Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Declustering R-Tree on Multi-Computer Architectures

    Thumbnail
    View/Open
    TR_94-38.pdf (860.5Kb)
    No. of downloads: 303

    Date
    1994
    Author
    Koudas, N.
    Faloutsos, Christos
    Kamel, Ibrahim
    Metadata
    Show full item record
    Abstract
    We study a method to decluster a spatial access method (and specifically an R-tree) on a shared-nothing multi-computer architecture [9]. Our first step is to propose a software architecture, with the top levels of the R-tree on the 'master'server' and the leaf nodes distributed across the servers. Nest, we study the optimal capacity of leaf nodes, or 'chunk size'. We express the response time on range queries as a function of the 'chunk size', and we show how to optimize it. This formula assumes that the 'chunks' are perfectly declustered. We propose to use the Hilbert curve to achieve such a good declustering.<P>Finally, we implemented our method on a network of workstations and we compared the experimental and the theoretical results. The conclusions are that (a) our formula for the response time is accurate (the maximum relative error was 30%; the typical error was in the vicinity of 10-15%) (b) the Hilbert-based declustering consistently outperforms a random declustering (c) most importantly, although the optimal chunk size depends on several factors (database size, size of the query, speed of the network), a safe choice for it is 1 page (whichever is the page size of the operating system). We show analytically and experimentally that a chunk size of 1 page gives either optimal or close to optimal results, for a wide range of the parameters.
    URI
    http://hdl.handle.net/1903/5517
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility