are probably compressive,
which would also have a destructive impact on the integrity of the joint. When a
“comfortable” movement is performed, it is reasonable to expect a self-convenient
muscular harmony with minimal self-destructive effects. It is for this reason that
the minimization of joint bearing forces, bending moments and muscle activations is

sought in our attempt at predicting muscular activity.

Observing the dynamical system (7.2.12)-(7.2.13) of the musculo-skeletal model
of the human upper extremity, it has the following characteristics: high dimension
(=40), nonlinearity (which is introduced by the generalized gravitational force terms,

generalized inertial terms, and the nonlinear behavior of muscles), and various con-
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Figure 7.7: Stick figures — the left is under the initial control, the right is under the
final control.

straints (which include the limits on controls, the joint limits and the terminal con-
straints). Clearly, finding closed-form optimal control solutions is impossible. A nu-
merical approach has to be adopted here. In the following, the algorithm, which
was developed in Chapter 3 and is capable of handling generally constrained optimal

control problems, is employed in the computation.

7.4 Results

The initial state in (7.2.13) is selected to represent a rest condition of the musculo-
skeletal system of the human upper extremity: the initial angular velocities of the two
segments are zero, the initial muscle fiber lengths of all twelve muscles are equilibria
of their corresponding musculotendon dynamics (7.2.8), the initial muscle velocities

and initial levels of activations of all twelve muscles are zero.

To start the optimal control algorithm, the following initial control pattern is

chosen: the 7th, 8th, 9th, 11th, and 12th muscles, i.e. supra spinatus, middle deltoid,
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Figure 7.8: Plots for the final (in solid lines) and the initial (in dotted line) control

trajectories.

biceps brachii, brachialis, and brachioradialis, are all on, the rest of the seven muscles,
i.e. teres major, latissimus dorsi, triceps brachii (long and lateral heads), pectoralis
major (clavicular head), pectoralis major (upper sternal head), pectoralis major (lower

sternal head), and triceps brachii (medial head), are all off. It stops after 37 iterations.

Although most of the dynamic events that occur during the execution of the
investigated motion cannot be confirmed empirically — for example the muscle tension
histories and the joint constraint forces, it is possible to obtain data for angular tra-
jectories. Film records were made in order to document the movement at the joints.
The purpose was to compare the recorded signals with those generated by the optimal

control algorithm.

In Figure 7.7, the left part shows the stick figures of the movements of the
upper extremity under the initial control described above, the right part shows the

stick figures of under the final control. Figure 7.9 plots the angular trajectories and
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Figure 7.9: Pots for angles 8, (=z,), #2(=z2), and angular velocities él(z z3), 02(= z4),
where the solid lines correspond to the final control, the dashed lines correspond to

the initial control, the dash-dot lines correspond to the experimental data obtained

from film records.
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angular velocity trajectories computed by the optimal control algorithm, as well as the
angular trajectories corresponding to the experiment data obtained from film records.
Notice that the angular trajectories from the simulation resemble very closely those
from the experiment. It is clear from both Figure 7.7 and Figure 7.8 that the final
control achieves the goal very well: to excite each muscle in the upper extremity so
that it moves to touch a specific target with the tip of the index finger with zero

velocity.

There are two typical muscular activities: synergism and antagonism. Syner-
gism refers to an action combined by several muscles to share a required effort, while
antagonism refers to opposition between muscles whose muscular forces could result in
a segment move. Figure 7.8 plots both the initial and final control patterns, showing
a great deal of difference between them. The computed final control demonstrates the
quantitative patterns of the synergistic activities that take place in the musculature

of the upper extremity when the investigated movement is performed.

It is interesting to see that the optimal patterns of the 4-th muscle, pectoralis
major (clavicular head), the 5-th muscle, pectoralis major (upper sternal head), the
6-th muscle, pectoralis major (lower sternal head), the 7-th muscle, supra spinatus,
the 8-th muscle, middle deltoid, are all entirely on during the mission. It is, however, a
little surprising that the optimal pattern of the 9-th muscle, biceps brachii, is entirely
off during the mission. The most likely explanation is that the biceps brachii is a two
joint muscle that is normally very strong. In our simulations, almost any actuation
of this muscle cause the arm to overshoot the target. The frequent on-off activity of
the 1-th muscle, teres major, indicates that it is very sensitive to the “soft targeting”

requirement of the mission.

Also, because our complete goal is to achieve the above soft targeting while
minimize the muscular stress, the joint constraint forces, and the neural excitations,
one can immediately expect that all the muscle velocities must be zero at the end of

the mission, which exactly happened in our simulation results,
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7.5 Conclusions

A musculo-skeletal model of the human upper extremity is studied by using optimal
control theory. The algorithm, which was developed in Chapter 3 and is capable of
handling generally constrained optimal control problems, is employed to compute the
muscular activity which occurs in each muscle of the upper extremity when the goal
is to move the arm from an initial resting position so as to touch a specific target
with the tip of the index finger with zero velocity while the muscular stress, the joint
constraint forces, and the neural excitations are minimized. The simulation results
demonstrate the quantitative patterns of the synergistic and antagonistic activities
that take place in the musculature of the upper extremity when the investigated move-
ment is performed. The angular trajectories from the simulation match closely with

those recorded experimentally.

The joint angles are not especially sensitive measures of movement. It would be
much better to compare measured joint angular rates and accelerations, tendon forces,
and EMG with those predicted by the analysis. Heretofore there was little incentive
to make such measurements because models were too primitive to predict even joint
angles. Now it is worthwhile to collect more detailed experimental data to test the

analytical model.

153



154



Chapter 8

The Optimal Control of Human Pedaling a
Stationary Bicycle

8.1 Introduction

One of many important goals of biomechanics is to improve understanding of how the
human central nervous system (CNS) coordinates muscles during multi-joint lower limb
movements. The study of humans pedaling a stationary bicycle as fast as possible was
motivated by the belief that this task is intermediate in complexity between human
maximal height jumping and human normal locomotion. Pedaling, like maximal height
jumping, requires only minimal attention to stability. Pedaling, like walking, is a

periodic task involving out of phase coordination of legs.

This ongoing research has been under a collaboration between Dr. F.E. Zajac’s
group at the Stanford University and Dr. W.S. Levine’s group here at the University
of Maryland for many years. The strength of the group at Stanford has been on
modeling and experiments, and the strength of our group has been on optimization

and optimal control.

The skeletal and muscular dynamics of the human lower extremity has been
studied by using optimal control theory. Previously, an algorithm, which was designed

only to solve optimal control problems of bang-bang type, had been employed to solve
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the pedaling problem [148,149]. Recently, a first-order strong-variation algorithm de-
veloped by Mayne and Polak [95], has been employed extensively to solve the pedaling
problem [124,125,126,127,128].

In this chapter, the algorithm, which was developed in Chapter 3 and is capable
of handling generally constrained optimal control problems, is employed to compute
the activity which occurs in each muscle of the lower extremity when the goal is to pedal
a stationary bicycle at maximum speed, starting from rest. The results demonstrate

the effectiveness of this new algorithm.

8.2 Neuro-Musculo-Skeletal Model

The linkage model consists of two legs, each having thigh, shank, and foot-pedal
segments, connected by a stationary pelvis and a crank (see Figure 8.1, which was made
by C.C. Raasch from Dr. F.E. Zajac’s group). The ergometer flywheel is modeled by
an inertial /frictional load [35]. For simulations which allow backpedaling of the crank,

the flywheel is modeled as a separate rotating body connected to the crank with a

switchable constraint.

A total of nine lower limb muscles provide the forces required to move each leg.
They are: SOL(SOL,OPF), TA, GAS, VAS, RF, HAM(SM,BFlh), GMAX(GM,AM),
IL(ILIACUS,PSOAS), and BFsh (see Figure 8.2, which was made by C.C. Raasch from
Dr. F.E. Zajac’s group). Each musculotendon actuator is the same two-state model as
described in Chapter 7. Also, driving the musculotendon model is the same first-order
excitation-contraction dynamics as described in Chapter 7. As a result, the complete
dynamics of the neuro-musculo-skeletal system of human pedaling a stationary bicycle

is described by the following differential equation in vector form:

2(t) = f(=z(t),u(?),1), (8.2.1)
w(to) = 9. (822)
In the above, 2 =[xy, - - -, Z100] is the state vector of the system which consists of angles
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Figure 8.2: The schematic description of the actuation system that represents the

human lower extremity musculature.
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and angular velocities of each segment, the lengths, velocities and activations of the
18 muscles described above, u=[u,, - -, u1g] is the control vector of the system, where
u; is the neural excitation signal of the i-th muscle. Of course, because the mechanical
system is a closed-loop linkage, many of the 100 state variables are dependent. For

the details of the neuro-musculo-skeletal model, please see Raasch’s dissertation [124].

8.3 Optimal Control Formulation

The purpose of this chapter is to find the activity which occurs in each muscle of the
lower extremity when the goal is to pedal a stationary bicycle at maximum speed,
starting from rest. This can be precisely formulated as the following constrained

optimal control problem:

Problem. Subject to the dynamical system (8.2.1)-(8.2.2), the hard control con-
straints 0 <wu; <1,¢=1,.--18, find a control vector u = [uy,-- -,u1g]" such that the

cost functional

2
J(u) =- (ocrank anglc(tf) - 0crank anglc(to)) (831)

is minimized over control space.

Similar to the biomechanics problem in Chapter 7, the musculo-skeletal model
of the human pedaling a stationary bicycle also has the following characteristics: high
dimension (=100), nonlinearity (which is introduced by the generalized gravitational
force terms, generalized inertial terms, and the nonlinear behavior of muscles), and
various constraints (which include the limits on controls, the joint limits and the termi-
nal constraints). Clearly, finding closed-form optimal control solutions is impossible.

A numerical approach has to be adopted here.

In the following, the algorithm, which was developed in Chapter 3 and is ca-
pable of handling generally constrained optimal control problems, is employed in the

computation.
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Figure 8.3: Plots for control patterns: solid line for the final control obtained by using
the algorithm developed in Chapter 3, dash-dotted line for the initial control, dotted

line for the optimal control obtained by C.C Raasch.

8.4 Results

The algorithm started from a set of initial control patterns which make the crank
rotate 364.01 degrees and which are plotted in Figure 8.3 in dash-dotted lines. The
number of discretization points of time was 30. The final control patterns, which make
the crank rotate 477.44 degrees and which are plotted in Figure 8.3 in solid lines, were
obtained in 6 iterations. That is, a final improvement of 113.43 degrees of the crank

progress was obtained in 6 iterations.

For comparison, the first-order strong-variation algorithm developed by Mayne
and Polak [95] was used to solve the same problem. The final control patterns, which
make the crank rotate only 408.27 degrees, were obtained in 8 iterations. That is, a

final improvement of 44.26 degrees of the crank progress was obtained in 8 iterations.
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Figure 8.4: Plots of the cost versus iterations by the algorithm developed in Chapter 3
(in solid line) and by the first-order strong-variation algorithm developed by Mayne
and Polak (in dotted line).

Figure 8.4 shows the simulation performance of the two algorithms.

This problem had also been solved extensively by C.C. Raasch. After tedious
work moving along with the evolution of the system model, the optimal control was
obtained by using the first-order strong-variation algorithm developed by Mayne and
Polak [95] and by trial and error [124,125,126,127,128]. The optimal control patterns
make the crank rotate 491.90 degrees, an improvement of 127.89 degrees of the crank

progress. The optimal control patterns are plotted in Figure 8.3 in dotted lines.
Notice that, even though the number of discretization points of time was selected
as few as 30, the final crank angle obtained by the algorithm developed in Chapter 3

was not far away from the optimal one. Better results can be expected when the

discretization of time is made finer.

Judging from the above facts and from the performance curves shown in Fig-

ure 8.4, the algorithm developed in Chapter 3 can be considered as a success.
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Chapter 9

Conclusions and Future Research

In this dissertation, computational methods and techniques of optimal control were
studied. Motivated by the need to have an algorithm which not only is convergent but
also has a fast local convergence rate, a new algorithm was developed. It was shown
in the previous chapters that, first, the algorithm is globally convergent under some
conditions, second, its a local convergence rate can be better than that of the first-
order algorithms when some matrices are properly updated, and third, it is able to
handle optimal control problems in the most general setting, namely, problems which
are subjected to control constraints, path constraints, end-point constraints, a variable
initial state, and a variable vector of design parameters, within a fixed/free end-time

interval.

A version of the algorithm is implemented into a package which is easy to use. A
variety of benchmark problems have been solved. Finally, the algorithm was employed
in solving challenging biomechanics problems: (1) human moving his arm from an
initial resting position so as to touch and stop at a target with the tip of the index
finger while the muscular stress, the joint constraint forces, and the neural excitations

are minimized; (2) human pedaling a stationary bicycle as fast as possible.

There is still much work remaining to be done. Future research is needed in the

following four aspects:

First, global convergence analysis is only done on the algorithm in Chapter 3
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which can handle optimal control problems with control constraints and terminal-
state constraints. For the algorithm in Chapter 4 which can handle the most general
optimal control problems subjected to control constraints, path constraints, end-point
constraints, a variable initial state, and a variable parameter vector in a fixed end-time

or free end-time interval, global convergence analysis remains to be done.

‘ Second, the package, which implements the algorithm in Chapter 3, needs to be
extended to include the algorithm in Chapter 4 as well. By then, both the constrained
free end-time problems and the constrained problems with variable initial state and

parameters can all be solved.

Third, the current approximation schemes for choosing the matrices A’s appear-
ing in both Chapter 3 and Chapter 4 are too primitive. As discussed in Chapter 3 and
Chapter 4, the local convergence rate of the algorithms there depends crucially on the
tightness of the approximations of those matrices. The tighter those approximations
are, the closer the convergence rates of the algorithms are to second order. Let us
recall that, in the Han-Powell algorithm, which is a general purpose algorithm for
solving optimization problems in finite-dimensional space, the Hessian is replaced by
a positive definite matrix updated by a certain rule. When the BFGS rule is adapted,
the algorithm will have a superlinear convergence rate locally near the solution, if the
step lengths are taken equal to unity. Similarly, to help the algorithms in Chapter 3
and Chapter 4 to achieve a local convergence rate better than that of the first-order
algorithms, more sophisticated schemes than the ones shown in Chapter 6 are needed

to be developed for those matrices A’s.

Fourth, a common feature of the algorithms in Chapter 3 and Chapter 4 is
that it is required to solve a generally constrained linear quadratic regulator problem
(LQR) at each iteration. At the present time, those “direction-finding” subproblems
are converted to quadratic programming problems after the controls are approximated
by piecewise constants. The drawback of this approach is that the size of the quadratic
programming problems can become very big when the dimension of the state of the

optimal control problem and the number of discretization points of time are large.
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Because the constrained LQR problem, as formulated in Chapter 6, is important in its
own right, better techniques to solve the constrained LQR problem which can exploit
as much of the intrinsic properties of the problem as possible, rather than simply

converting it to a quadratic programming problem, are needed.
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Appendix A

Some Basic Results Used in Chapter 3

Lemma A.1 Suppose ¢(t) has continuous derivatives up to the third-order, during

t €[0,1], then

! 1 "
B =90 -6©) = [ (1-0¢" @i
! " l "
W)= (0 - 6= 38'0) = [ 301-026" @
Proof: It can be easily checked by integrating by parts. (]

Lemma A.2 Suppose f: R" — R has continuous derivatives up to the third-order,

then for any x € R™, y € R",

f(y) = f(z) ~ fo(z)(y — 2)

= [~ (o + 1y - )y — o) (A1)
1) = £(@) = L&)y = ) = 3 ferl2)y -~ 2)?
= [ 30 0 fennla 4y~ )y 2. (A2)

Proof: Let ¢(t) = f(z + t(y — z)) for some ¢ € [0,1]. Then

() = folz+tly—2))(y-z)
() = foulz+1t(y—2))(y - 2)?
¢I”(t) = fza:z(w + t(y - :c))(y - x)B'
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Noting that ¢(1)= f(y), $(0) = f(2), ¢'(0) = fu(z)(y — ) and ¢"(0) = fea(x)(y — @)?,
the proof is then completed when Lemma A.1 is applied.

o

Lemma A.3 Suppose F: R" x R™ — R has continuous derivatives up to the third-

2 1 B 2 1
order, then for any z* ,z% €R", any u?,ul €eR™, with Az =2z% —z* , Au=u?-1ul,

F(t) =z +#(z* —*'), w(t)=u! +t(u2—ul),

where,

Proof:

F(z*, u?) — F(z* ,ul) =
1
Fx(a:“l, u)Az + Fy(z*, ul)Au +/ 1 =t)F(t)dt
0
F(e* ,u?) - F(z¥' ,ul) =
F,:(w“l ,u Az + Fu(:lc“1 ,u)Au + %Fm(alv“1 ,ul)Az?
.1
2
1 ul 1 2 11 2
+3Feale™  u) A0 + / S(1= 0 Fa(t) dt
0

Fm(m"l ,u)AzAu+ %Fw(:c“1 ,u )AuAz

F(t) = Fpi(3(t),0(t))Az? 4 Fup(3(t), a(t)) AuAz
+Fpu (2(1), 8(t)) Az Au + Fouo(2(1), a(t)) Au?

Fs(t) = Fupa(2(2), 5(t))Az® + Fupa(3(t), a(t)) AuAz?
+ Foou(Z(t), 8(t)) A2 Au + Fpyp(3(2), U(t)) AzAuAz
+ Fuuz(Z(t), 4(t)) Al Az + Foupu(Z(2), 4(t) ) AuAzAu
+ Fpuu(2(t), 4(t)) Az Au® + Fuu (3(2), w(t)) A,

Let 4(t) = F(z* +t(z** —z*"), ul +t(uZ—u)) for some ¢ € [0,1]. Then

¢ (t) = Fo(&(1),u(t)Az + Fu(5(t), a(t)) Au
$'(t) = Fuul(5(t), U(t))A2? + Fuun(3(t), 8(t)) AuAa
+ Fpu (2(1), 4(t)) Az Au + Fuo(2(2), 4(t)) Au?

¢ (1) = Fouu(#(t), 0(1))A2® & F,..(5(1), 5(t)) AuAn?

+ Foru(Z(1), w(2)) Az Au + Fpyp(2(1), (t)) AzAuAz
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+Fuuz(3(t), 8(t) AU Az + Foupy (3(1), U(t)) AuAzAu
+ Fouu(Z(), 8(2)) Az Au? + Fuuu(F(1), U(t)) Av®.

The proof then follows by recognizing ¢(1), ¢(0), ¢'(0) and ¢"(0) from the above

expressions and by applying Lemma A.1. a

Lemma A.4 There erists an N € (0,00) such that, for allu € U

@) < N (A.5)
Ip“®) | < N (A.6)
Proof: See Proposition 6.2 in [95]. o
Lemma A.5 There ezists a ¢ € (0,00) such that, for all u?,u' € U
sup || 2°(t) =2 (@) || < ef wt -t (A7)
tE[io,t,]
sup || p°(0) - p (D) || < el v -t (A-8)
t€lto,ty]
Proof: See Proposition 6.3 in [95]. o
Lemma A.8 There exists a c € (0,00) such that, for all u?,u' €U
sup || 2(t) —2¥ () -9 (®) | < ellu?—ul | (A.9)

t€lto,ty]

where y*(t) is defined in (3.4.1).

Proof: Let €(t) = z*°(t) — z*'(¢) — y*(t). Applying (A.1), together with v = u? —u!
and €(tp) = 0,

()= [ (6(9) - 3 (5) - () ds
= [ F@(6)76), )= S 1(8), 03 (2), )= ol (6), w1 (6), ) () d
e /t:(f(w“l(S),u2(8),s)—f(w“’(S),ul(S),S)—fu(w“l(S),ul(S),s)v(S))ds
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=/tt (fa(2*(8),u(s), 8) (+*%(5) — 2(8)) = fu(a"'(s), u'(s),5) y"(s)) ds
+/t:/01(1_r)f”(i(1" s),u¥(s), s)(@¥(s) —a*(s))? dr ds

[ =7 (a9, 10,81, )~ () s

=[[ 1)), o) ds

[ a0 1260, 8) - 260, (0, ) 0) =5
+/t:/ol(1‘r)f"(f(ﬂ 9),4%(s), 8)(e*(s)—=*\(s))? dr ds

+ /t: /0 l(l_T)fuu(l'ul(S), a(r, s), s)(u2(s) —u'(s))? dr ds

= [ £ea(6), (), 9) (o) s

| £ua(9),8(6), (629~ () (6) =2(5)) s

where Z(7, s) = 2%(s) +7(x*(s) - z*'(s)), u(r, s) = ul(s)+ 7(v2(s)—ul(s)), and, a(s)=
ul(8)+7(s)(u?(s)~u!(s)), for some 7(s) €[0,1]. Hence, by making use of the continuity
of fz, fzz and fu, on the compact set {||z|| <N } x Qx[to, ], together with the fact
that %(s)—2¥(s) is uniformly bounded by |u®—u!|| on [to,ts] by Lemma A.5, then

there exists ¢/, ¢” € (0,00), such that

t
el = C'/t le(r)llds + ¢"||u® —u' |2
0
The result then follows from the Bellman-Gronwall inequality. a

Lemma A.7 Cost functional J(u), and terminal constraints functionals g;(u), i=

1,---,r are all continuous in ucl.

Proof:  According to Assumption 3.2.1, Ky is continuous in #(tf), Ly and L, are

continuous in z(t) and u(t). So, for bounded control u € U, its corresponding state
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z* is also bounded, by Lemma A.4. Then for any u!,u? € U, there exist constants

€1,C2,C3,¢4 > 0, such that,
|7 (u?) = I (u")]

t
< |K(@(ty),t0) = K(z¥(ts),t)| + [ 1L(s* w2, 6) = L(z*, u!, 1)| dt
Ihis i+ |
0

IA

el =l + [ (clle -0l + el - @) o

callu®~ut|l,

IA

which implies the continuity of J(z) in v € Y. Similarly, the continuity of g;(u),

t=1,.-+,7in u€U can also be proved. O

Lemma A.8 There exists c1,cz € (0,00) such that, for all u!, u? €U,

< alvl|? (A.10)

| 06 - 1) - M)

| o -y - (M) + AT | < el o (A.11)

where v = u? — ul.

Proof: = We first prove (A.11). From cost functional (3.2.8) and costate equation
(3.3.3),

J(u?) — J(ul)
= K(@"(ty),ts) - K(@(ts),ts) - /’ ONCHOREROL
[ B0, 00,90, - BE 0, 010,50, 0
= K@)t - K@) ) - 207 @0 - 20)
[ H@ 0, 00,5 0,0 ~ HE0,20,0%0, 0
0T - w)a

Because z“/(to) = £*'(ty) = o, together with the terminal condition (3.4.5) of the

costate,

J(u?) = J(ul)
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= K(¥(t5),t1) — K(2¥'(8)),17) = Ko(='(t5), 1) (2" (t) — 2 (25))
+ ' \E 0,070,070, - B0, w090, D) d

- /t:f Ho (¥ (8), u (1), p*' (1), t)(a¥(t) — 2¥(t)) dt.
Applying equation (A.2) to function K, and equation (A.4) to function H,
J(u?) = J(u')
= [ BP® 020 - v (0) d
+5 @) - (1) KD (1) (2(t9) - 2(19))
RYC (w"’(t) - m“%t)) T(H&)(t) H;v(t)) (mt) _ zul(t)) .
2o \w@)-ui(r) | \HD@) EI® )\ ) -v'(0)
+% /t:!/ol(l—f)zﬂm(fz(r, 1), w(r, 1), p¥'(t), ) Az3(t) dr dt
+%/,:f/01(1 —7)2 Hygo(&(7, 1), T, 1), (1), 1) Au(t) Az?(t) dr dt
43 [ [ A=) Herula(r, 0,17, °(0), DA A(r) dr
+%/t:I/ol(1 =) Houa((7, 1), 87, 1), p (2), 1) A () Au(t) Aa(t) dr dt
+%/t:!/01(1 = 1) Hoo (2(7, 1), 8(r, 1), p (2), 1) A () A (t) dr dt
+% /t :,/01(1 —7)2H iz (Z(7, 1), U(T, 1), p“l(t), HAu(t)Az(t)Au(t) dr dt
%/t:f/ol(l‘r)z”ww(f(f’ ), a(r,t), p“(2), Y Ac(t) Au¥(t) dr dt
+%/t:,/01(1 ~ )2 Houu(3(7, 1), U7, 1), p* (1), ) Au() dr dt
+%/01(1—T)2Kzu(i(r, t7),¢,)Az3(ts) dr

where Az(t) = z¥(t)—z*(t), Au(t) = u?(t)-ul(t), 3(r,t) = 2*'(t) + r(z¥’(t) —z*'(1)),
a(r,t) = ul(t) +(u2(t) —u(t)), and HV(2), HD (), BD(@), HP(t) and H(2) are
evaluated at (z¥'(t), p*'(t), ul(¢), t), and Kgc)(tf) is evaluated at (z*'(t;), t7). Hence,
by making use of the continuity of Kg;; on the compact set {||z|| < N} x [to,s],

and of H:c:c:c, Hu:n:v, Ha:a:u, Ha:ua:a Huuz, Huzu, Hpun and Hyyy on the compact set
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{llz]| < N}xQx{llpll < N }x[to,ty], together with the fact that z*(t) is uniformly
bounded on [ty,tf] by Lemma A .4, and that 2%*(t) — z¥(t) is uniformly bounded by
||u®—ul|| on [to, ;] by Lemma A.5, then there exists a ¢’ € (0, 00), such that

(J(u?)-J(uh)) - AT (u?)(u?-ul) - AW (ut)(u-ul) | < o |lu?—u'|?
where

A (ut) (w2 —ub)

= 5 @)~ (1) TED(tg) (*(17)~2t1)

i
1t [a()-2'0) | [ BE(1) HR(@) | [+ -2t)

= dt. (Al
2Ji \ w?()-ui(t) |\ EQ@®) BD@) I\ v?@)-u'(t) Lo

To complete the proof of (A.11), it remains to prove that there exists a ¢’ € (0, 0),

such that

AY(ul)(u—ul) — AU(u)(uP-u!) | < ' |u-u|P. (A.13)

Let (t) = z¥(t) — z¥(t) — y(t), from (A.12) above and (3.4.4),
A% (u')(u?-ub) — AY(ul)(u?-u?)
= —e(ts) KL (1) (0" (t5) -2 () + %f(tf)TKa(c}p)(tf)f(tf)
_ /t:’ () THWD () (2¥(t) — () dt + % /t:f ()T HOXt) e(2) dt
S ACON OGRS

By making use of the continuity of K;;; on the compact set {||z|| <N }X[to, tf], and
of Hyzr and Hyy, on the compact set { ||z|| < N }xQx{||p|| < N }x[to,y], together
with the fact that 2*(t) is uniformly bounded on [tp,?;] by Lemma A.4, and that
2¥(t)—z*'() is uniformly bounded by |lu2—2!|| on [to,ts] by Lemma A.5, and that
€(t) is uniformly bounded by |ju?~u!||? on [to,;] by Lemma A.6, (A.13) then follows.
The proof of (A.11) is now complete.

Finally, by making use of the continuity of K., on the compact set {||z|| <

N }x[to,ts], and of Hyy, Hyy, Hyy and H,, on the compact set { ||z]| < N }xQx{ ||p|| <
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N } x[to, ], together with the fact that y*(¢) is uniformly bounded by ||u%—u!|| on
[to,ts] by Lemma A.6, the proof of (A.10) then follows. o

Lemma A.9 Let z(t) be the solution of

&(t) A(t)z(t) + B(t)u(t)
z(tg) = d,

and z'(t) be the solution of

(1)

:l:'(td)

A'()2'(t) + B'(t)v'(t)
d.

In the above, tq could be any value in [to,ts]. Assume that A(t), A'(t), B(t), B'(t) are

continuous, and that there exist positive numbers M,, My, M, such that
IABINA DN < Mo, |BOILIB'®ON £ Mo, @)l lw'(DI] < M
Jor any t € [to,t;]. Then, there exists a positive number ¢ such that
lo—a]l < ce

where

¢ = max{||{A-A|, | B-B'||, [lu—, [|d-d'}.

Proof: From the continuity of A(t), A'(t), B(t) and B'(t), and the uniform bound-
edness of A(t), A'(t), B(t), B'(t), u(t) and v'(t), Lemma A.4 holds. That is, there

exists a positive number M, such that

@l '@l < M

for any t € [to,ts]. Consider the case when tg < ¢ < t;. From the differential equations,

lz()—="()l|
< lld-dli+ /t d(IIA(T)w(T)—A’(T)w'(r)ll + |1B(r)u(r)— B'(r)u/(r)|l) dr
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< -2+ [ 1A= 2Ol am+ [ 14ONe(r) =2l dr
+ [ 18- B+ [ 1Bl -l ar

t
e+ / M,||z(7) = 2'(7)|| dr
tq

IA

where ]
¢ =1+ (ty—to)(Mz+Mp+M,).

Applying Gronwall Inequality, we then have

2(8)=2'(t)] < ('€) exp [ /t: M, dt] <ce

where

¢ = clexp[M,(t5 — t4)].

The case when ¢y <t < t; follows from the same approach as above.
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Appendix B

Some Basic Results Used in Chapter 4

Lemma B.1  There exists an N € (0,00) such that, for any u € U, any z¢ € S,

A
=

|z @)l

2@

(B.1)

IA
=

(B.2)

Proof: For any u € U, any zo € S, because
le =@l < faall+ [ | £*=(r)u(r) 7l dr

< looll+ [ M@+ =) ) dr

< sl XP L 1P )+ M —t0) + M | [l5%() dr,
inequality (B.1) follows from the Bellman-Gronwall inequality. Similarly, because

p2(t) = Kop(2o, 2% (ty))
- /tt <L,(m“’”°(r), w(t), 7) + p“ (1) fo(z® = (1), u(T), T)) dr.
s

Hence, by making use of inequality (B.1), and the continuity of K, on the compact

set {||z||<N} X% {||z||<N}, and the continuity of L, and f, on the compact set
{llz|| SN} x QX [to, 5], there exists ¢1,¢c2 € (0,00) such that,

t
I*= @< exter [ 9%l dr.
E

Inequality (B.2) then follows from the Bellman-Gronwall inequality. a
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Lemma B.2 There ezists ¢y, cz € (0,00) such that, for any v, u? € U, any 2,23 €

S,

TI“:]llw““g(n-w“"f%(t)u < all?-ul||+ellzi-ad]  (B3)
t€ 0:t f

2,2 1.1
wp (7990 - p*S0 1 < allt-ull+ald-al (B4
tEfto,ty

Proof: For any u!,u? € U, any z},z2 € S,
zu’,zg(t) _ z“l’z‘l’(t)
t 2.2 1.1
—o?_gl g /to ( F(@53(s), u¥(s), ) — F(z*b(s), ul(s), s)) ds
=ah—abt [ (a7, 7(6), )~ 1 (6),07(5),9)) ds
+ / (28000, 02(5), 90— 12478 (5), (), ) i
=af - 2} +/ Jo(#(s), u(s), 8)(2*178(s) ~ 2*%3(s)) ds
+ /t ' Fu(@ 7 (s), 5(s), 8)(u(s) — ul(s)) ds

where (s)=2%%0 (s)+71(s) (237 (s)—z*} %8 (s)), B(s) = ul (s)+7a(s)(u2(s)—1l(s)). for
some 71(s), 72(s) €[0,1]. Hence, by making use of the continuity of f, and f, on the

compact set { ||z || <N }x Q x [to, 5], there exists c1, ¢z € (0,00) such that,
[EIORERI O
2 1 t u?z? ulzl t 2 1
< [lzg—=ol + | el 270 (s) =2 1%0(s) ||d8+/t ez || w(s)—u'(s) || ds.
0 0
Inequality (B.3) follows from the Bellman-Gronwall inequality. Similarly, for any
ul,u® €U, any af,2} € S,
P8 (1) - p178(1)
w2 22 T 11
= Koy (24,2"78(ty))" ~ Kz, (a5,2%0(1))"
t
‘/ (Hz(w“"mﬁ(sxuz(s>,p“"$%(s), s)" = Ho(z*75(s), ul(s),p“*w%(s),sf) ds
iy
21.2 21.2
o(tg))" = Koy (ahy 2 %0(ts))T

+Kzy (23,235 (15)) " = Ky, (28, 2%(t;))T

= Kzf(:cg,:c“
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’/ | (Hz(x“"fﬁ(s), W3(s), 4 (s), )" — Hala"1%5(s),4*(9), "”w%(s),sf) ds

ty

[ (Ha(a 761,030, 9455(6), )T = Hala509) (e),p4H(6), ") do

ty
t
[ (Haaio(a),w(), 20D, 2) - H (5 (3),11(5), 973 (5), )T ) s
i
u 1’1
= Koy (B0r a3 78(0) (58 = ) + Koy (0 2)T (29 53(29) = 2 70(19)

‘/t: Haa(3(5), 43(5), 0" 3(s), 8) " (238 (8) — 2*173(5)) ds
‘/, Haou(2*78(s), 8(s), #370(s), 8) (u*(s) — w'(s)) ds
’/, Ha (a5 (s), ul(s), 5(s), 8) (158 (s) — p*70(s)) ds

where Zo =zt (zd=2}), 35 = 29378 (£ W (€355 (t )}z %o(ty)), for some 71, 72 €[0, 1],
and, 5(s) = 27(8) 4 (s) 2 (s) (), 8s) = w1 (8) + 7a(9)(w() = w (5D,
p(8) =p”l”’tli(s)+1'5(s)(p“2’“”g(s)-p“l'”%)(s)), for some 73(s), Ta(s), 7s(s) € [0, 1]. Hence,
by making use of the continuity of Hyz, Hgy and Hgp on the compact set { ||z ]| <
NIxQx{||z]|<N}x[to,s], and of Kz a0 and Kz .z, on{|z||<N}x{llzlI<N},
there exists ¢y, ¢z, €3, €4, ¢5 € (0,00) such that,
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2 1 u?z? ul 7 ¢ uwdz? ulz}
< el zd-abll + call Rt 1+ [ eslz B (0) -0 (e) s
0
t u? 12 ul z3 ¢ 2 1
+ [l ptE0)-p ) ds+ [l -w )1 ds
0 0
Inequality (B.4) follows from using (B.3) and the Bellman-Gronwall inequality. O

Lemma B.3 There exists ¢y,¢2,¢3 € (0,00) such that, for any ul,u? € U and any
zd,z3 € S,
2 .2 1.1
sup [ o358 (t) - 2 (t) — v @) || < aerllol* +ezllv ] w| +esl|wl|® (B
t€[to,t 4]
where v=u?—ul and w=gz}—z}.

Proof: Let €(t)= 2370 (1) ~ 2%% (1) — y¥*(t). Because €(to)= zt—z5—w=0,

() = /tt(w () - 575 (s) = ¥ (5)) ds
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= [ (), 07(6), ) (), (6), )= ol 74(), w(6), ) 97(6) do

+ /t:(f(w“l’”‘%(S), u¥(s), 8)— f(*1%0(s), u' (s), ) — fu(a**5(s), u'(s), 5) v(s)) ds
Applying Lemmas A.3 and B.2,
() = /t:(f,(z"”%‘»(s), u(s), 8) (%178 () =215 (s)) — fu(a*1%3(s), 0 (s), 8) 9"*(s)) ds

[ = fee(alr,),4%(5), )8 (5) -2 H ) dr do

+f : | (1= 1) fuul2® (), U, 5), 8)(u¥(s) ~u(s))? dr d

= [ e, u1(6), ) () ds

[ e 99,0%(5),8) = (" 7(6),u1(6), ) (a5 2454 9) ds

[ @) aalar, 9,025, 5)(a ()= a4 ) s

[ @=7) e 4(6), 57,0, ) (0) )

= [ 1), 5)5) ) s

B2 58(6), 1), )0~ ()15 5) 58 5) d

[ A=) fealr, 51,1, 0)(a 5 ) -2 ) dr d

+f : | (=) fua(a®=b(5), a(r, 3), 5)(u(s) — u(s))2 dr di

where Z(, s) = %% (s) +7(a** % (s) — 2170 (5)), (7, 8) = ul(s) + T(u(s) —ul(s)), and,
u(s) = u!(s)+7(s)(u?(s)—u'(s)) for some 7(s) € [0,1]. Hence, by making use of the
continuity of fz, frz, fou and fu, on the compact set {||z[|< N} x O x [to,1¢], and

by Lemma B.2, then there exists ¢, ¢, ¢/] ¢"" € (0,00), such that

t

@) = C'/t le(m) Il ds + " | u?~u! ||* + " (| u®—ut ||| 2§~ 25 || + " || 25— 5 |I°.
0

The result then follows from the Bellman-Gronwall inequality. o

Lemma B.4  Cost functional J(u, zg), and terminal constraint functionals g;(u, zo),

t=1,:+-,7 are all continuous at anyu €U, z9 € S.
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Proof: For any 4%,u! € U, and any 2,2 € S,
J(u} 23) - J(u] zp)
= K (2, 2975 (ty)) ~ K (2}, 2*370(t1)) + K (25,2358 (t)) - K (ab,5* (1))
t
+[7 (L), 0%(6),) - 2@ (6), (6),9)) ds
to
b ulz} 2 ulald 1
+ [ (£ e4(5),u%(5), ) - Lz 5(s), X (5), ) ) ds
0
= 2 2 2 1 i = 2 u? 2 ulzl
= Keo(Bo, 38 ()) - 0d) + [ Lal@(6), 02(5), )58 (9) ~aeh () ds
0
t
Kz, (b 28 (1) =2 (t) + [ 7 Lu(a9(5), 6s), 5) (w2 (6) - u(5)) ds
to
where Zo =zt (23-ad), T = &% %0 (t; Wy (2570 (2 }-x* %0 (¢ )), for some 71, 7, €[0, 1],
and, :E(s):x“l'xé(s)+1'3(s)(w“2"‘§(s)—x“l"”é(s)), a(s) =u'(s)+74(s)(w?(s) —ul(s)), for
some 73(s), 74(s) € [0,1]. Hence, by making use of the continuity of K, and K, on
the compact set {||z||< N} Xx {||z||< N}, and of L, and L, on the compact set
{llz]|<N} x Q x [to, 4], there exist constants ¢;, ¢z, ¢3, ¢4 > 0, such that,
| 7(s} 8) = J(wh 2b)| < erl|af—ab | + ea ]| a*37 (1)~ 7b(1y) |
t t
+ / " es || 2R (s) — 2 =b(s) || ds + /t " eall u¥(s)—u(s) || ds.
1o 0
By making use of Lemma B.2, there exists ¢},c; > 0, such that,

| J(u? 28) = I (uh 25) | < € || o5 — wp || + &5 || w? — ' |,

which implies the continuity of J(u,zo) in both u and zo. The continuity of g;(u, zo),

t=1,---,7in both u € U and z¢ € S can be proved similarly. ]

Lemma B.5  There ezists cy,cy,c3,c¢4,¢5,¢6,¢7 € (0,00), such that, for any u!,

u? €U and any z}, 22 € S,

(w3 28) = J(u) 25) = A (w} 2)(v,w) | < erl|v[ +exllvll-|wl| +esljw]|? (B.6)

and

| J(u? 23) = J(ub ab) — AT(ud ob)(v, w) — AU (ul 28)(v, w)

< allolP+esllollwll+eslloll-lwll*+erlw|®  (B.7)
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1 1

where v = w? — u!, w = 2% — z}.

Proof: We first prove (B.7). From cost functional (4.2.8), Hamiltanian (4.3.1) with
Po=1, and costate equation (4.3.3),

J(u? 2) — J(u} z})
¢
= K(ah, o (1)) - K(zb o) - [T @30 - a5 (0)
to

+ /t:: ( H(*75(2), u2(2), p (1), £) — H(a* 7 (2), ul(2), pul,z.‘,(t),t)) dt

iy
= K(a§,2"58(2y)) - K(2b,2*%5(t9) = #1750 (248 () — 23(1))|

0

t
H[ AT - o)

0

t ul z? 2 ul gt ul 2} 1 w1 2l
+/ H(z78(1), v(1), p (1), 8) — H(@*%(2), ul(2), g5 (1), 1) ) dt.
to
Because %3 %8(tg) =12, z"%0(tp) =x}, together with the terminal condition (4.4.5) of
the costate,
J(u} 2§) - J(u} z3)
= K(a3,3°(t;)) - K(z},2"7(t1))
— K, (23, 2% (1)) (&30 (t) — 2 70(t)) + p* 0 (t0) T (] — z})
ty
+ 7 (HE0),070,p50),1) - B30, 20,527 (0),1)) de
to

t
=7 B (0,010,545 (1), (R (1) - (D) .
1

]

Applying Lemma B.2 and Lemma B.3

J(u} 28) - J (4} 25)

= (Kealah 24530 + 9 530)" ) 3= ab) + [ B (30 - w0

) )
+l Z‘(z) - :l:(l) K:L‘o:l,‘o K.’L‘ol'f x(2) - x‘::l)
2 ;2 ul gl 1 1 w22 wl ol
2 T o(tf)—w ’ o(tf) Kﬂ(«‘j)l‘o Kﬂ(ij)rf T O(tf)—-z ! o(tf)

)
Lptr [2858(2) - eisb(r) ) [ HE() HEDG) ) (deb(n) - avieb(y)

- dit
2Je | k() - ul(1) 7w B @) u?(t) - ul(2)

180



#3 [ [ O (e, 0,17, 2450), D05

+%/t:'/ol(1">2’fm<f<n £),r, 1), p* 54 (1), ) Au(t) Ac?(1) dr dt
1tfl]_ 2H —t—tul,a:})ttAztAtddt

+§/to/0( — 1) Hyogu(E(7, ), U, 1), p* %0(2), ) Ax?(t) Au(t) dr

+';' /t:f/ol(l — ) Hyu (E(T, 1), U, 1), p3%0(2), 1) A () Au(t) Ax(t) dr dt

+—;—A:%1(1~T)2Huux(f(7, t)’&(T’t)vp"zz‘l’(t),t)Auz(t)Az(t) dr dt

*5/:]/01(1")”’““@(% ), (7, 1), P (2), 1)Au(t)Aa(t) Au(t) dr de
1 Ot! ! 1,1

+§/;QA (I_T)szuu(f'(T, t),’l_t(T,t),p“r‘”o(t),t)Az(t)A,‘ﬁ(t) dr dt

+%,/t:f/ol(l~r)2H“““(‘i(T7t)&ﬁ(Tvt)’pul’m‘l’(t),t)Au:B(l) drdt

+% /0 1(1-T)2Kxozozo(i(r, t0), 3(1, 7)) Ax3(to) dr

+%'/01(1"’T)2Kzu$qz,(5(ﬁ to), 3(, t;)) A2 (ta)Ax(ts) dr

+%A1(1 —-7')21{3:01:;.1:0(5(7', tO), Q_J(T, tf))Aw(to)Ax(tf)Am(to) dr

+% /01 (1~7)* Ko a0 (B(Ts o), 3(T, £))A(t; ) Az2(t0) dr

+%_/01(1_T)2Kz,x,zg(i(7', to),.i‘(T, tf))A$2(tf)A:l)(t0) dr

+_;. /01(1 ~ ) Kz ngo, (B(T, 10), (T, ¥5)) Ax(t5) A (to) A (ty) dr

+%Ll(1~r)2Kz0szl(f(T’to)’j(Tatf))Ax(to)A(l}z(tf) dr

+% /()1(1—T)2K$,z,$,(i(r,t0),z(r’t A2 (y)dr
where Aw(t)f-zuz,zg(t)—z“’»zé(t), Au(t)=u?(t)—ul(t), #(r, t)=$"1’”3(t)+1~(x“2»$3(t)_
= R(0), (ry )= w(t) +7(uX(t) ~ul (1)), and, B @), B, 7R (0), B () and
HL(t) are evaluated at (a%}54(2), p#b(1), l(1), 1), and KDy, K8, KED,,, and
Kg)z’ are evaluated at (z§,2*3%(ts)). Hence, by making use of the continuity of
Koyoow0) Kaoworys Kzoz,20: Koyzozos Ko iz20s Kzjaonys Kzoz,2, and Kgyz,z, on the
compact set {{jz{j < N} x {||2]| < N}, and of H..., Hu.o, Hovu, Houe, Hooo,
Hyguy Houu and Hyy,, on the compact set {||z]]< N} x Q x {Ilpl|< N} X [to, 2],
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together with the fact that z*®°(t) is uniformly bounded on [to,?s] by Lemma B.1,
and that z**#8(¢)—z**%5(¢) is uniformly bounded by |u2-u?|| and ||z3—z}|| on [to, /]
by Lemma B.2, then there exists c}, c}, c}, ¢y € (0,00), such that
J(u3 2d3)—J (v} zd) — AT(ud 2d)(v, w) — A% (ul 2})(v, w)
<allolP+liolfwll+esllvll-lwl®+ e llwl

where v = u? — v, w = 23 — 2}, and

A% (u")(v, w)
.
23— 2} KO, k9, -z )

1
2\aB(y) —aiebey) ) \ KEh, KO, [\ oeb(ty) - ehbty) )

11.21'2 11‘1 T (1) (1) u21'2 ‘U.l.’Dl \
1t (a8 (t)—aiob(r) | [ HO (1) BR@) (233 (t) - ¥ o (1)

1 dt. (B.8
2Jo \ wr(t)-ul(r) HR@) BRM )\ wm-v@) ) L (B9

To complete the proof of (B.7), it remains to prove that there exist c/,c,c4,c) €

(0, ), such that
| A4 a)o,0) - AU a)o,w)
<AllelP+ezllol®Nwli+egloll-lwl®+GllwlP.  (B.9)
Let e(t) = 2¥35(t) — z*=a(t) — y"*(t), from (B.8) above and the definition of
A (u! z})(v,w) in (4.4.4),
A (u} 2d) (v, w) — AU (¥} 2})(v, w)
= d(t)TKG) w+ e(t)) KO, (237 (1) -5 (1p)) — Seltn) K, e(ty)

+ /t v ()T HO(2) (u2(t)—ul(2)) dt + /t t’ e(t) T HD(t) (24370 (1) — 230 (1)) dt

0 0
—% /tt’ ()T HO(t) e(t) dt.
By making use of the continuity of Kg)ﬂ,o and Ka(vlf)w, on the compact set {||z|| <
N}x{|llzl|I<N}, and of H,, and H,, on the compact set { ||z ||<N}xQx {||p|<
N} X [to, ], together with Lemma B.1, Lemma B.2, and Lemma B.3, (B.9) then

follows. The proof of (B.7) is now complete.
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Finally, by making use of the continuity of K z,, Keyzys Keyags K, sz O the
compact set { ||z ||<N}x{||z||I< N}, and of Hyy, Hyy, Hyy and Hy, on the compact
set {||z||<N}xQx{|p||<N} X [to,s], together with the uniform boundedness

of y**(t) by Lemma B.3, inequality (B.6) then follows immediately. a
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