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Abstract

We study a method to decluster a spatial access method (and specifically an R-tree) on a shared-
nothing multi-computer architecture [9]. Our first step is to propose a software architecture, with
the top levels of the R-tree on the ’master-server’ and the leaf nodes distributed across the servers.
Next, we study the optimal capacity of leaf nodes, or 'chunk size’. We express the response time
on range queries as a function of the ’chunk size’, and we show how to optimize it. This formula
assumes that the ’chunks’ are perfectly declustered. We propose to use the Hilbert curve to achieve
such a good declustering.

Finally, we implemented our method on a network of workstations and we compared the experi-
mental and the theoretical results. The conclusions are that (a) our formula for the response time is
accurate (the maximum relative error was 30%; the typical error was in the vicinity of 10-15%) (b)
the Hilbert-based declustering consistently outperforms a random declustering (c) most importantly,
although the optimal chunk size depends on several factors (database size, size of the query, speed
of the network), a safe choice for it is 1 page (whichever is the page size of the operating system).
We show analytically and experimentally that a chunk size of 1 page gives either optimal or close to

optimal results, for a wide range of the parameters.
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1 Introduction

One of the requirements for the database management systems (DBMSs) of the future is the ability to
handle spatial data. Spatial data arise in many applications, including: Cartography [36], Computer-
Aided Design (CAD) [29], [18], computer vision and robotics [2], traditional databases, where a record
with k attributes corresponds to a point in a k-d space, rule indexing in expert database systems [34],
temporal databases, where time can be considered as one more dimension [26], scientific databases, with
spatial-temporal data, etc.

In several of these applications the volume of data is huge, necessitating the use of multiple units. For
example, NASA expects 1 Terabyte (=10'%) of data per day; this corresponds to 10'¢ bytes per year of
satellite data. Geographic databases can be large, for example, the TIGER database mentioned above
is 19 Gigabytes. Historic and temporal databases tend to archive all the changes and grow quickly in
size. Aside from that workstations connected over a network are becoming widely used and easily found
in almost any computing environment.

In the above applications, one of the most typical queries is the range query: Given a rectangle,
retrieve all the elements that intersect it. A special case of the range query is the point query or
stabbing query, where the query rectangle degenerates to a point.

We study the use of parallelism in order to improve the response time of spatial queries using the R-
tree [19] as our underlying data structure. We use R-trees because they guarantee good space utilization,
they treat geometric objects as a whole and they give good response time. The target system is intended
to operate as a server, responding to range queries of concurrent users.

The paper is organized as follows. Section 2 briefly describes the R-tree and its variants. Also, it
surveys previous efforts to parallelize other file structures. Section 3 proposes our architecture and
describe its parameters and components. Section 4 presents the analysis for computing the optimal
number of machines to participate in query execution and presents the computation of the chunk size.
Section 5 presents the declustering algorithm used in this architecture. Section 6 presents experimental
results and validates the formulas derived from our analysis. Section 7 lists the conclusions and highlights

future work.

2 Survey

Several spatial access methods have been proposed. A recent survey can be found in [32]. This clas-
sification includes methods that transform rectangles into points in a higher dimensionality space [20],
methods that use linear quadtrees [15] [1] or, equivalently, the z-ordering [28] or other space filling
curves [12] [21], and finally, methods based on trees (k-d-trees [4], k-d-B-trees [30], hB-trees [27],
cell-trees [17] e.t.c.)



One of the most characteristic approaches in the last class is the R-tree [19]. It is the extension of
the B-tree for multidimensional objects. A geometric object is represented by its minimum bounding
rectangle (MBR). Non-leaf nodes contain entries of the form (ptr,R) where ptr is a pointer to a child
node in the R-tree; R is the MBR that covers all rectangles in the child node. Leaf nodes contain entries
of the form (obj-id, R) where obj-id is a pointer to the object description, and R is the MBR of the
object. The main innovation in the R-tree is that father nodes are allowed to overlap. This way, the
R-tree can guarantee good space utilization and remain balanced.

The R-tree inspired much subsequent work, whose main focus was to improve the search time. A
packing technique is proposed in [31] to minimize the overlap between different nodes in the R-tree for
static data. Another packing technique based on the Hilbert Curve is proposed in [23]; experimental
results prove it superior to prior packing techniques. The RT-tree [33] avoids the overlap between
non-leaf nodes of the tree, by clipping data rectangles that cross node boundaries. Beckman et. al.
proposed the R*-tree [3], which seems to have very good performance. The main idea is the concept
of forced re-insert, which is analog to the deferred-splitting in B-trees. When a node overflows, some
of its children are carefully chosen and they are deleted and re-inserted, usually resulting in a better
structured R-tree.

There is also much work on how to organize spatial access methods on multi-disk or multi-processor
machines. The majority of them examine the parallelization of grid-based structures. Other representa-
tives include the the disk modulo allocation method and its variants [10], [35], methods using minimum
spanning trees [14], the FX method [25], methods using error correcting codes [11], methods based on
the Hilbert curve [13], and methods using lattices [8]. The objective in all these methods is to maximize
the parallelism for partial match or range queries.

However, the above methods try to do the best possible declustering without taking into account the
communication cost. One of the exceptions is the work in [16], which considers a grid file with a certain
profile of range queries against it; subsequently, it optimizes the size of the grid cells to minimize the
response time (disk accesses + communication cost) for the average query.

Here, we focus on the parallelization of R-trees. The difference between the R-tree and the grid file
is that the latter will suffer if the attributes are correlated. Moreover, the grid file is mainly designed
for point data; if the data are rectangles, the R-tree is better equipped to handle them. Little work
has been done on the parallelization of R-trees: In [22] we studied the multi-disk architecture, with no
communication cost, and we proposed the so-called ‘proximity index’ to measure the dis-similarity of
two rectangles, in order to decide which unit to assign each rectangle to.

In this paper, we present a software design to achieve efficient parallelization of R-trees on a multi-

computer architecture, taking into account the communication cost.



3 System Architecture

An overview of the proposed architecture can be seen in figure 1. It consists of a number of workstations
connected together with a LAN (eg. Ethernet). Since the communication cost is not negligible, we want
to minimize the number of messages. Thus, we designate one machine as the master server while the
rest are simply servers. The master server will accept the user’s query, distribute the query to the
appropriate servers, and collect the results from them. Each server has some portion of the data stored
on its local disk.

There are several ways to organize the data in an environment like the one we propose. We can have :
(a) one Multiplexed R-tree (b) we can organize the data in super-nodes and stripe them across different
machines (c¢) we can maintain n disjoint R-trees. The first approach creates a traditional R-tree, whose
nodes are stored on the available servers, with pointers across servers [22]. In the proposed environment
where cross-server pointers will result in (possibly expensive) messages, this approach will incur high
communication costs.

In the second approach the R-tree has nodes which are N-times larger; each R-tree node is shipped
across the N servers. The disadvantage of this method is that even the smallest query will activate all
the servers, reducing the throughput of the system.

We propose an organization similar to the third approach. Our idea is to use an R-tree on the master
server whose leaf nodes will contain pointers to ’chunks’ of data stored on the servers. It is not necessary
to organize the chunks of a server in any specific way, because the master server will provide the chunk
id, saving the server from any searching.

In parallel databases, as far as data storage and search time are concerned, we face two design

decisions.

1. What is the optimal chunk size i.e the unit of the amount of data that we should place in every

machine such that the query response time is minimized.

2. Data placement problem: Once the chunk size has been determined what is the best algorithm to

distribute the chunks among several machines, to optimize the response time and the parallelism.

This paper tries to answer both questions. The details of the system are as follows:

Recall that one specific machine is called master server. This is the machine that acts as a host,
which accepts a query and distributes it to the rest. A distributed R-tree is maintained, as follows: the
non-leaf levels of the tree are stored in the master server; the leaf nodes are carefully declustered on
the servers. The difference from standard R-trees is that, while the non-leaf nodes each span to 1 page
(eg., 1Kb), the leaf nodes may be larger: each leaf node is called a ’chunk’ and its capacity Cop is a

major optimization problem, that we discuss next.
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Figure 1: The proposed architecture

Thus, the R-tree on the master server contains only Minimum Bounding Rectangles (MBR’s). The
bottom level nodes of the R-tree in the master server contain the MBR coordinates of the chunk and
a pointer to the chunk (chunk id and machine id). In each MBR we store in addition to the MBR
coordinates , the id of the machine that the chunk corresponding to that MBR lays and the chunk id.
Figure 2 gives an example of an R-tree, distributed across the master server and 3 servers.

Notice that all the non-leaf nodes are stored on the master server spanning 1 page each. The leaf
nodes are declustered on the servers spanning C,pt pages.

Under the configuration described above, when a query is initiated in the master server, the R-tree
in the master server is searched. Note that this search is done in the normal way R-trees are searched
by comparing MBR’s. Since the leaf nodes are not kept in the R-tree in the master server, we retrieve
the pointers to the machines that hold the relevant chunks. Once these pointers have been obtained,
a message is send to these machines containing (a) the MBR of the query and (b) the chunk-id’s to
be retrieved from each machine. Thus the servers can search in parallel. Each server that received a
message fetches the relevant chunks, processes them to find qualifying rectangles and ships data back
to the master server. The packet size (PS) was chosen carefully so that messages in the architecture do

not suffer from the TCP/IP store and forward mechanism.
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4 Optimal chunk-size selection

In this section we describe our approach to optimize the chunk size. Table 1 gives a list of the symbols
we use, their definitions and their typical values (whenever applicable). Figure 3 illustrates the problems
of a poor choice for the chunk size: a tiny chunk size will result in activating several machines even for
small queries, resulting in high message traffic; a huge chunk size will limit parallelism unnecessarily,
even for large queries.

A search for actual data begins in parallel in the servers. As soon as each server has data, it starts
shipping them to the corresponding process in the master server. If we assume that K servers were
involved (1<K<N), then the master server has to send K messages, one in each promising server, and
it has to wait for results from each of the servers. This approach enhances scalability, since we do not
activate servers with irrelevant data. Also query throughput is enhanced since processes in each server
are activated only whenever their local search will be successful.

The method can be applied to any n-dimensional space. To simplify the discussion we use examples
from 2-d space. Assuming a query of size ¢, X g, and a data space of D rectangles we know that the

expected number of qualifying tuples is [23]:

qu;nXQyXD (1)

Let the page size be P bytes (as determined by the operating system) and let Tjo be the average access

time for a page.



Initial Data File 8mall Chunk Size Big Chunk Size

Figure 3: Illustration of problems with small and large chunk sizes

The elapsed time or round trip time RT(gs,qy) for a query of size g, X ¢, can be expressed as a
function of four terms. The first is CPU time to process the query in the master server and in the
servers that are involved in the query execution, Topy. The second is the disk access time for all disk
accesses required, Tprsk. The third is the time required to send the query in each server that is involved
in the execution, TcommunicaTIoN- Finally is the time required to collect all the qualifying data in

the master server, Trgsyrr. So the round trip time can be expressed as:

RT(qy X ¢y) = Topv + Tpisk + Tcommunicarion + TresvLT (2)
In figure 4 we show how each server spends its time:
e Gray boxes stand for the time it takes to receive a message from the master server.
¢ Black boxes stand for local processing time
o Striped boxes stand for the time it takes to return the results.
¢ No boxes denote idle periods for the given server.

Notice that messages on the network may not overlap. We ignore the CPU time since it is negligible.
In figure 4a the time to send the query in all the machines involved in the execution dominates the local
processing time of each machine. So in this case Tcpy and Tprsk will not appear in the expression
for RT (g, qy) because these terms are overlapped fully by the time to send the chunk requests to all

the machines participating in query execution. In this case the expression for the round trip time of a



Symbols | Explanation Values

N Number of servers in the architecture 2-9
PS Average packet size (in bytes) 1 page
CCigte | Time to send a message on an idle Network 10ms
ccC Time to send a message and wake up cost under load | varies
9z,qy | query sides vary
D Total #of records in the data base 39717
P page size in bytes
Tro disk access time for 1 page 10 ms
@ Average #of qualifying records for query ¢, ¢, varies

Copt chunk size in Pages

Table 1: Symbols, definitions and typical values

query contains only ToomMmunicarion and Trgsyrr, where

Tcommunicarion = K x CC (3)
B Q
TresurT = CC X 7S (4)

which is the time required by the last machine activated to send the results back to the master site.
Thus RT(gs, g,) becomes:

- 9 Tio
RT(qE,qy)_KXCC+CCXPS, when (K 1)XCC’2QXKXP (5)

In figure 4b local processing time dominates the time to send the query to all the machines. We have
that:

Tcommunicarion = CC (6)
the initial message,
T K= Q x Tro (7)
DIS Px K
which is the time that disk accesses take in the last machine activated, and
Tresvrr = CC X 'S (8)
PS

which is the time required from the last machine activated to send the results back to the master site.

In this case we have:

T cC
RT(gs,q,) = CC + 92X T10 | @ X

Tio
Py K PS5 when (K — 1) x CC < @ X 9)

K x P




where 913(—31%0— represents the local processing time in each node.
It is important to highlight how overhead from other users using the network can be represented in
the formulas above. As analyzed in [5] the time to send a packet grows linearly with the number o of

active nodes transmitting, that is:

CC =axCCiqe (10)

where o is the number of active (transmitting) nodes simultaneously with the node in question and
CCiaie is the time to transmit a message on an idle network. So essentially the parameter o expresses
the overhead due to the other users of the network. Ideally the time to send a small message on an
Ethernet under very light load (CCjgc) is on the average 10ms.

For a given chunk size C,,; we can estimate the average number K of machines that will be activated

as follows:

¢ Q/Cop; estimates the number of chunks that the query will retrieve.

1/N is the probability that a given given machine will contain a specific chunk of interest.

1—1/N is the probability that a given machine will not contain a specific chunk.

(1—1/N)@/Cert is the probability that a given machine will not contain any of the Q /Copt chunks.

1—(1—1/N)%/Cert i5 the probability that a given machine will contain at least one of the requested

chunks.

Thus the number of qualifying servers is:
K:(l——(l—%)?oqﬁ)xN (11)

This formula is similar to Cardenas formula [7] for estimating block selectivities.
Given the value of K above we can form the following equation by combining equations (2,3):

2xQxTio _

2— _— =
K- K- S5 =0 (12)

Finally, after we have obtained the positive root of the equation above ,namely:

144/1+4x 2800

Kopt : (13)

we can solve for C,,; obtaining:

-Q
= <
Copt N x lOg(]. — Kopt/N) when -Kopt < N (14)
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In the formula above the computation for the chunk size holds as long as, Kopy < N. When the
number of machines available (N) is less than K,y then the optimal value of chunk size tends to become
0, from equation (14). Intuitively this is expected, since in this case the best we can hope is that all
units participate in the query execution, and this is guaranteed by making the chunk size as small as
possible. However, choosing the chunk size to be less than 1 page will increase the IO cost: several pages
will be retrieved in order to access only a tiny portion of their contents. This observation is confirmed

on our experiments (see figure 5). Thus:
Copt =1 page when K, > N (15)

From the values obtained above we have enough information to design an architecture like the one
proposed in this paper. The number of machines needed in order to minimize response time is given by
K,,;. Based on the value of K, we can calculate the chunk size. In the experimental results section

we will give typical values for different data base size and number of machines.

5 Declustering - Data Placement

The previous analysis on the optimal chunk size makes the assumption that the qualifying chunks will
be equally distributed among the qualifying servers. To achieve that, we have to be careful on how we

place chunks on the servers. The idea is that ’similar’ chunks should be declustered: that is, if two
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chunks have MBR’s that are nearby in space and therefore likely to qualify under the same range query,
these chunks should not be stored on the same server.

A straightforward way to assign chunks to the servers is to use a hashing function (eg., using the low-x
coordinate as the key for hashing). Alternatively, we can order the chunks (= leaves of the R-tree), eg.,
through a breadth-first search traversal of the R-tree (ignoring the non-leaf nodes), and then to assign
chunks to servers using a round robin scheme.

As we show in the experiments section, we can achieve such a good declustering by using a variation
of the Hilbert-based declustering method [13]. To illustrate our method, we use a static database of 2-d
rectangles, sort them on their Hilbert values of their centers and pack them into R-tree nodes (creating
a so-called Hilbert packed R-tree [24]. Thus, there is a linear ordering on the leaf nodes of the R-tree;
using this linear ordering, we traverse the leaf nodes and we assign each node to a different server in a

cyclic mode.

6 Experimental Results

In this section we present experimental results with the proposed architecture. All the experiments
were conducted on a data set from the Montgomery County, MD representing the roads in this County.
The data set consisted of 39,717 line segments; the address space was normalized to the unit square. In
all cases we built a Hilbert packed R-tree and declustered it as explained in section 5. We performed
4 sets of experiments. In the first set we illustrate the accuracy of the formula for the response time.
In the second set, we experimented with various chunk sizes to show that indeed our choice of chunk
size minimizes the response time. The third set of graphs use the formulas to plot analytical results
in “what-if” scenarios. The last set of experiments compares the Hilbert based declustering with a
“naive”, random declustering.

The implementation was done in the C language under UNIX. We used Sun SPARC/IPX workstations
connected via Ethernet. We experimented with different number of workstations and query sizes. The
queries were squares of varying side ¢, = ¢,. For each query size, the results that we report are the

averages over 100 queries.

6.1 Accuracy of the formula

In the first set of experiments we tried to estimate the overhead C'C of startup costs and transmission
of a message in our environment. Since our network was not isolated, random overhead was imposed to
the architecture during the experiments from other users using the network.

We performed several experiments to obtain estimates at different times during the night, when the
network traffic was low. All our experiments where also done at night. Each experiment consisted of

setting up the communication interface between two processes and exchanging 100 messages of size 1
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Experiment comm. cost CC (msec)
Ezperiment 1 || 32.502194

FEzperiment 2 || 25.664210

Ezperiment 3 || 29.409790

Ezperiment 4 || 22.373228

Ezperiment 5 || 35.966356

Ezperiment 6 || 33.273418

Average: 29.86486

Table 2: Experiments for determining the communication cost CC for a single message

%-—-3, N=8 | Response Time (msec)

Query Side | Ezperimental | Theoretical | error %
0.1 232.84 192.222 17

0.2 806.69 569.863 29

0.3 1577.34 1230 22

Table 3: Theoretical and Experimental values for the response time for N =3 servers

- page, at random times. The averages are presented in table 2. The estimate of 30ms for CC was very
consistent and is the one we use from now on.

Tables 3-5 compare theoretical and experimental values for the response time (in milli-seconds), for
N=3,5,7 servers respectively. The theoretical values where obtained using Eq’s 5,9. We also present
the percentage of error of each experiment performed, rounded up to the nearest integer.

It follows from the calculations above that our formula for the response time is accurate within 30%

or better for all the experiments we performed.

6.2 Optimal Chunk selection

We also experimented with different chunk sizes, number of machines and query sizes. Based on these
results we plot the response time versus chunk size for different query sizes. Figure 5a presents our results
for N=3 machines and figure 5b for N=5 machines. In these figures we can see that response time is
minimized when the chunk size is a page. This result can be validated by our analytical computation of

the chunk size: Substituting the parameters of the experiment in 5a into our analytical formula of the
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%%:3, N=5 | Response Time (msec)

Query Side | Experimental | Theoretical | error %
0.1 228.64 208.56 8.7

0.2 786.72 625.778 20

0.3 1461.34 1229.95 15.8

Table 4: Theoretical and Experimental values for the response time for N =5 servers

%%:‘)’, N=7 Response Time (msec)

Query Side | Experimental | Theoretical | error %
0.1 290.66 288.863 1

0.2 730.3 672.173 20

0.3 1289.32 1289.18 1

Table 5: Theoretical and Experimental values for the response time for N =7 servers

chunk size, for query sides (gz, ;) = (0.1,0.1) we get Cop = 0.94; using the parameters of Figure 5b,
we get Copt = 1.3. For the other values of query sides, the optimal value of processors returned by the
formula of K, is greater than the number of servers N. Thus C,p; = 1 page as we discussed in the
analysis and as it is verified in the experiments. Also notice that C,p; < 1 gives bad results, indicated

by the sudden rise in the response time, as the chunk-size approaches zero.

6.3 Extrapolation for other scenarios

Having obtained confidence on our analysis, here we use the formulas for extrapolation. We vary the data
base size (D), communication cost (CC), disk access time (T70) and query sides (gz,qy,). We present
the results in figures (6,7). For each value of query side and data base size we present three curves
corresponding to square queries of side ¢, = ¢g,= 0.1,0.2,0.3 respectively. Our goal is to experiment with
(a) large data bases (b) networks of different speeds.

Figure 6 shows the results for a database of size 1MB, for the current network (CC/To = 3) and for
a slower network (CC/Tro = 10), i.e. heavily loaded. For the first case the response time is minimized
for Cope = 1 page. For the slower network, messages are more expensive and therefore larger chunk sizes
are more favorable. However, even then, Cy,t = 1 gives a response time that is close to the optimal.

Figure 7a,b show the same plots for a 1GB data base, for 'normal’ (CC/T1o = 3) and slow (CC/T1o

13
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Figure 5: Optimal chunk-size selection: Response time vs chunk size (in pages)

= 10) network respectively. The plots are straight lines indicating that C,p¢ = 1 is a good choice (as
good as anything else).

In Figure 8(a)-(b) we give the plots for a faster network (CC/T70=0.1), for a 1Mb and a 1Gb
database, respectively. In a fast network, we want to maximize parallelism. Clearly this is achieved
with the smallest allowable chunk size (C,p: = 1). The plots in Figure 8 confirm our intuition: choosing

Copt=1 minimizes the response time, in all the cases we plotted.

6.4 Declustering

Here we present experimental results to illustrate the superiority of our Hilbert-based declustering. For
comparison, we used the following scheme: a “straightforward” method (called “random”): we build the
R-tree with the given chunk size, and we assign chunks to servers at random. As expected the Hilbert

based scheme consistently outperforms random for any query size as shown in figure 9.

7 Conclusions

In this paper we have studied a method to decluster a spatial access method (and specifically an R-tree)
on a shared-nothing multi-computer architecture. The nodes are connected through an off-the-shelf

LAN. We derived analytical formulas for the response time and the optimal ’chunk’ size, we validated
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Figure 6: Analytical results. Response time vs chunk size for: Query Sides 0.1,0.2,0.3, D = IMB, N=5

servers

them against experimental data from our prototype implementation, and we proposed a Hilbert-based
declustering method of the leaf nodes of the R-tree.

The conclusions from our experiments are the following:
o the formula (Eq 5,9) for the response time is accurate within 30% or better
o the formula (Eq 14) for the optimal chunk size agrees very well with the experimental results
¢ the Hilbert-based declustering gives excellent results, outperforming straightforward methods.

The most important practical contribution is that using 1-page ’chunks’ leads to optimal performance
(or very close toit). This is especially true for fast networks, as well as for large queries. This conclusion
is important from a practical point of view, because it provides a simple, intuitive rule for the optimal
choice of the chunk size. In contrast, previous analyses (eg. [16]) seemed to indicate that the chunk size

should be determined as a function of the query profiles, using complicated optimization techniques.
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Figure 7: Analytical results. Response time vs chunk size: Query Sides 0.1,0.2,0.3, D = 1GB, N=20

servers.

Future work includes the design of parallel R-tree algorithms for other types of queries, such as spatial

joins [6] and nearest-neighbor queries.
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