Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Investigation of Control Strategies for Friction Compensation

    Thumbnail
    View/Open
    MS_91-4.pdf (4.491Mb)
    No. of downloads: 1132

    Date
    1991
    Author
    Ehrich, Naomi E.
    Advisor
    Krishnaprasad, P.S.
    Metadata
    Show full item record
    Abstract
    Control strategies are investigated for friction compensation in servomechanisms. As part of the investigation, several different models of friction are reviewed and analyzed for their relevancy to the control problem. Models of friction at zero and near-zero velocities are of particular concern since in this regime friction can introduce oscillations. These different models are considered in friction-compensating adaptive control design. Three friction-compensating adaptive controllers are designed based on strategies proposed in the literature. Adaptive controllers are well-suited to the friction compensation problem since they are nonlinear and have the additional advantage of providing system identification and tracking of slowly-varying parameters such as friction parameters. Stability analyses are performed for the controllers and yield asymptotic stability results for the system error. An original stability proof employing passivity theory is provided for one of the controllers. To test the effectiveness of the adaptive controllers, an experimental program is designed and implemented on a direct drive dc motor. Comparative position trajectory tracking experiments are performed with the three adaptive controllers, a controller with dither ( a commonly-used heuristic friction-compensating controller), and a traditional linear controller used as a benchmark. The results show that the adaptive controllers outperform the more traditional heuristic and linear controllers. Additionally, the experiments yield insight into the appropriateness of the different friction models under the tested operating conditions. In particular, the less popular Dailey model is observed to provide a reliable representation of friction behavior near zero velocity.
    URI
    http://hdl.handle.net/1903/5175
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility