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Control strategies are investigated for friction compensation in servomech-
anisms. As part of the investigation, several different models of friction are
reviewed and analyzed for their relevancy to the control problem. Models of
friction at zero and near-zero velocities are of particular concern since in this
regime friction can introduce oscillations. These different models are considered
in friction-compensating adaptive control design. Three friction-compensating

adaptive controllers are designed based on strategies proposed in the literature.

Adaptive controllers are well-suited to the friction compensation problem since



they are nonlinear and have the additional advantage of providing system iden-
tification and tracking of slowly-varying parameters such as friction parameters.
Stability analyses are performed for the controllers and yield asymptotic stabil-
ity results for the system error. An original stability proof employing passivity
theory is provided for one of the controllers. To test the effectiveness of the
adaptive controllers, an experimental program is designed and implemented on
a direct drive dc motor. Comparative position trajectory tracking experiments
are performed with the three adaptive controllers, a controller with dither (a
commonly-used heuristic friction-compensating controller), and a traditional
linear controller used as a benchmark. The results show that the adaptive
controllers outperform the more traditional heuristic and linear controllers. Ad-
ditionally, the experiments yield insight into the appropriateness of the different
friction models under the tested operating conditions. In particular, the less
popular Dahl model is observed to provide a reliable representation of friction

behavior near zero velocity.



AN INVESTIGATION OF CONTROL STRATEGIES
FOR FRICTION COMPENSATION

by

Naomt Elizabeth Ehrich

Thesis submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science
1991

Advisory Committee:

Professor P. S. Krishnaprasad, Chairman/Advisor
Assistant Research Scientist Josip Lon¢arié
Assistant Professor W. P. Dayawansa






ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor Dr. P. S. Kr-
ishnaprasad for his guidance and encouragement on my graduate research. His
unfailing enthusiasm for the study of friction compensation and related nonlin-
ear control topics has made my work all the more stimulating. I would also
like to thank Dr. Josip Loncari¢ who served as a co-advisor and provided many
useful suggestions regarding friction models and experimental implementation
issues. I owe additional thanks to Dr. Krishnaprasad, Dr. W. P. Dayawansa,

and Dr. Loncari¢ for serving on my thesis advisory committee.

I am grateful to my colleagues in the Intelligent Servosystems Laboratory
for all their help and for making the lab a great place for research. Additionally,
I'd like to thank Reza Ghanadan in particular for his discussions on adaptive

control.

Finally, I would like to thank both the System Research Center and the

i



Graduate School of the University of Maryland for my graduate fellowship sup-

port.

This research was supported in part by the National Science Foundation’s
Engineering Research Centers Program: NSFD CDR 8803012 and by the

AFOSR University Research Initiative Program under grant AFOSR-90-0105.

iii



Contents

1 Introduction

2 Friction Structure and Dynamics

2.1 Kinetic Friction . . .. ... ... L o oo o
2.2 Viscous Friction . . .. .. ... L L
2.3 Static Friction and Stick-Slip. . . . ... ... .. ........
2.4 Pre-Sliding Displacement . . . . . .. ... ... ... ......
2.5 Static Friction Dependence on Dwell Time . . . ... .. .. ..
2.6 Iriction Variations with Velocity. . . . . .. ... .. ... ...
2.7 FrictionalLag . . .. ... ... ... o L L,

3 Friction-Compensating Control Strategies

3.1 Modified PID Control . . .. .. .. ... ... ... . .....

iv

10

24

27

37

45

48

33

58



3.2 Smoothing and Linearizing Techniques . . . ... ... ... .. 64
3.3 Adaptive Control Strategies . . ... ... ............ 68
3.4 Design and Analysis of Adaptive Strategies Used in Experiment 77
3.4.1 Adaptive Controller I. . . .. ... ... .......... 78
3.4.2 Adaptive Controller II . . . . ... ... ... ...... 83

3.4.3 Adaptive Controller IIT . . . . ... ... ... .. .... 91

4 Experimental Program 97
4.1 Hardware Description. . . . . .. ... .. .. ... ... ... . 97
4.2 System Model and Verification . . . . ... ............ 100
4.3 ExperimentDesign . . .. ... ... ... ... ... ... 106
4.4 Optimal PID Controller Design . . ... ... .......... 108
4.5 Implementation of Control Strategies . . . ... ... ... ... 110
4.5.1 Controller with Dither . . . . . .. ... ... .. R 111
4.5.2 AdaptiveController I . . . .. ... ... ... ...... 112
4.5.3 Adaptive Controller IT . . . . . .. ... ... .. .... 113
4.5.4 Adaptive Controller ITT . . . . . . . . . ... ... ... 114



4.6 Results. . . . . . . . . . e 116

5 Conclusions 132

Bibliography 136

vi






List of Tables

4.1 Results of Sinusoidal Tracking Experiments. . . . . . . . . ... 122
4.2 Experimental Results at Different Initial Positions (f = 0.5 Hz) 130

4.3 Comparison of Tracking Experiment Results with 50 Hz and 100

Hz Sampling Rates . . . . ... ... ... ... ... ... . ... 131

vii



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

Microscopic View of Two Contacting Surfaces . . .. ... ...

True Contact Area Independent of Surface Area . . . . . . . ..

Kinetic Friction due to Relative Sliding Between Two Bodies . .

Kinetic Friction Model . . . . . . . . . . . . .. .. ... ...

Asymmetrical Kinetic Friction Model . . . . . .. .. ... ...

Standard Form for Describing Function Analysis of Closed Loop

System with Hard Nonlinearity . . ... ... ... ........

Dynamic System with Kinetic Friction and Damping . . . . . .

Describing Function Analysis Plot for Limit Cycle Detection in

System of Figure 2.7 . . . .. . ... ... ... L.

Dynamic System with Kinetic Friction, Damping and Propor-

tional Control . . . . . . . . . . . e

viil

14

15

16



2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

Describing Function Analysis Plot for Limit Cycle Detection in

System with Proportional Control . . . . . ... ... ... ....

Describing Function Analysis Plot for Limit Cycle Detection in

System with Integral Control . . ... ... ... .........

Viscous Friction Model . . . . . . . . . . . .. ... ... ....

General Kinetic Plus Viscous Friction Model . . . . . ... ...

Classical Model of Static, Kinetic and Viscous Friction . . . . .

Stick-Slip in a Sliding Mass System . . . . .. ... ... ....

Sliding Mass System Used for Phase Plane Analysis of Stick-Slip

Phase Plane Diagram of Sliding Mass System with Kinetic Fric-

tionOnly . ... .. . . e

Phase Plane Diagram of Sliding Mass System with Static and

Kinetic Friction . . . . . . . . . . . . . .

Phase Plane Diagram of Sliding Mass System with Static, Kinetic

and Viscous Friction . . . . . . . .. .. ... ... ... ...

Friction-Displacement Relationship . . .. ... ... ... ...

Friction-Displacement Hysteresis Loops . . . . . . .. .. .. ..

ix

27

29

31

32

40



2.24

2.25

2.26

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Friction Response to Velocity Reversals . . . . . ... ... ...

Classical Friction Model Prediction of Response to Velocity Re-

versals . .. .. L
Static Friction Dependence on Dwell Time . . . . ... ... ..
Friction Variation with Velocity . . . ... .. .. .. ... ...
Hysteresis Friction Effect Due to Frictional Lag . . . ... ...

Smoothing Effect of Triangular Wave Dither on Relay-Type Dis-

continuity . . . . .. ... ..
Typical Pulse-Width Modulation Signal . . ... ........
Model Reference Adaptive Control . . .. .. ... ... ....
Self-Tuning Regulator . . .. .. ... .. ............
Adaptive Controller I . . . . . .. ... ... ... ........
Adaptive Controller II . . . . . . .. ... ... ... ......
Adaptive Controller IIT . . . . .. ... ... ... ..... B

Adaptive Controller ITI Model for Stability Proof Using Passivity

Formalism . . . . . . . . . . . e

49

53

70

71

84

90

92



4.1 Experimental System (reproduced with permission from L.-S. Wang

MSthesis) . . . . . . . . 98

4.2 Comparison of Measured and Calculated Responses to the Same

4.3 Comparison of Measured and Calculated Responses to the Same

Input, J=0.04 . . . . ... 103

4.4 Experimental Evidence of Torque Ripple in Motor . . . . . . .. 104

4.5 Phase-Plane Plot Close-up for System with Static, Kinetic and

Viscous Friction, V=0.1rad/s . ... ... ... .. ....... 105

4.6 Phase-Plane Plot Close-up for System with Static, Kinetic and

Viscous Friction, V. =0.01rad/s ... ... ... .. .. ..... 106

4.7 Simulated Data for PID Controlled Motor Response to 0.25 Ra-

dian Position Step . . . . .. ... Lo o oo 110

4.8 Experimental Data for PID Controlled Motor Response to 0.25

Radian Position Step . . . . . . . .. ... .. oo 111

4.9 Experimental Results Used to Determine Optimal w (f = 0.25 Hz)115

4.10 Optimal Values of w as a Function of Operating Conditions . . . 116

xi



4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Results of Sinusoidal Trajectory Tracking Experiment with PID

Controller . . . ... ... .... e e e e e e e e e e e

Results of Sinusoidal Trajectory Tracking Experiment with PID

Controller with Dither . . . . . . . . . . ... .. .. ... ....

Results of Sinusoidal Trajectory Tracking Experiment with Adap-

tive Controller I. . . . . . . . . . . . . o

Results of Sinusoidal Trajectory Tracking Experiment with Adap-

tive Controller IT . . . . . . . . . . . . . . .

Results of Sinusoidal Trajectory Tracking Experiment with Adap-

tive Controller IIT . . . . . . . . . . . . . . . . . ...

Position Error for PID Controller with Dither Compared to Bench-

mark PID Controller . . . . . . . . . . . . . . .

Position Error for Adaptive Controller I Compared to Benchmark

PID Controller . . . . . . . . . . . e

Position Error for Adaptive Controller II Compared to Bench-

mark PID Controller . . . . . . . . . . . i i e

Position Error for Adaptive Controller III Compared to Bench-

mark PID Controller . . . . . . . . . . . . .. ...

Parameter Adaptation for Adaptive Controller II, Model (a) . .

Xii



Chapter 1

Introduction

Recent growth in the number and variety of robotics applications has led to a
demand for increased precision in robotic manipulation. For example, robots
that perform exacting industrial assembly tasks or manipulators employed in
delicate surgical procedures must be capable of precisely controlled maneuvering.
However, robotic manipulators are mechanical systems and must necessarily
contend with physical realities. In particular, physical reality in the form of

friction poses a serious challenge to precise manipulator control.

This thesis describes both theoretical and experimental results that pro-
vide insight into the friction-compensating control problem for servomechanisms.
The first major effort involves a comprehensive review with analysis of a vari-
ety of different friction models with the goal of understanding which features of
friction are most important to the control problem. Friction models developed

throughout history including the most recent research results are examined.



The second major effort of this thesis deals directly with a variety of friction-
compensating control strategies. Three adaptive control strategies in particular
are explored in detail [Gilbart and Winston, 1974,Craig, 1988, Walrath, 1984].
These controllers use simple friction models as the basis for friction compen-
sation. However, in this thesis design modifications to these controllers are
proposed that introduce more detailed and complete friction models into the
compensation schemes. Additionally, in the work of [Walrath, 1984], the author
provided no control system stability analysis. A major theoretical contribution
of this thesis is an original stability proof based on the passivity formalism of

the friction-compensating control technique of [Walrath, 1984].

A comparative test program involving servomechanism tracking experiments
performed with several different friction-compensating controllers provides the
significant experimental contribution of this thesis. This effort addresses the lack
of comparative experimental results on friction compensation and includes an
assessment of the relative effectiveness of the different control strategies. Because
there are still uncertainties as to how friction affects dynamic behavior, it is
necessary that the true test of control strategies be experimental. Additionally,
this thesis describes an important friction parameter relationship, empirically
derived using the technique of [Walrath, 1984], that provides increased support

for the less popular Dahl friction model.



The motivation for the research of this thesis derives from the fact that fric-
tion 1s typically undesirable, unavoidable, and difficult to model for servomech-
anism control problems. Friction is a force that opposes the motion of two
surfaces rubbing or rolling agaiunst each other. It results from a complex of
microscopic phenomena dependent on surface material, characteristics of lubri-
cation between the surfaces, forces normal to the direction of motion, and the
dynamics of the rubbing or rolling motion. On the macroscopic level, friction
has been observed to hinder smooth motion. It is discontinuous at zero velocity

and can generate oscillatory behavior at low speeds.

All mechanical systems with moving parts experience friction. In a typical
robotic manipulator, the joints are driven by electric motors, and friction is
present in the bearings of the motors and in the gears of the transmissions.
Much can be done to reduce the level of friction by improving mechanical design.

However, friction will always be present to some degree.

In the control of a mechanical system, failing to compensate for friction
can lead to tracking errors when velocity reversals are demanded and oscil-
lations when very small motions are required. For precise manipulator con-
trol, these performance deviations can be costly. To compen'sate for fric-
tion it is best to have some knowledge of the structure of friction. How-
ever, microscopic friction phenomena do not easily translate into a structural

model of friction that accurately predicts the observed macroscopic behavior



of a dynamic mechanical system. Indeed, several different models of friction
have been proposed by researchers in tribology, e.g. [Bowden and Tabor, 1982,
Rabinowicz, 1965,Hess and Soom, 1990], and recently by researchers in control
engineering [Dahl, 1976,Armstrong, 1988,Canudas de Wit, 1989], yet with little
overall consensus in the literature. As a result, an engineer, attempting to com-
pensate for friction in order to accurately control the movement of a mechanical
system, is faced with an unclear choice of a friction model. The engineer can-
not be sure which friction model incorporates the features necessary for friction

prediction that will enable satisfactory control of the desired task.

In addition to the disruptive nature of friction and the lack of a universal
model of friction, friction compensation is further complicated by the fact that
friction parameters vary with temperature and age. This implies that a friction
compensation scheme that works one day may not work the next day if the
operating conditions have changed. Consequently, a good compensating scheme

must take into account this potential for variation.

Traditionally, control engineers have used “heuristic” open-loop techniques,
such as dither and pulse-width modulation, to compensate for friction in me-
chanical systems. These techniques. perform signal averaging to smooth out
the discontinuities introduced by friction. However, these techniques confound
rigorous investigation of system performance measures such as stability and ro-

bustness. Pulse-width modulation is not easily handled mathematically since



it yields a control signal that is discontinuous. Dither can cause mechanical

problems such as fatigue by exciting vibrations in manipulators.

As an alternative to these techniques, researchers in control engineering have
recently considered adaptive control techniques for compensation of friction
in mechanical systems [Gilbart and Winston, 1974, Walrath, 1984,Craig, 1988,
Canudas et al., 1986]. These methods are suitable for control of nonlinear sys-
tems and have the additional advantage of providing system identification and
tracking of slowly-varying system parameters such as friction parameters. How-
ever, adaptive compensation of friction assumes some knowledge of friction struc-
ture and so does not eliminate the problem of selecting an appropriate friction

model.

Among the adaptive friction compensators proposed in the literature, a va-
riety of friction models are assumed. Most of the researchers show experimental
evidence that their friction model together with their compensation technique
improves system performance. However, since each research team performed
different experiments, there is no easy way to compare the relative effectiveness
of the different control-technique/friction-model combinations. That is, the en-
gineer. still does not have a clear basis for judging which control technique and

friction model best can handle a given problem.

Chapter 2 of this thesis describes the different models of friction



found in the literature.  These models range from the classical fric-
tion model (originally developed by such distinguished figures in the his-
tory of science as Leonardo da Vinci and Charles de Coulomb) to
the modern dynamic state-variable friction models proposed by geophysi-
cists studying unstable sliding between rock surfaces to explain fault
motions in the earth’s crust [Horowitz, 1988,Nussbaum and Ruina, 1987,
Rice and Ruina, 1983,Rice and Tse, 1986,Ruina, 1983]. To address the prob-
lem of understanding which friction features are most important for precision
control, our descriptions of each friction model include not only an explana-
tion of the model based on microscopic phenomena but also a discussion of the

macroscopic dynamic behavior predicted by the model.

Chapter 3 offers a comprehensive review of control strategies for friction
compensation and describes for each strategy the advantages and disadvantages
with regard to control implementation, flexibility and performance. As men-
tioned above, the adaptive control techniques seem most well suited to the fric-
tion compensation problem since they are inherently nonlinear and they provide
system identification and tracking of slowly-varying system parameters. As a
result, they are explored most rigorously in this thesis. Section 3.4 describes in
detail the control strategies tested in the experimental program, including mod-
ifications and improvements made to the friction models or controllers. Stability

analyses accompany discussion of the controllers.



Chapter 4 provides the details of the experimental program and the experi-
mental results. The subject of the experimental program was an electric motor,
i.e., a single-degree-of-freedom servomechanism intended to represent one joint
of a robotic manipulator. The experiments involved position trajectory track-
ing with velocity reversals which exercised the problems associated with friction
at near-zero velocities and the discontinuous nature of friction at zero velocity.
This focused testing of velocity reversals is appropriate since it is not practical
in general to expect a unidirectional motion application. The digital implemen-
tation of the controllers is described as is an analysis of the effect of various

hardware limitations on the experiments.

Conclusions are discussed in Chapter 5. Chapter 5 also includes some sugges-
tions for future work. Since friction figures so prominently not only in control of
mechanical systems with movable parts but also in other areas of research such
as robotic grasping and walking, advances in our understanding of friction and

our ability to control friction can yield significant and diverse rewards.



Chapter 2

Friction Structure and

Dynamics

Researchers in a number of different fields have considered the problem of iden-
tifying and modelling the structure and dynamics of friction. Many of these
investigators work in the area of tribology. Formally defined as the “science and
technology of interacting surfaces in relative motion” [Bowden and Tabor, 1982],
tribology encompasses the study of lubrication, rubbing, and wear. While some
of the work in tribology concerns friction dynamics, for the most part tribolo-
gists have been interested in the consequences of steady-state rubbing in order

to develop means to reduce machine wear and aging.

On the other hand, control engineers, who seek to drive mechanical systems
with precision in the presence of friction, are typically interested in the effect

that friction has on dynamic behavior. As a result, there has been a recent



effort by control engineers to study and model friction dynamics [Dahl, 1976,
Walrath, 1984, Armstrong, 1988]. This new work by control engineers has proved
enlightening, but as emphasized in [Armstrong-Hélouvry, 1991}, control engi-
neers concerned with friction compensation need to be aware of the important

discoveries made in the field of tribology.

Other recent contributions to the investigation of friction dynamics have
come from the field of geophysics. Researchers in this field test, model,
and simulate friction dynamics between sliding rock surfaces to explain
fault motions in the earth’s crustal plates [Ruina, 1983,Rice and Ruina, 1983,

Rice and Tse, 1986,Nussbaum and Ruina, 1987,Horowitz, 1988]. Their models
and studies of a time lag in friction response to dynamic changes in motion

appear to be relevant to the control engineer’s problem.

This chapter presents friction structure and dynamics in terms of seven dif-
ferent elements and effects including:

1. Kinetic friction

2. Viscous friction

3. Static friction

4. Pre-shiding displacement referred to as “the Dahl effect”

5. Static friction dependence on dwell time



6. Friction variations with velocity referred to as “the Stribeck effect”

7. Frictional lag

Each friction component and effect is discussed in terms of predicted or measured

microscopic phenomena, modelling, and macroscopic behavior prediction.

Although rolling friction is a physically different phenomenon from rubbing
or sliding friction, the models reviewed in this chapter attempt to describe the
dynamics of a system with rolling or sliding friction. Pure rolling friction condi-
tions occur when the contact between two surfaces is a point. However, accord-
ing to [Rabinowicz, 1965], the contact region between two surfaces is typically
of larger area than a point because of elastic (and possibly plastic) deformation
on one or both of the surfaces. The resulting “rolling” friction in this case in-
volves a combination of sliding and pure rolling friction. In fact, although the
sliding velocity is usually small compared to the rolling velocity, sliding fric-
tion often provides the major component of the total friction. Consequently,
it is appropriate to consider the same models for sliding friction and “rolling”

friction.

2.1 Kinetic Friction

Kinetic friction is the earliest type of friction recognized. As recorded in his

notebooks of the late fifteenth and early sixteenth centuries, Leonardo da Vinci

10



identified friction, later referred to as kinetic friction, as a resistance to the
- motion of one body sliding over another. He and his successors, Guillaume
Amonton of the late seventeenth century and Charles de Coulomb of the late
eighteenth century, understood that kinetic friction is proportional to the force
normal to the direction of sliding motion and independent of the area between
the two surfaces [Bowden and Tabor, 1982]. Coulomb further indicated that
kinetic friction is independent of the relative velocity of the sliding surfaces. For
this contribution, kinetic friction is also often referred to as dynamic friction or

Coulomb friction.

To understand what accounts for the characteristic behavior of kinetic fric-
tion, the contact of the rubbing solid surfaces must be examined on a microscopic
level. According to the original tribologists, on a microscopic scale all surfaces
are rough, looking more or less like mountain ranges [Bowden and Tabor, 1982].
The “mountains” are referred to as surface asperities. Figure 2.1 illustrates two
surfaces in contact on this minute scale. As is shown in the figure, all of the
load is borne by the “mountain peak” interfaces, better known as the asperity

junctions.

The true area of contact, as indicated in Figure 2.1, is the sum of the asperity
junction areas. The asperities will plastically deform as necessary when the

normal load increases. In fact, the true area of contact will be proportional to

11



Normal Force

v

Surface Area

aeperity L7 )/\ Sonction

True Contact Area is Sum of
Junction Areas

A

Figure 2.1: Microscopic View of Two Contacting Surfaces

the load as

True Area of Contact = Load (2.1)

Yield Pressure ’

where the yield pressure is a material property. If the surface area of the bodies
is increased with the load held constant, the individual asperity junction areas
may be dispersed, but the total true area of contact will remain the same. Figure

2.2 illustrates that true contact area is independent of surface area.

According to [Bowden and Tabor, 1982], friction is the shear strength of the
asperity junction areas. Due to interatomic forces at these junctions, the two

surfaces adhere. Friction is the force necessary to break the adhesion. Therefore,



Normal Force (Unchanged)

\/

Surface Area (Increased)

A
Y

Body A

True Contact Area is Sum of
Junction Areas (Unchanged)

Figure 2.2: True Contact Area Independent of Surface Area

friction is proportional to the true contact area as

Friction force = (True Area of Contact) (Shear Force per Unit Area), (2.2)

where the required shear force per unit area is a material property. As a result,
friction follows the same relationships as true area of contact, i.e., friction is
proportional to the normal load and independent of the surface area as claimed
above. Additionally, in this setting, the magnitude of the sliding velocity has
no effect on kinetic friction. According to [Rabinowicz, 1965}, the approximate
independence of friction from sliding velocity magnitude is due to the approxi-

mate independence of material strength from stress application rate. The sliding

13



ody A

\\\\\\\\\&

X

Figure 2.3: Kinetic Friction due to Relative Sliding Between Two Bodies
velocity direction is important, however, in that friction acts in the opposite di-

rection of motion.

Based on these properties, the kinetic friction force Fj, that results when one
body slides over another, as shown in Figure 2.3, can be simply modelled as the
product of the normal force N and a constant of proportionality f; referred to
as the coeflicient of kinetic friction. The direction of F} depends on the direction

of the sliding velocity V as follows:

‘Fk = fiNsgn(V), (2.3)

where
+1 ifV>0
sgn(V) = . (2.4)
-1 fV<0

A plot of this kinetic friction model is shown in Figure 2.4.

Some experimentalists have noted that in machines with rubbing parts more

14



Kinetic
Friction, Fy

f N

-
Velocity, V

Figure 2.4: Kinetic Friction Model

complicated and numerous than a single body sliding over a second body, the
magnitude of kinetic friction is not the same in the positive and negative di-
rections [Canudas et al., 1986,Armstrong-Hélouvry, 1991, Wang, 1987]. A more

general model of kinetic friction that accounts for this asymmetry is as follows:

fe, N V>0 ,
Fp = (2.5)
—fi, N ifV <0
where fi, and fi, are the kinetic friction coeflicients in the positive and negative

directions respectively. Figure 2.5 illustrates this asymmetrical kinetic friction

model.

The model (2.3) or (2.5) indicates that kinetic friction simply acts as a con-
stant retarding force for positive or negative velocities but that at zero velocity,
friction is discontinuous. This behavior can be classified as a “hard nonlinear-

ity”. The relationship of Figure 2.4 is sometimes referred to as a relay type of

15



Kinetic
Friction, FK

fi N
kp

P
Velocity, V

_f an

Figure 2.5: Asymmetrical Kinetic Friction Model

hard nonlinearity [Tsypkin, 1984].

According to nonlinear system theory, a closed loop system with a hard
nonlinearity can produce a limit cycle. Limit cycles are manifest as self-sustained
system oscillations. System oscillations, as a type of instability, can cause poor
control accuracy. Therefore, it is important to determine whether or not friction
can generate limit cycles. In [Slotine and Li, 1991] the authors use describing
function analysis to show limit cycle existence and stability prediction for closed-
loop systems with a hard nonlinearity of the form shown in Figure 2.6. The linear
portion of the plant, G(jw) is represented as a function of frequency w, and j
denotes v/—1. The hard nonlinearity is approximated by a describing function
N(A,w) which is a function of the amplitude A and frequency w of the time ¢

dependent sinusoidal error signal e(t). For single-valued hard nonlinearities
N(A,w) = N(A) (2.6)

16



+ e(t) u(t) y(t)

= NA0) —— G(jo) -

Hard Nonlinearity  Linear Plant/Controller

Figure 2.6: Standard Form for Describing Function Analysis of Closed Loop
System with Hard Nonlinearity

- > |F [sgn(*) —» -
- Mp+a
Hard Nonlinearity Linear Plant, G(p) p=d/dt
Relay Type

Figure 2.7: Dynamic System with Kinetic Friction and Damping

and is, therefore, always real-valued.

To check for the possibility of a limit cycle due to kinetic friction, first con-
sider the equation of motion for Body A of Figure 2.3 with mass, M > 0,

acceleration V and damping a > 0, that experiences kinetic friction:
MV +aV = —|Fy|sgn(V) . (2.7)

These dynamics can be represented by the block diagram of Figure 2.7. Note

that if the hard nonlinearity is replaced by its describing function and G(p) by its

frequency domain representation G(jw) then the system of Figure 2.7 conforms

17
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- 1/N(A)
4 o
'A Real
Gljw)
|
®

Figure 2.8: Describing Function Analysis Plot for Limit Cycle Detection in
System of Figure 2.7

to the standard of Figure 2.6. Describing function analysis then predicts a limit

cycle of amplitude A and frequency w if

14+ G(jw)N(Aw) =0, (2.8)

i.e.,

G(jw) = —1/N(A,w) . (2.9)

From [Slotine and Li, 1991], the describing function for the relay-type hard

nonlinearity of Figure 2.4 is

_ 4 F]

N4y ==

(2.10)

Therefore, if A > 0 then N(A) > 0. Both G(jw)and —1/N(A) for the dynamic

system of Body A are plotted on the complex plane in Figure 2.8. As can be seen

18



from this figure, G(jw)and —1/N(A) do not intersect for any A > 0; therefore,

no limit cycle is predicted for the nonlinear system of (2.7).

Consider next a feedback control system that regulates the position of Body

A of Figure 2.3 by applying a tangential force F' that is proportionally controlled:

F=K,(zq—1z)=Kpe (2.11)

where
K, is a constant proportional gain,
z4 is the demanded position,
z is the position,

e is the position error.

Since |F'| must exceed |F| in order to provide an accelerating force on Body A,

the force F}, applied to the linear part of the system is calculated as follows:

F —|F|sgn(V) if |F| > |F]
Mg +az+bc=Fp = (2.12)

0 if |[F| < |Fyl
where system stiffness & > 0 is assumed. This corresponds to a dead-zone for
small forces. Figure 2.9 shows the closed loop system with proportional control

and a dead-zone type of hard nonlinearity. From [Slotine and Li, 1991], for the

dead-zone type nonlinearity of Figure 2.9

N(A) = % (% —sin~1(Bd) — By /1 (J%i)z) : (2.13)
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Figure 2.10: Describing Function Analysis Plot for Limit Cycle Detection in
System with Proportional Control

respectively and

_ K;
- MpP+ap*+bp

G(p) (2.16)

Since G(p) is now a third order system, an intersection between G(jw) and
—1/N(A) is possible as shown in Figure 2.11. This implies that integral position
control of the mechanical system of Figure 2.3 which experiences kinetic friction
may lead to a limit cycle. Assuming that G(p) has no unstable poles, Figure
2.11 shows that the predicted limit cycle is stable, since with increasing A the

—1/N(A) curve increases away from the interior of the G(jw) encirclement.

The above analysis yields predictions regarding the existence and stability of
limit cycles in a simple mechanical system with kinetic friction for the various
cases with and without proportional and integral control. However, because

describing function analysis is an approximate technique, the predictions may
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Control

To make Figure 2.9 fit the form of Figure 2.6 let
G(jw) = K,G1(jw) . (2.14)

Figure 2.10 shows the corresponding plots of G(jw) and —1/N(A) on the com-
plex plane. Again since it is not possible for the two lines to intersect, a limit

cycle is not predicted.

However, it becomes clear that if integral control is used to regulate the

position of Body A instead of (or in addition to) proportional control then

F:K,-(/:rd—/a:) =1{,-/e (2.15)

where K; is a constant integral gain. The resulting closed loop system looks

the same as in Figure 2.9 except that z; and z are replaced with [z4 and [z
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Figure 2.11: Describing Function Analysis Plot for Limit Cycle Detection in
System with Integral Control

not be accurate especially if they are to be extended to more complex mechanical
systems. In particular, for the describing function to be accurate, the assumption
that high-frequency harmonics are negligible must hold [Slotine and Li, 1991],
le.,

|IG(jw)| > |G(jnw)| for n = 2,3, .... (2.17)

If this assumption is not justified then there is the possibility that limit cy-
cles have been erroneously predicted or omitted. The best way to confirm a
limit cycle prediction or omission is by computer simulation. However, see
[Bass, 1960,Mees, 1981] for mathematical support for the describing function

technique.

Other researchers who have studied the possibility of kinetic friction gener-

ated limit cycles have found a variety of different results for a variety of different
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systems. For example, in [Tou and Schultheiss, 1953] the authors performed a
describing function analysis of a rotating member with kinetic friction and no
damping. In addition to proportional and derivative control, they applied a
two-stage lag network to regulate the angular position of the rotating member.
A lag network is an approximation to integration that is practical for analog
implementation. Based on the describing function analysis, they predicted a
stable oscillation of 2 radian/second frequency. This prediction was confirmed
using an analog computer implementation of the system and controller which
calculated an oscillation of 1.6 radian/second. For the case with only a one-stage

lag network, no limit cycle was predicted or calculated.

In their studies of force control in [Townsend and Salisbury, 1987], the au-
thors found that kinetic friction produced only a simple response time delay
when the transmission was modelled as nearly massless. However, when kinetic
friction was included in a massive transmission, an actuator limit cycle was

produced even though steady state force error went to zero.

In [Kubo et al., 1986] the authors considered a typical robotic manipulator
with kinetic friction and proportional plus derivative (PD) position control. Us-
ing phase plane analysis, their determined that the position error would enter a
limit cycle if the linear portion of the system had a pair of unstable poles and

the input to the system was a ramp.
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In [Radcliffe and Southward, 1990] the authors performed numerical simu-
lation on a simple sliding block with kinetic friction like the one in Figure 2.3.
Proportional, integral, and derivative (PID) control was used to regulate posi-

tion and velocity to zero. Their system generated no limit cycles.

2.2 Viscous Friction

Viscous friction results from the viscous behavior of a fluid lubricant layer be-
tween two rubbing surfaces. The behavior of lubrication at a friction contact
was first theoretically analyzed by Osborne Reynolds in the late nineteenth cen-
tury [Bowden and Tabor, 1982]. Reynolds, who was studying locomotive wagon
axles and bearings, described the mechanism for hydrodynamic lubrication of a

shaft rotating in a bearing in the presence of a viscous fluid such as oil.

Specifically, when the shaft rotates it is drawn toward one side of the bearing.
However, as the shaft moves, it drags with it some oil which flows between the
shaft and the bearing at the side of close contact. Because it is close to the
bearing, the oil velocity at the close contact side increases. The increased flow
vélocity results in increased pressure since the oil is viscous. As long as the
speed of rotation of the shaft is high enough, the pressure will be large enough
to maintain separation between bearing and shaft. The same argument holds for

lubrication of two flat rubbing surfaces if one of the surfaces is slightly inclined
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[Bowden and Tabor, 1982].

‘ Hydrodynamic lubrication, which is a common form of lubrication in mechan-
ical systems [Armstrong-Hélouvry, 1991], governs friction at nonzero velocities
of sufficiently high magnitude. In particular, the viscosity of the lubricant deter-
mines the resulting friction/velocity relationship. According to [White, 1979},
viscosity relates local stresses to strain rate in a moving fluid. Typically, for a
fluid such as oil, the shear stress applied to the fluid element is proportional to
the resulting strain rate which is equal to the velocity gradient. The constant of
proportionality is referred to as the viscosity coefficient. Consequently, viscous
friction F, of a lubricated contact is represented as a linear function of velocity
V as follows:

F,=uV (2.18)

where g is the viscous friction coefficient. This model is represented in Figure

2.12.

As in the case of kinetic friction, experimentalists [Canudas et al., 1986,
Armstrong-Hélouvry, 1991,Wang, 1987] have found different viscous friction co-
efficient values in the positive and negative velocity directions. A more general

model of viscous friction which addresses these findings is as follows:

wV iV >0
Fy, = ’ (2.19)
vV iV <0

where p, and p, are viscous friction coefficients in the positive and negative
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Figure 2.12: Viscous Friction Model

directions respectively. Figure 2.13 shows the general kinetic plus viscous friction

model incorporating this asymmetric feature.

Tribologists have generally been concerned with the design of lubricants to
minimize friction and wear in machinery. Indeed lubricants with high viscosity
such as oil greatly reduce friction levels by decreasing the amount of solid-to-
solid rubbing. As one might expect, however, different lubricants have different
qualities. For example, viscosity decreases with temperature. Therefore, since
high fluid velocities generate high temperatures, lubricants that have minimal
viscosity dependence on temperature are preferable for friction reduction at high

velocities.

From a dynamic point of view, viscous friction adds damping to a mechan-

ical system. In fact, the damping assumed in the system of Figure 2.9 for the
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Figure 2.13: General Kinetic Plus Viscous Friction Model

describing function analyses of the previous section comes from viscous friction.
To meet performance requirements, it may at times be desirable to adjust this
level of damping. This can be achieved by changing the type of lubricant. How-
ever, an easier alternative for the control engineer would be to adjust damping

artificially using velocity feedback control.

2.3 Static Friction and Stick-Slip

Initiating motion between two surfaces in contact typically requires more force
than does sustaining that motion. Since friction provides the force that resists
motion, the above observation implies that friction of a body at rest is greater
than friction of a body in motion. As was discussed in Section 2.1, friction of

body in motion corresponds to kinetic friction. To distinguish it from kinetic

27



friction, friction of a body at rest is commonly referred to as static friction or

stiction.

In [Bowden and Tabor, 1982] the authors proposed three mechanisms that
likely contribute to the greater magnitude of static friction relative to kinetic
friction. First is the possibility that the true area of contact between surfaces
at rest increases due to creep. This implies that friction, which is proportional
to true area of contact, will be higher for surfaces at rest than for surfaces
in motion. Second is the suggestion that interatomic forces at the asperity
junctions grow with time of contact as atoms diffuse across the interface. This
implies that higher forces are necessary to shear asperity junctions for surfaces
at rest. Bowden and Tabor’s third proposal pertains to surfaces covered with a
contaminant or a lubricant film. They suggested that an increase in friction due
to breakdown and penetration of the film may occur when a tangential force is
applied to stationary surfaces. On the other hand, moving surfaces may simply
slide over the film with no penetration and no increase in friction. The net effect

is higher static friction than kinetic friction.

Static friction, like kinetic friction, is typically modelled as a function of
normal force N, velocity V, z.md the static friction coeflicient f;. A static friction
coefficient distinct from the kinetic friction coefficient was first proposed by A.
Morin in the 1830’s [Rabinowicz, 1956]. As a result, the classical lumped friction

model F} of static friction Fi, kinetic friction F}, and viscous friction F),, which
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Figure 2.14: Classical Model of Static, Kinetic and Viscous Friction

depends on the applied tangential force F, is as follows:

Frsgn(V)+ F, ifV #£0
Fy = (2.20)

Fysgn(F) V=0

where
Fy=f,N (2.21)
Fy = fiN (2.22)
F,=uV. (2.23)

This basic model is illustrated in Figure 2.14. The model can be adjusted as
necessary to account for asymmetrical friction coefficients in the positive and

negative velocity directions.

When static friction in a mechanism is indeed greater than kinetic friction,
intermittent motion known as “stick-slip” may result. Stick-slip manifests it-

self as repeated sequences of sticking between two surfaces with static friction
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followed by sliding or slipping of the two surfaces with kinetic friction.

A simple system as shown in Figure 2.15 can be used to illustrate the stick-
slip phenomenon [Bowden and Tabor, 1982]. A mass M resting on a surface is
pulled at constant velocity V. The system stiffness K is represented by a spring
located between the mass and the point moving at velocity V. Initially, the
spring is not extended and so no force is applied to the mass (Figure 2.15(a)).

With time ¢ the force in the spring Fipring grows as
Fopring = KVt . (2.24)

When static friction F, is present, the mass will not accelerate until time %,
when

Fopring = KVt =F,. (225)

At this time ¢; the mass will begin to move, i.e., to slip (Figure 2.15(b)). Once

motion is initiated friction drops to the kinetic friction level and
Fsp,-,'ng =F,>F.. (226)

Therefore, an accelerating force is applied to the mass, and the mass accelerates
in the direction of V. It is possible that the mass will achieve a velocity greater
than V (Figure 2.15(c)). If this happens, the spring will begin to be compressed.
When the spring is compressed back to its unextended length, the accelerating
force applied to the mass will go to zero. Damping between the mass and the

surface, generated by viscous friction, will drive the velocity of the mass to zero.
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Figure 2.15: Stick-Slip in a Sliding Mass System
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Figure 2.16: Sliding Mass System Used for Phase Plane Analysis of Stick-Slip

At this time the system will be back in its initial state, and the cycle will repeat

(Figure 2.15(d)).

Stick-slip is evident in many everyday activities. The classic example of
stick-slip occurs when a piece of chalk is dragged slowly across a chalkboard.
Stick-slip causes the chalk to skip and skid leaving behind a dashed line instead
of a solid line. Other examples of stick-slip include the creaking of doors, the

squealing of automobile tires, and the music of a violin [Rabinowicz, 1956].

Phase plane analysis techniques can be used to further illustrate the stick-slip
phenomenon and to estimate conditions that may lead to stick-slip. Consider,
for example, Figure 2.16 which models a system with friction and compliance
[Gogoussis and Donath, 1987]. In this system, a mass M rests on a .belt that
moves at constant velocity V. The mass is fixed to a wall by means of a spring
with stiffness K. At the contact between the mass and the belt, static fric-

tion F, is greater than kinetic friction Fy. From [Gogoussis and Donath, 1987],
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this model can be interpreted as a representation of a simple motor where the
observer is located on the rotating shaft. In this frame of reference the belt

corresponds to the bearing housing and the mass-spring component corresponds

to the rotating shaft.

Assuming first that the system has no static friction or viscous damping, the

equation of motion of the (slipping) mass is

Mi+ Kz = F . (2.27)

Thus, there is an equilibrium point at

where the mass will remain in position as the belt slides by under it. If the
position of the mass is perturbed, the system will behave like a simple harmonic
oscillator, the mass oscillating about the equilibrium point. The phase plane

plot of this system is shown in Figure 2.17.

When static friction is introduced, the mass will stick and travel with the
belt if

i=V. (2.29)

The mass will then remain in the stuck position until the force in the spring

equals the static friction force, i.e.,

z=F,/K . (2.30)

33



Equilibrium Point
1

>

N

><=FK/K

Figure 2.17: Phase Plane Diagram of Sliding Mass System with Kinetic Friction

Only

X

}

)

l
1A =
Msnpx
|

x
"
-

Figure 2.18: Phase Plane Diagram of Sliding Mass System with Static and

Kinetic Friction

34



v I\ No stick=-slip limit cycle
predicted at high v

A/msa becomes unstuck for high v

high Vv

/f/’\\\%
e

Mass becomes unstuck for low V

Stick-slip limit cycle
predicted at low Vv

I

l

I

I l

x=F -y ><=Fs+u\/
K K

Figure 2.19: Phase Plane Diagram of Sliding Mass System with Static, Kinetic
and Viscous Friction

This sticking behavior is shown in Figure 2.18.

Now suppose viscous damping is introduced into the system. Damping will
be proportional to the relative velocity between the mass and the belt. The

system equation for slipping becomes
Mi+up(z~V)+ Kz =F (2.31)

where u is the viscous friction coeflicient. The new equilibrium will occur at

_ Fe+uV

(2.32
]{ ‘\ )

Figure 2.19 shows the phase plane diagram for the system (2.31). For a
given level of damping, it can be seen that under certain initial conditions if

the belt velocity is relatively low, a stick-slip limit cycle is predicted, while if
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the belt velocity is relatively high stick-slip is not predicted. Similarly, for a
given belt velocity, it can be seen that stick-slip can be avoided if the damping
or the stiffness is high enough. An example calculation of conditions that yield
the possibility of such a stick-slip limit cycle is described in Section 4.2 for the

motor under investigation in this thesis.

Because simplifying assumptions are typically made in modelling a system
for phase plane analysis, it is always best to confirm behavior predictions with
numerical or experimental data. However, the model of static, kinetic, and
viscous friction (2.20) is difficult to implement numerically since neither F'(V)

nor V(F) is a single-valued function.

In [Karnopp, 1985] the author presented a model for sticking and slipping
that assumes static friction persists for a range of very low velocities and kinetic
friction applies for velocities outside this range. Using this model, Karnopp
was able to numerically predict stick-slip for complicated sliding mass systems.
In [Radcliffe and Southward, 1990] the authors applied Karnopp’s model to a
simple sliding mass control system and predicted a stick-slip limit cycle with

PID control but not with PD control.

In [Haessig and Friedland, 1990] the authors presented an alternative numer-
ical model of stick-slip friction based on a “bristle model”. This model represents
the contact surface asperities as bristles and predicts how the bristle bonds will

be created, strained and broken. The bristle behavior determines the friction
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dynamics. Simulations with the bristle model showed effective stick-slip predic-
tion for a simple sliding spring-mass system. The bristle model, when applied to
a position-controlled rotary gimbal, predicted no limit cycle. As confirmation,

no limit cycle was observed in the experimental data.

Some of the researchers who considered only kinetic friction conditions, as
described in Section 2.1, also considered the case with static friction present. For
example, in [Townsend and Salisbury, 1987] the force control studies predicted
that the static plus kinetic friction model leads to a stable limit cycle when
integral control is used. Analyzing a rotating member with static and kinetic
friction, the authors of [Tou and Schultheiss, 1953] predicted the possibility of
a limit cycle when a one stage lag network is applied in series with PD control.
In particular, they found that the likelihood of the limit cycle depends on the

ratio of static to kinetic friction.

2.4 Pre-Sliding Displacement

Contrary to the predictions derived from the classical friction model of the pre-
vious sections, small relative displacements between two bodies in contact do
occur when the applied relative tangential force F,, is less than the static fric-
tion Fs. The magnitude of these pre-sliding displacements is typically smaller

than the diameter of an asperity junction [Courtney-Pratt and Eisner, 1957].
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However, with sufficient gain, as in a robot with a fairly long link, small dis-
placements at the rubbing surface can translate into significant displacements
elsewhere in the mechanism [Armstrong-Hélouvry, 1991]. Most importantly, the
nature of pre-sliding displacements provides insight into the transition between

sticking and sliding.

In [Courtney-Pratt and Eisner, 1957] the authors investigated the pre-sliding
displacement phenomenon in their experiments on rubbing metal surfaces.
While applying a monotonically increasing tangential force to one of the surfaces
under constant normal load NV, they measured the microscopic displacements us-
ing a multiple-beam interferometer. From these measurements, they plotted the

relationship between the displacement z and the coefficient of friction f where
f - Fappl/N . (233)

They found both elastic (reversible) and plastic (irreversible) components in
the relationship as shown in Figure 2.20. The shape of the friction-displacement
curve was the same for all metals and all loads tested. Even application of a lubri-
cant at the rubbing surfaces did not affect the nature of the relationship. In each
case with increasing displacement, ’Fhe friction coefficient increased smoothly
from zero asymptotically approaching the static friction coefficient level. The

displacements measured were on the order of a few microns.

Courtney-Pratt and Eisner interpreted the pre-sliding phenomenon within

the framework of the theory of asperity junction adhesion, described in Section
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Figure 2.20: Friction-Displacement Relationship

2.1. Basically, as the shear force at the contact surface increases, the asperity
junctions deform elastically and then plastically. When the applied force finally

reaches the static friction level, the asperity junctions break and sliding begins.

Because the asperity junctions experience plastic deformation as the applied
tangential force is increased, a subsequent monotonic decrease in applied tan-
gential force yields a different friction-displacement relationship. When the force
begins to decrease, the relationship is first elastic and then plastic. As a result,
alternate increases and decreases in applied tangential force manifest themselves

as hysteresis loops as shown in Figure 2.21 [Courtney-Pratt and Eisner, 1957].

Further evidence of the pre-sliding displacement phenomenon has come from
several other researchers who have performed tests on a variety of experimental

setups. For example, [Burdekin et al., 1978] investigated tangential deflections
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Figure 2.21: Friction-Displacement Hysteresis Loops

at the interface of preloaded machined surfaces in contact. In their experiments
they applied normal and tangential forces to a stack of grey cast-iron rings and
measured normal and tangential displacements. The tangential forces applied
were less than the static friction. Their results confirm the results of Courtney-
Pratt and Eisner since the relationship between the applied tangential force and
the measured tangential displacement, at several different constant normal loads,
takes the form of Figures 2.20 and 2.21. In [Gassenfeit and Soom, 1988] the
authors observed elastic and plastic pre-sliding displacement in their experiments

on an aluminum block sliding between two steel beams.

In [Rabinowicz, 1951] the author also performed experiments to measure

pre-sliding displacements of surfaces in contact. In his experiments, Rabinowicz
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rolled a small spherical ball against a large block on an inclined plane, measured
the distance travelled by the large block, and thus was able to predict the critical
displacement at which sliding would occur. The critical displacements predicted
were on the order of a few microns and, therefore, agree with the other results

cited above.

Rabinowicz’s experimental findings supported using the asperity junction ad-
hesion theory as a theoretical basis for the observed pre-sliding displacements.
In particular, since the theory predicts that sliding occurs when the asperity
junctions break, it is expected that the critical displacement should be about
equal to the asperity junction diameter. His calculations showed that the diame-
ter of the asperity junctions for one of his experiments was 17 microns compared
to the calculated critical displacement of 7 microns. These distances are in fairly

close agreement.

In [Dahl, 1976,Dahl, 1977] the author provided a good model of the pre-
sliding displacement phenomenon that generates the observed hysteresis loops.
This model assumes that friction FY is a function of displacement z and time t.
Therefore,

dFy(z,t)  OFy(z,t) .  OF¢(z,t)

— . — L 2.34
7 e T (2.34)

it is assumed that 0F/0t = 0, and as an approximation to observations

8Ff($’t) . f_f_ T
pra o|l - 7 sgn(z)|*- S, (2.35)

c
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where
Z is velocity,
o is the slope of the F versus z curve at Fy = 0,
Fy, is the magnitude of friction that is approached asymptotically,
¢ is an exponent parameter,

S is a factor that Dahl includes to ensure computer simulation stability.

In his work on a ball bearing friction experiment, Dahl [Dahl, 1977] measured
the hysteresis loop and then determined the various unknown parameters of his
model. Of most interest is his calculation of ¢ & 1.5 as the best fit exponential
parameter. For these contributions, the pre-sliding displacement phenomenon

is often referred to as the “Dahl effect”.

Armstrong observed the Dahl effect in his low velocity friction measurements
[Armstrong, 1988,Armstrong-Hélouvry, 1991]. In his experiments, performed on
a PUMA 560 arm, Armstrong found that the rise in friction corresponding to a
change from zero velocity to a low positive velocity was constant with position
change. That is, the PUMA joint was displaced roughly the same amount each
time the conditions changed from sticking to sliding. The magnitude of this pre-
sliding displacement was approximately 2 microns, computed from an observed
0.0003 radian transition distance on a bullgear. This is of the same order as

previously described displacements.
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Other researchers investigating pre-sliding displacements have developed al-
ternative models to Dahl’s model. In [Villanueva-Leal and Hinduja, 1984] the
authors represented the hysteresis loops of Figure 2.21 using third-degree poly-
nomials. They performed finite element analyses using this model and con-
firmed their results with experimental data. In [Cheng and Kikuchi, 1985] the
authors also performed finite element analyses of contact surfaces. They mod-
elled friction with pre-sliding displacements according to rules that characterize

the behavior of an “elastic work-hardening” material.

Many researchers are cited in [Dahl, 1977] as having successfully used Dahl’s
friction model in simulations of bearing friction. Most recently Dahl’s model
has been used for control applications. In particular, a friction-compensating
adaptive controller based on Dahl’s model was designed for the stabilization of
an airborne pointing and tracking system [Walrath, 1984]. The resulting success
at reducing position error by accounting for friction provides further evidence

for the accuracy of Dahl’s model.

Because of his particular application, Walrath was most concerned with ac-
curately modelling transient friction behavior when the relative motion of the
rubbing parts experiences velo;:ity reversals, i.e., from positive to negative to
positive velocity, etc. He found from experimentation that friction responds
smoothly to velocity reversals as shown in Figure 2.22. Using the classical dis-

continuous static-kinetic friction model, Walrath could not re-create this smooth
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Figure 2.22: Friction Response to Velocity Reversals

behavior. Instead the classical model predicted the jerky behavior shown in
Figure 2.23. Dahl’s model, on the other hand, predicted the smooth behavior
of Figure 2.22. This result illustrates that during velocity reversals there is a
smooth friction transition through zero velocity effectively characterized by the
pre-sliding displacement phenomenon. The classical friction model predicts be-
havior more characteristic of a system that spends longer periods of time at zero

velocity. The effect of time on static friction is described in the next section.

Walrath’s control strategy is described in further detail in Chapter 3. A
control strategy very much like it has been implemented for the investigation

that is central to this thesis. Its implementation and results are discussed in

Chapters 4.
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Figure 2.23: Classical Friction Model Prediction of Response to Velocity Rever-
sals

2.5 Static Friction Dependence on Dwell Time

The physical mechanisms responsible for the positive difference between static
friction and kinetic friction rely on the fact that static friction occurs when
the time of contact between surfaces is nonzero. As described in Section 2.3,
static friction is high because when the surfaces are at rest, asperity junction
area will grow due to creep, or interatomic forces will increase as atoms diffuse
across the interface. These physical mechanisms suggest that the magnitude
of static friction is dependent on the length of time the surfaces are at rest,
i.e., the “dwell time”. According to the data of Ishlinski, Kragelski, and Dokos
[Rabinowicz, 1958] and [Sampson et al., 1943], static friction is roughly linear
with the logarithm of dwell time ¢;. When two surfaces come to rest, static

friction initially increases quickly. As the dwell time increases, static friction
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Figure 2.24: Static Friction Dependence on Dwell Time

grows more slowly, asymptotically approaching some infinite static friction level
F,e.. Figure 2.24 depicts this relationship between static friction and dwell time.
[Kato et al., 1972] confirmed this relationship with experiments in which static

friction was measured as a function of dwell time.

Providing further support for this relationship, Rabinowicz used the time
dependence of static friction to explain observed variations in stick-slip ampli-
tude with changes in velocity [Rabinowicz, 1958} . Referring to a system similar
to that of Figure 2.16, Rabinowicz claimed that according to the observations
of Blok, under stick-slip conditions the amplitude of the stick-slip limit cycle
decreases with increasing velocity. An increase in velocity implies a shorter
dwell time and therefore lower static friction. As illustrated in Figures 2.18 and
2.19, the amplitude of the stick-slip limit cycle is proportional to the difference
between static and kinetic friction. Thus, at increased velocity, the resulting

lower static friction will yield a smaller stick-slip limit cycle amplitude. In

fact, above some critical velocity the stick-slip oscillations disappear altogether.
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This is because at velocities greater than or equal to the critical velocity, dwell
time is too short to generate a level of static friction that will lead to stick-slip

[Armstrong-Hélouvry, 1991].

In [Kato et al., 1972] the authors presented the following model of time-

dependent static friction based on their empirical results:
Fo(td) = Fx + (Fooo — Fi)(1 — e774™) (2.36)

where v and m are empirical parameters. In [Derjaguin et al., 1957] the authors

proposed a slightly different model of static friction as

tq

Fs(td)sz‘*'(Fsoo"‘Fk)td_{_a?

(2.37)

where a characterizes the time of static friction rise.

Armstrong verified these models in experiments on one joint of a PUMA
560 robot [Armstrong-Hélouvry, 1991]. He plotted measured values of (F, —~ F})
versus t4 under stick-slip conditions for several different velocities and stiffnesses.
After determining the best-fit parameters: v, m, and «; Armstrong plotted the
curves predicted by the two models above. He found that the curves predicted

similar behavior and both closely approximated the empirical data.

Using the static friction model of (2.37), Armstrong analyzed the stick-slip
behavior of a system as in Figure 2.16. By means of perturbation analysis,

Armstrong isolated the effect of static friction as described by (2.37) on the

existence of a stick-slip limit cycle. His analytic results confirmed Rabinowicz’s
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conclusion that due to static friction variation with dwell time, stick-slip will
not occur above a critical velocity (dependent on many factors such as Fi. , @,

and stiffness).

2.6 Friction Variations with Velocity

While the simple static plus kinetic friction model offers an intuitive explanation
for the possibility of stick-slip oscillations, it inadequately justifies the existence
of these limit cycles for all the conditions under which they have been observed
[Dudley and Swift, 1949]. For example, several of the researchers cited at the
end of Section 2.3 were unable to theoretically or numerically predict stick-slip
limit cycles based on the static plus kinetic friction model unless integral control
was used. However, stick-slip oscillations have been observed even when integral

control was not used [Armstrong, 1988].

Using phase plane analysis, in [Dudley and Swift, 1949] the authors showed
that a negatively-sloped kinetic friction versus velocity relationship near zero
velocity was a sufficient condition for stick-slip oscillations at low velocities. In
other words, Dudley and Swif.t expected that with increasing velocity, friction
will drop gradually from the static friction level to the kinetic friction level rather
than abruptly as predicted by the classical friction model of Figure 2.14. An

example of this friction variation with velocity is depicted in Figure 2.25.
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Figure 2.25: Friction Variation with Velocity

In [Gassenfeit and Soom, 1988] the authors, performing experiments on an
aluminum block sliding between steel beams, observed this expected friction-
velocity relationship. Plots of their measurements of friction versus velocity
take the form of the velocity-dependent friction curve of Figure 2.25. Curves
of this form were generated for an unlubricated interface as well as for most

lubricated interfaces.

The velocity-dependent friction behavior can be explained from a phys-
-ical perspective most easily for a lubricated interface. = The following
discussion (including the discussion of lubricant additives) is taken from
[Armstrong-Hélouvry, 1991] which follows the argument of earlier tribology lit-
erature, e.g., [Bowden and Tabor, 1982,Rabinowicz, 1965]. At the lowest veloc-

ities, just as slip begins, the surfaces in contact experience boundary lubrication
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as indicated in Figure 2.25. In this range the velocity is too low to produce a
fluid layer between the surfaces. As a result, the outer boundary layer serves
as lubricant and solid-to-solid rubbing prevails. However, the shear force re-
quired for sliding under these conditions is less than that required to break the
initial asperity junction adhesion. Therefore, friction decreases slightly in the

boundary lubrication range.

At higher velocities, the lubrication becomes partially fluid as shown in Fig-
ure 2.25. As velocity increases fluid lubrication predominates instead of bound-
ary layer lubrication, and the shear force required for sliding drops. This is
manifest as a decrease in friction with increasing velocity until viscous friction
becomes significant and friction begins to rise with velocity. Above some critical
velocity, lubrication is fully fluid and viscous friction predominates. In unlu-
bricated interfaces, similar behavior may result when contaminants and oxide

layers play the same role as a lubricant.

Lubricant additives make it possible to change the friction-velocity curve
such that there is no negatively-sloped range. In effect these additives reduce
static friction and friction in the boundary lubrication regime. For example,
certain types of “way oils” can lower static friction below the level of kinetic
friction so that friction always increases with velocity. However, these oils only
work at relatively low temperatures so that if there is a lot of heat generated

from friction they will become ineffective. Extreme pressure agents are another



alternative that reduce solid friction at relatively high temperatures; however,

they have the disadvantage of being corrosive.

Several models have been proposed of the velocity-dependent friction compo-
nent, often referred to as the “Stribeck effect”. These models have been derived
to approximate empirical data. They are generally of the form: kinetic friction
(2.22) plus viscous friction plus a Stribeck friction term Fi, that includes static
friction, i.e.,

Fy(V) = Fisgn(V) + pV + Fou, (V) sgn(V) . (2.38)

In [Hess and Soom, 1990] the authors proposed the following:

For(V) = Foi (W) (2.39)

where V. is a critical velocity related to the Stribeck effect and Fiy = Fy — Fk.

Others use a model of the form

Foy(V) = Fue~(VVoer)® (2.40)
where @ is a parameter.  Variations on these include multiple terms
[Armstrong-Hélouvry, 1991]:

For(V) = Fop ™ VTVer)" 4 Fyp o= (VT 70ers)” (2.41)
or
Fon(V)=F ! >+F ( ! ) (2.42)
TR (Vo)) T L (V Ve )P -
and offsets:
Fur(V) = Fugoe(VVo)/Vetr)® o By o= (V=Vo) [ Vara)* (2.43)
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[Armstrong, 1988] found that (2.41) with a = 2 best fit his data.

To best match his needs for an adaptive control implementation, i.e., to

derive system equations linear in the parameters, Canudas de Wit proposed a

linearized friction model that included Stribeck friction [Canudas de Wit, 1989]:
Fi(V) = agsgn(V) + a1V + ao|V[Y2sgn(V) (2.44)
where g, a1, and a5 are the adaptive parameters.

Since each of these models preserves the negatively sloped friction-velocity
curve at low velocities, each can be used to illustrate stick-slip behavior. Re-
searchers, e.g. [Gogoussis and Donath, 1987], have used nonlinear analysis tech-
niques such as phase plane analysis to predict limit cycles in sliding systems as
a consequence of this negatively-sloped region of the friction curve. These limit

cycles are predicted without integral control.

Using the model of (2.40) with ¢ = 2, Armstrong investigated limita-
tions posed by the Stribeck effect on mechanism performance [Armstrong, 1989,
Armstrong-Hélouvry, 1990]. By means of dimensional analysis, he derived theo-
retical predictions for important stick-slip characteristics such as the minimum
velocity that can be achieved without stick-slip and the distance slipped during

stick-slip motion.
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Figure 2.26: Hysteresis Friction Effect Due to Frictional Lag

2.7 Frictional Lag

Considerable empirical evidence has recently become available indicating that
friction does not respond instantaneously to a change in velocity. One of the first
to recognize this delayed behavior was [Rabinowicz, 1958]. Describing his previ-
ously obtained data, Rabinowicz noted that an abrupt change in sliding veloéity
results in a slow change in friction such that friction gradually approaches a
steady state value. He attributed this frictional lag to a dependence on previous
sliding history determined by a critical previous sliding distance. Pointing to
data obtained by [Sam;;son et al., 1943] that showed different friction-velocity
curves for accelerating and decelerating conditions, Rabinowicz provided fric-

tional lag as the explanation. The observed hysteretic friction effect is illustrated

in Figure 2.26.
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In [Brace and Byerlee, 1966], the authors investigated the dynamic mech-
anisms of earthquakes and proposed that stick-slip is responsible for unstable
fault slip at the edges of the earth’s crustal plates. As a result, many researchers
interested in predicting earthquake-related behavior have performed extensive
theoretical and experimental work on friction and the existence of stick-slip. Of
particular note, Rice and Ruina [Rice and Ruina, 1983] indicated that velocity-
dependent friction as described by Figure 2.25 did not adequately explain ob-
served sliding behavior. Specifically, they observed low-velocity steady sliding
when the friction model of Figure 2.25 would have predicted unstable behavior.
To resolve this contradiction, Ruina [Ruina, 1983] determined that friction is
dependent not only on current sliding conditions but also on previous sliding
history, that is,

Fy = Fy(V,0) , (2.45)

where 0 represents the state of the surface. This state does not change instan-

taneously with velocity, i.e.,

dé
— =G(6.V). (2.46
dt (97 ) ‘\ )

The notion of a delayed friction response is similar to Rabinowicz’s claim, al-

though the delay is not necessarily related to a critical slip distance.

In [Hess and Soom, 1990] the authors also found strong evidence of frictional

lag in their experiments on a flat steel button rubbing against a rotating steel

disk. At constant normal load, they applied velocity oscillations to the disk in
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a triangular wave pattern, i.e., they ran repeated series of constant acceleration
and deceleration. Measuring friction under these conditions, they found that
the relationship between friction and velocity took the form of Figure 2.26, i.e.,
yielded hysteretic loops. These loops were measured for a variety of normal
loads, velocity oscillation frequencies, and lubricants. This hysteretic behavior
they attributed to a time delay in friction response to velocity changes. By
simulating such a delay and fitting the simulation results to the experimental
data, they found that the delay was better characterized by a constant time lag

than by a characteristic slip distance as proposed by Rabinowicz.

Hess and Soom modelled frictional lag such that

Fy(t) = Fy(V(t =-7)), (2.47)

where 7 is the constant time lag [Armstrong-Hélouvry, 1991] so that from (2.39)

Stribeck friction becomes

1
Fstr(t) = F, (1 T (V(t — T)/‘/str)z) . (248)

Ruina [Ruina, 1983] developed state-variable friction models according to
(2.45) and (2.46). His models were developed to approximate his own exper-
imental observations and those of Dieterich and Johnson [Ruina, 1983], and
[Rabinowicz, 1958]. Ruina’s experiments as well as those of Dieterich and John-
son were performed on sliding rocks while Rabinowicz’s involved sliding metals.

The observed characteristic friction behavior that Ruina attempted to model
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included: a steady state friction level for a given velocity; a slow (delayed) de-
crease in friction for an increase in velocity (at low velocities, i.e., in the regime
of the Stribeck effect); a characteristic slip distance independent of velocity that
governs the delayed increase in friction; and an instantaneous increase in fric-
tion with an increase in velocity. This last characteristic was observed in the
experiments on sliding rocks but was not observed in the metallic surface exper-
iments of [Rabinowicz, 1958] or [Hess and Soom, 1990]. An example of one of

the state-variable models of [Ruina, 1983] follows:
Fi=F,+0+ A -In(V]V,), (2.49)

0=-V/d(0 +B-In(V]V,)) . (2.50)

where (F,,V,) corresponds to any point on the steady state friction-velocity
curve [Dupont, 1991], d, is the characteristic slip distance, and A and B are

constants.

Many researchers have used the state-variable models to analyze stability
criteria for sliding rocks [Ruina, 1983,Rice and Ruina, 1983,Rice and Tse, 1986,
Nussbaum and Ruina, 1987,Horowitz, 1988]. For example, in [Ruina, 1983,
Rice and Ruina, 1983] the authors found that stick-slip instability cah be
avoided if the system stiffness is greater than some critical stiffness K. Similarly,
Dupont [Dupont, 1991] used a state-variable friction model in his representation

of a single robot joint to analyze stability properties. By means of a linearized

model, Dupont also found that if stiffness (equivalently position feedback gain)
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is higher than some K, then stick-slip will be avoided.

Armstrong [Armstrong-Hélouvry, 1991] analyzed stick-slip stability vﬁth a
model of frictional lag as in (2.48). Using perturbation analysis, he derived
criteria to predict stick-slip oscillations as a function of the time delay 7, velocity
V, and stiffness K. From his results and those of the researchers cited above,
he concluded that frictional lag makes stick-slip instabilities less likely. Because
a decrease in friction occurs slowly when velocity is increased, stiff systems will
not be unstable. In a control system, stiffness can be increased by increasing

position feedback gain.
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Chapter 3

Friction-Compensating Control

Strategies

Friction introduces complexities in the servomechanism control problem that
can lead to inaccurate and even oscillatory behavior. The greatest difficulties
occur at zero and near-zero velocities where friction is discontinuous and possibly
destabilizing. Even at relatively high velocities where friction is fairly accurately
modelled as a linear function of velocity, ignoring friction in the control design

can result in suboptimal servomechanism performance.

In order to limit performance error, the mechanism under control should be
designed to mir;imize friction. For example, decreasing the number of sources of
rubbing will reduce friction. Equally important, the type of lubrication should
be carefully selected to minimize friction based on the expected operating condi-

tions. Also, inclusion of a lubrication additive could reduce static and boundary
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layer friction and contribute to preventing stick-slip as described in Section 2.6.

In many desigﬁs, however, friction is not a priority consideration and modi-
fication of the mechanism or lubricant to reduce friction is not a viable option.
Even when friction has been considered in the mechanical design stage, it cannot
be eliminated completely and may still have a significant effect on system dy-
namics. Therefore, to achieve precision, servomechanism control should provide

some kind of friction compensation.

This chapter describes several different types of friction-compensating con-
trol strategies. In Section 3.1, traditional ways of modifying PID control to
accommodate friction-related nonlinearities are discussed. Section 3.2 provides
insight into the friction-compensating capabilities of heuristic smoothing tech-
niques such as dither and presents recent work from [Cebuhar, 1988] on improved
methods for linearizing and smoothing discontinuities. The disadvantages of PID
control and smoothing techniques are discussed in these first two sections, and
an argument for adaptive control as the preferred alternative is introduced in
Section 3.3. Various adaptive control strategies for friction compensation pro-
vided in the literature are described in Section 3.3. Finally, Section 3.4 provides
a rigorous presentation of the adaptive control techniques tested in the experi-
mental program of this thesis. These techniques are based on the strategies of
Section 3.3 but include original modifications and improvements. An original

stability analysis is provided for the controller of [Walrath, 1984].
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3.1 Modified PID Control

One of the most widely used controllers in industry is the standard PID con-
troller. As indicated by its name, the PID controller provides three terms: one
proportional (P) to the feedback error signal e(t); a second proportional to the
integral (I) of the error; and a third proportional to the derivative (D) of the

error. The PID control signal u(t) is

u(t) = K, e(t) K/ +Kd ) (3.1)
where K, , K; , and Ky are constant gains.

When the system to be controlled is linear, many techniques are available
for selecting the values of K, , K; , and K, to ensure a stable, well-behaved re-
sponse. However, when nonlinearities such as friction significantly affect system

dynamics, the standard PID design techniques often prove to be unreliable.

If the system with friction is linear and is to be operated only at relatively
high velocities without changing directions, i.e., without crossing zero velocity,
friction can be modelled as a linear function of velocity as in (2.18). Under these
conditions, the standard PID design techniques can be applied to the dynamics

of the linear system plus viscous friction with reliable results.

On the other hand, if the system is to be operated at low velocities or with

direction reversalg, then the standard PID design techniques may be unsuitable.
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To understand what modification can be made to PID control under these con-
ditions, consider a system with non-negligible friction. For reference, let the

system be a simple rotating servo-system with friction and let the dynamics be

described by

.

0,(t) + c10,(t) = —c T + cau(t) (3.2)

where
0,, 9,,, é,, are plant angular position, velocity, and acceleration,
T is the friction and may depend on 4, ép, ete.,
u(t) is the control input,

¢, €2, c3 are constants (c; includes viscous friction).

Let the PID type control input be defined by
1 /s .
uft) = = (ad + Kpe(t) + K; / e(t) + (Kq — cl)e(t)) (3.3)
3

where 8, 8, and 8, are the desired angular position, velocity, and acceleration,

respectively, and
e(t) = 84(t) — 0,(t) . (3.4)
Then substituting (3.2) into (3.3) yields
&(t) + Kaé(t) + K,e(t) + K; / e(t) = T + crat) | (3.5)

Assuming that this is a regulator problem, i.e., 84(¢) = 0, and no integral control

is used, i.e., K; = 0 then (3.5) becomes
e(t) + Kde(t) + er(t) == Csz (36)
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which is equivalent to (2.31) with e replacing z, except that the “damping” K|

and the “stiffness” K, can be set as desired.

Let the friction T be static plus kinetic friction as illustrated in Figure 2.14.
Then the phase plane analysis in Section 2.3 of the system described by (2.31)
also applies to the system described by (3.6). According to this phase plane
analysis, friction can yield a limit cycle under the appropriate conditions as
shown in Figure 2.19. However, the limit cycle can be avoided if the damping
is high enough. Therefore, using a large enough derivative gain Ky can prevent

limit cycling generated by the static-kinetic friction discontinuity at zero velocity.

As indicated, the solution above assumes that integral control is not used.
However, this is typically not the case, since integral control is important for its
ability to eliminate steady state error. As discussed at the end of Section 2.3,
several researchers have shown that under certain conditions in which PD control
yields no oscillations, the addition of integral control leads to limit cycling. Since
steady state error usually cannot be tolerated, elimination of integral control to
avoid limit cycling is not a satisfactory solution. A preferable alternative is
the addition of a dead-zone to the integral control such that the input to the

integrator is as follows [Shen and Wang, 1964]:

/

e(t) = fe(t)>n

input to integrator = < 0 if le(®)| <7 (3.7)

| e(t)+n ife(t) < —
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where 7 is a (small) positive constant. In effect, the dead-zone eliminates integral
control for low values of e(¢). Shen and Wang showed for a ramped position
demand signal to the system described by (3.2) and (3.3) with static plus kinetic
plus viscous friction, that above some critical dead-zone limit 5 = 7., integral

control does not produce a limit cycle.

If the servomechanism is to be operated at very low velocities, the controller
must also deal with the possibility of instabilities generated by the Stribeck
effect. Armstrong [Armstrong-Hélouvry, 1990] analyzed stick-slip oscillations for
a system with friction that included a model of the Stribeck curve. He found that
for any pair of desired velocity and system stiffness, there is a minimum value of
damping that will eliminate stick-slip. Similarly, when Dupont [Dupont, 1991}
included frictional lag in his model of friction with the Stribeck effect, he found

a minimum stiffness that would prevent stick-slip.

All of these results indicate that for PID control, high gains are generally
necessary to avoid limit cycling. However, high gain control has its own practical
disadvantages [Kubo et al., 1986]. For example, high gain control can cause
instability if there is compliance in the drive train of the servomechanism. Also,
actuator signals necessarily have physical maximum values which limit controller
gains. Further, time delays associated with digital control implementation can
limit gains. As a result, high gain PID control may not always be a practical

solution to friction-compensating control.
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3.2 Smoothing and Linearizing Techniques

Smoothing and linearizing techniques have been developed to deal with the
inaccuracies and oscillations in system response generated by discontinuities
such as the one associated with the basic kinetic friction model at zero velocity
shown in Figure 2.4. The goal is to perform some operation on the system that
will transform the dynamics into smooth and, if possible, linear dynamics that

can be more easily controlled with standard techniques.

Dither is a commonly used smoothing technique which has the effect of “av-
eraging” out a discontinuity. Characteristically a high frequency signal, dither
is added to the error signal in a feedback loop before it is input to the sys-
tem. If the frequency is chosen to be higher than the cut-off frequency of
the system, the high-frequency behavior is filtered out leaving only the low-
frequency “average” response [Cebuhar, 1988]. The effect of a triangular wave
dither signal on a simple relay with unit feedback control is shown in Figure
3.1 [Astrdm and Wittenmark, 1989]. Ideally, for linear results the dither signal
should be a triangular wave. However, a sinusoidal dither signal is more prac-
tical since, unlike the triangular wave, the sinusoid will be preserved even if
the dither signal is integrated or differentiated before reaching the discontinuity.
The sinusoidal dither signal will smooth out the discontinuity, but the result

will not be linear as in the ideal case.
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Figure 3.1: Smoothing Effect of Triangular Wave Dither on Relay-Type Discon-
tinuity

Pulse-width modulation is another commonly used and effective smoothing
technique that also works on the principle of averaging. The scheme operates
by mapping a periodically sampled error signal e(t) into a signal of pulses u(t)
which is then used as input to the system with the discontinuity. Each pulse has

magnitude M or —M and width 7 as follows [Skoog and Blankenship, 1970]:

u(t) = Msgn(e(kT)) kT <t < kT + 7e(kT)] | 35)

0 elsewhere

and

e(kT e(kTY LT
[e(kT)] = Ble(kT)| |e(kT) <T/B 59)

T |e(kT)|>T/B

where T is the sample time period and 3 is a constant. A typical pulse-width
modulation signal is shown in Figure 3.2. When this signal is then input

to the system with a discontinuity, the averaged output is relatively smooth

[Brockett and Cebuhar, 1988].
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Figure 3.2: Typical Pulse-Width Modulation Signal

Experience has proven that dither and pulse-width modulation can reduce
friction-related errors and instabilities. In fact, Chapter 4 documents the re-
sults of using dither to improve the tracking performance of the motor under
investigation in this thesis. However, both dither and pulse-width modulation
have serious inherent disadvantages. On the theoretical side, analysis and pre-
diction of system characteristics such as stability and robustness are difficult to
perform when dither or pulse-width modulation is applied. Pulse-width modu-
lation in particular creates complexities since it produces an input signal that is
not continuous. On the implementation side, the effectiveness of dither is often
compromised due to digital implementation limitations of dither frequency. Ad-
ditionally, dither can cause mechanical problems in a system such as a robot by
exciting vibrations. Vibrations can not only foil precision control but also lead

to fatigue and failure of parts.

[Cebuhar, 1988] has made significant advances in improving smoothing and
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linearizing techniques. In his work, Cebuhar considered both feedforward and
feedback methods in terms of a rigorous mathematical criteria that judges the
degree to which smoothness and linearity is achieved. Within this framework,
he determined optimal dither parameters and developed a filtered pulse-width
modulation scheme that produces a smooth input signal and minimizes total en-
ergy. He also derived a feedforward continuous controller that is locally optimal

in the least-squares sense.

With regard to feedback strategies, Cebuhar considered two different paths:
one that uses an optimal differentiable feedback control to compensate the non-
linearity aided by a precompensation technique such as dithering; and another
that optimally linearizes the averaged system that has been smoothed by prec-
ompensation. A smooth approximation to the discontinuous system is needed for
analysis of these feedback techniques. Cebuhar considered optimal approxima-
tions of sgn(z), singularly perturbed differential equations, and Volterra series

approximations.

Cebuhar’s work improves on the traditional heuristic techniques; however, it
does not eliminate all of the disadvantages cited above. Additionally, smooth
approximations to the discontinuous systems may be flawed for analytical pur-
poses since they will not produce the various characteristic frictional effects such

as stick-slip which may be the limiting factors for accurate control.
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The impulsive force controller designed by Armstrong is another friction-
compensating heuristic technique that has proved effective in experiments on a
PUMA 560 robot [Armstrong, 1988]. To overcome friction this controller uses
hard quick motions. The controller calculates force error and sends a sequence
of torque impulses taken from a lookup table to the motor. The lookup table
contains precomputed impulsive torque sequences each associated with a differ-
ent force step. In Armstrong’s experiments the magnitude of the force steps was
lower than the magnitude of the static friction. Specifically, his experiments
involved inserting wire wrap into a hole in a glass plate. This task required very
small movements corresponding to points along the Stribeck friction curve. The
success rate was about fifty percent. Although the technique requires a great
deal of work up front and is very limited in its flexibility, it is noteworthy in its

ability to provide high precision control in a very unstable regime.

3.3 Adaptive Control Strategies

Adaptive control strategies are naturally suited to the problem of friction com-
pensation because they can control nonlinear systems; they generate a time-
varying control law that tracks slowly-varying system parameters; and they
provide system identification when an accurate system model is not available.

Additionally, adaptive control techniques can be designed to take advantage of

what is known about the structure of friction.
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In [Gilbart and Winston, 1974] the authors proposed one of the earliest ap-
proaches to adaptive friction compensation in their work on control of a satellite-
tracking telescope. Their problem consisted of accurately controlling each axis
of a two-axis telescope to follow a demanded velocity input 8. Since friction
was a significant limiting factor in achieving satisfactory performance, for their
design they included the classical kinetic plus viscous friction model in the dy-
namic system equations (Figures 2.4 and 2.12). To drive the system as desired
they used an adaptive control input in addition to unit velocity feedback control.
The following equation represents the closed loop dynamics of one axis of the
telescope,

0, + c16, = c3z — casgn(8,) + csu (3.10)

where the variables are as defined for (3.2) except that u(t) is the adaptive

control input, ¢, ¢z, and c3 may be slowly varying with time, and z = - 9,,.

Gilbart and Winston based their design of u on a model reference adap-
tive control (MRAC) approach. According to [Astrém and Wittenmark, 1989],
MRAUC yields a mechanism that dynamically adjusts the control law parameters
according to changes in error between an ideal model response and the mea-
sured. system response as shown in Figure 3.3. For Gilbart and Winston the

ideal model dynamics took the form
5.,” + Clmém = Cgmé 4[3].1)

where 6,, and 6,, are model velocity and acceleration, respectively, and ¢;,, and
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Figure 3.3: Model Reference Adaptive Control

cs,, are constants. Subtracting (3.10) from (3.11) yields the error equation

E+ .= (c— clm)ép + (c3,, —c3)z + c23gn(ép) —c3u , (3.12)
where e = 0, — 0,. The adaptive control v was defined as
U= Klép + K32 + K;;sgn(ljp) (3.13)

where K, K3, and K3 are the time-dependent adaptive control parameters.

Substituting (3.13) into (3.12) yields

3
€ -+ Clmé = Zl‘jgj (314)

j=1
where 1 = ¢y — ¢y, — 3Ky, T2 = ¢3,, —c3— 3Kz, 3 = co—c3K3, g1 = 9p, g2 = 3,
g3 = sgn(ép). Using Lyapunov’s direct method, Gilbart and Winston then de-
termined the adaptive control laws K;(¢) such that é = 0 was an asymptotically

stable equilibrium point.
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By performing several experiments on a 24-inch telescope, Gilbart and Win-
ston demonstrated the improved control accuracy provided by their friction-
compensating adaptive controller. They considered experiments with step
changes in demanded velocity as well as various velocity trajectory tracking
experiments. The adaptive controller improved accuracy by a factor of six in

the velocity tracking experiments.

Instead of using MRAC, in [Canudas et al., 1986] the authors proposed an
alternative friction-compensating adaptive controller based on a self-tuning reg-
ulator (STR) approach. As shown in Figure 3.4 an STR consists of an algo-
rithm that estimates system parameters which are used to dynamically generate
control parameters [Astrom and Wittenmark, 1989]. In the scheme developed

by Canudas et. al., the controller provided cancellation of friction plus linear
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control to drive the remaining frictionless system. A recursive least squares al-
gorithm was used to provide an estimation of the friction parameters. Friction

was modelled according to the asymmetric kinetic plus viscous friction structure

of Figure 2.13.

The friction-compensating STR was tested on a servomechanism consisting
of a dc motor driving a load by means of a geared transmission. Sinusoidal
and square wave velocity trajectory tracking was performed with adaptive fric-
tion compensation and with a linear fixed-gain control. Comparative plots of
the test results showed that the adaptive controller provided improved tracking

performance over the linear fixed-gain controller.

Craig [Craig, 1988] also considered friction-compensating adaptive control
assuming the classical (symmetrical) model of kinetic plus viscous friction.
Specifically, in his design of an adaptive robotic manipulator controller, Craig
included terms to account for friction. While his design provided for a ma-
nipulator with multiple joints, for simplicity the following discussion assumes a

single-joint device.
Craig described the dynamics of the manipulator as follows:
M(gp)ép + Q(8,, ép) =u (3.15)

where M is the inertia, @ includes terms like friction and gravity and u is the
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control torque. The computed torque method sets
u = M(0,)(04 + Ksé + K,e) + Q(8,,6,) (3.16)

where M and C:) are estimates of M and @, respectively, and e = 84 — 6,.

Substituting (3.16) into (3.15) yields the error equation:
é+ Kat+ Kpe = N (8,)[M(8,)8, + G(8,,6,)] (3.17)

where M = M — M and § = Q — . Assuming that there are r unknown

parameters, the error equation can then be rewritten as:
¢+ Kge+ Kye = M W(8,,0,,0,)0 (3.18)

where @ is an rx1 vector containing all of the unknown parameter errors and
W is a 1xr vector of functions. Let P be an rx1 vector containing the unknown

parameters and P be the corresponding rx1 vector of parameter estimates. Then

A

d=P-P. (3.19)

The adaptive law, describing how to update the parameter estimates P was
based on a MRAC approach. Specifically, the adaptive law was designed using
Lyapunov’s direct method ‘to ensure that (e,é) = (0,0) was an asymptotically

stable equilibrium point.

Craig implemented his adaptive controller on two links of an Adept One,
which is a partially direct-drive “Scara”-style manipulator. He assumed the ki-

netic plus viscous friction model with two unknown parameters per joint: Fj
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and p. In addition there were three other unknown parameters related to iner-
tias and masses. His results showed good position trajectory tracking accuracy
with the adaptive controller. However, the benefit of the friction compensation

component alone was not investigated.

Walrath [Walrath, 1984] developed a friction-compensating adaptive control
strategy based on the Dahl friction model. As described in Section 2.4, Walrath
was concerned with the stabilization of an airborne pointing and tracking system.
To study the dynamics of this system, Walrath ran a series of experiments in
which he angularly perturbed the base of the tracking and pointing system’s
gimbal sinusoidally over a large frequency and amplitude range. While the
stabilization system attempted to regulate a desired position, motion of the
system over time was measured. Based on the results of these experiments,

Walrath postulated the following first-order model of the bearing friction T’

r 20T = Tson(d) (3.20)

where T, is the rolling bearing friction (i.e. kinetic friction) and 7 is a time
constant. Equation (3.20) is based on the Dahl friction model of (2.34) and
(2.35). In fact, substituting (2.35) into (2.34) with ¢ = 1 and S = 1 and

replacing Fy with Ty, Fy, with T, and z with 0, yields

a, = T
EL = o, — —T—iaﬁpsgn(@,) . (3.21)
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Multiplying both sides of (3.21) by T./(08,s¢n(8,)) gives

T, \ dT} :

which is identical to (3.20) if

(3.23)

Walrath incorporated the friction model (3.20) into his controller by using
it to predict friction torque. The predicted friction torque was added to the
standard fixed-gain feedback control signal and the sum was input to the system.
Walrath empirically determined the value of 7 for a given control experiment
by repeating the experiment many times, each time varying only 7, until the
optimum 7 was found, i.e., the 7 that yielded the minimum stabilization error.
Based on optimum 7 values (7,p;) calculated for a range of operating conditions,
Walrath empirically derived the following relationship which predicts 7,,; as a

function of root-mean-square system acceleration 8,
1/ Topt = Wopt = 1 + 0.37 Gy (3.24)

It should be noted that this relationship predicts that 7 is inversely proportional
to acceleration whereas the Dahl model predicts that 7 is inversely proportional

to velocity (3.23). This discrepancy is discussed further in Section 3.4.

Walrath incorporated the relationship (3.24) for 7 into his controller. As a
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result, friction was dynamically predicted based on the system operating con-
ditions. Extensive testing was performed using the friction-compensating con-
troller to evaluate its performance. Significant reductions in stabilization error
were measured when the friction compensator was implemented. In the low and
mid-frequency regions, error was typically reduced by a factor of three. At higher
frequencies, the improvement was not so dramatic partly due to processing time

delays inherent to the digital implementation.

Canudas de Wit [Canudas de Wit, 1989] recently proposed a friction-
compensating adaptive control technique for a robotic manipulator based on
a model of friction that included a term for the Stribeck effect. His model de-
scribed by (2.44) is linear in the parameters. To determine the friction parame-
ters dynamically, Canudas de Wit used an estimation algorithm that minimized
an exponentially weighted least-squares cost function with a noise constraint.
The control law was based on the computed torque method with integration
and with the friction torque predicted by the estimated parameters. To avoid
overcompensation, the controller included only between 80 and 90 percent of

the predicted friction torque.

Using this controller, Canudas de Wit performed low velocity tracking exper-
iments on a robotic manipulator. Tracking error was reduced when the friction-
compensating controller component was implemented. However, friction predic-

tion error was greater for low velocity tracking than for high velocity tracking.

76



This is to be expected since friction is more difficult to model at low velocities.

3.4 Design and Analysis of Adaptive Strate-

gies Used in Experiment

As will be presented in Chapter 4, this thesis describes an experimental program
on an electric motor in which several friction-compensating control strategies
are tested. Of the control strategies implemented, three are adaptive control
techniques. The techniques are based on the methods described in the previous
section. However, several improvements have been made to these methods. For
example, new terms have been added to the friction models to increase friction

prediction accuracy.

The design of the improved techniques is described in this section. Addition-
ally, a stability analysis is provided for each technique. The analysis of the first
controller is modified and more complete than in the literature; the analysis of
the second controller contains minor changes to the original; and the stability

analysis of the third controller is new.

The experimental system is a direct-drive, dc motor which behaves according
to the dynamical equation (3.2). All of the experiments involve position trajec-

tory tracking where 64, «94, and 6, are available. Later, in Chapter 4, Section
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4.2 describes the derivation of the dynamical motor equation and Section 4.3

details the tests that comprise the experimental prograﬁl.

3.4.1 Adaptive Controller I

Adaptive Controller I incorporates a friction-compensating strategy based on the
method of [Gilbart and Winston, 1974] described in Section 3.3. However, while
Gilbart and Winston considered velocity trajectory tracking in their design, this
controller was required to handle position trajectory tracking. In effect, the
Gilbart and Winston design which supported a first-order system was insufficient
for control of the second-order system that describes position tracking of the
electric motor. As a result, Adaptive Controller I is a modified version of the
Gilbart and Winston design, incorporating filters to reduce the order of the

system as suggested by [Gilbart et al., 1970].

Additionally, to accommodate the observed asymmetrical nature of friction

in the motor [Wang, 1987], kinetic friction is modelled as follows:

e (2O o (1)

where a; and «, are slowly-varying parameters that represent the magnitude of

kinetic friction in the positive and negative directions, respectively.

While Gilbart and Winston used only proportional feedback control in ad-

dition to the adaptive control, our controller uses a control input based on the
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computed torque method with integration in addition to the adaptive control.

The control signal is
U= 5d/C3 + Kpz + K[z + Kq2 + p3tig + paug , (3.26)

where z = 0, — 0, ps and p, are constants, and u, is the adaptive control input.

The w, term is included since the system is of second order. Substituting (3.26)

into (3.2) yields

b, = —c10, — 2Ty + ca(fafcs + Koz + K; /z + K42 + patiy + paua) . (3.27)

The ideal model is also of second order and takes the form
O + (Pr + P2)0m + (p1p2)0m = difs + daby (3.28)

where p1, ps, di, and d, are constants. Therefore, the transfer function of the

ideal model has the form

Om _ di(stdy/d)
Os "~ (s+p)(s+p2)

(3.29)

The error equation is obtained by subtracting (3.27) from (3.28). Defining

dz = p1p; yields

€+ (pr+p)é+ (ppr)e = (di — c3Ky)z + (do — c3Kp)z
+(di4+e—pr— Pz)ép + ¢y 1 (3.30)
— 3K [z — eapstiy — C3paut, — éd .
To use the technique of [Gilbart et al., 1970], the order of the error equation

should be reduced by one. To do so, take the Laplace Transform of (3.30) and
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multiply both sides by 1/(s + p;) such that

(s+pa)e(s) = (di—esKa)Z 4 (dy — esK,) 2L + (dy + ¢4 —

s+p1 s+p
C(T uas

P2) fpls)

s+p1

_ bals)

s+p1

(3.31)

Notice that the Laplace transform L£(T) exists since Ty is piecewise continuous

and bounded [Boyce and DiPrima, 1977]. Also note that

s2(9) _ sas) | pals) _pias) _ o mass)

S+p1 $s+p s+p1 S+p; s+

Similarly,

su,(s) — ua(s) — p1ug(s) .
s+p s+ p

Substituting (3.32), (3.33), and (3.25) into (3.31) yields

(o) | g male) 4 5 bal0) 5 _2(o)

(s+pae(s) = biz(s)+ 6 s+p1 33¥p 4541 55(s+p1)

45 L'(sgn(’?p)ﬂ)_l_ 8z £(8gn(9p) 1)+5 fa(s)

s+p1 2 s+p1 85+p1

where

61 = dl - Cgl(d
62 = d2 - CgI{;, — pl(dl - Cg[(d)
63 = picsps —capy

0y = di+ca—p1—pe

by = —o3K;
b6 =
by = o0
g = —1.
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Taking the inverse Laplace Transform of (3.34) gives

é+ pre = Zi:csjgj — C3P3Uq (3.36)
where
g = z()
g2 = L7z(s)/(s + p1)]
93 = L ua(s)/(s +p1)]
)9 = L70,(s)/(s + p1)] (3.3)
95 = L72(s)/(s(s +p1))]
g = LTL(BEY)/(5 4 py))

gr = LL(T) /(6 4 py)]

g8 = L7Ba(s)/(s +p1)]-

\

The adaptive input can be defined by

8
Uy = Z I&’jgj (338)
=1

where the K; are the adaptive parameters. Then

8 8
é+pre =) (6 — capaK;)g; = Y2595 (3.39)
j=1 J:l
where z; = §; — csp3K;. Let ¢ = (z4,...,28)7. Now Lyapunov’s direct method
is used to derive an adaptation law for the parameters K; such that e = 0

is an asymptotically stable equilibrium point. Let V be defined as follows

[Gilbart and Winston, 1974]:

V(e,) = &+ 3 =(a; + Breqs)’ (3.40)

j:l J
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where o and f; are arbitrary positive constants. Recall that from (3.37)
9o(s) = L2 (5 + 1) (3.41)
Multiplying both sides by s yields
sg0 = L(HREIL) — py L(ER) ) 4 ) = L(2I) — pygo(s) . (3.42)
Since LZ(SQ—"(ZE-)—ﬂ) exists, then £71(sgs) = gs(t) exists and
do(t) = ML — (1) (3.43)

Similarly g7(t) exists and is piecewise continuous. Therefore, V is continuously
differentiable. Also note that since V(0,0) = 0 and V(e,z) > 0 for (e,z) #
(0,0), then V is a positive definite function and therefore a Lyapunov function
candidate [Vidyasagar, 1978]. Differentiating V' with respect to time results in

the following
. . 8.2 . d
Vi=2et+), — (2 + Bieg;)(&; + Bi(egs)) - (3.44)
j:l J

Substituting (3.39) for é into (3.44) gives

8 2 ) d
V= —2ppe® +2e3 wig; + ) —(z; + Bieg;)(#; + Big(egs)) - (3.49)

8
=1 =19
Let z; be defined by
) d
¢j = —ajeg; = fi—(eg;) - (3.46)

Then by substitution of (3.46) into (3.45)

V= —2(p + 3 B(0))¢ (3.47)

i=1
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SoV < Oforall e # 0and V = 0 for ¢ = 0. By Lyapunov’s direct
method, this implies that e = 0 is an asymptotically stable equilibrium point

[Vidyasagar, 1978].
Assuming that §;, Vj is constant or slowly varying then from (3.39)
&; = —capsK; j=1,..,8. (3.48)

Substituting (3.46) into (3.48) gives the adaptation law:

Ry=—lajeq; + figles)] =1 (3.49

or equivalently
K; = B;[eg; + Cjeg; (3.50)
where B; = «;/(csps) and C; = B;j/(caps) are arbitrary positive constants.

Figure 3.5 provides a comprehensive diagram of Adaptive Controller I.

3.4.2 Adaptive Controller II

Adaptive Controller II performs friction compensation according to the tech-
nique of [Craig, 1988] described in Section 3.3. The control signal input is based
on the computed torque method with an adaptive rule for updating the unknown
parameters. Adaptive Controller IT assumes knowledge of the motor inertia and
applies the adaptation feature to the unknown friction parameters. Four dif-

ferent versions of the controller are developed, each with a different model of
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Figure 3.5: Adaptive Controller I
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friction. The simplest model includes kinetic plus viscous friction as in Craig’s
design. The other three include additional terms to provide a more complete
model of friction. The control system stability analysis detailed below follows

[Craig, 1988].

To begin the controller development, the experimental system dynamics (3.2)

need to be written in the form of (3.15). Solving for input u from (3.2) gives
u = (1/c3)0p + (c1/cs)0p + (e2/c3) Ty - (3.51)
Then by defining M and @ by
M=1/c, (3.52)

Q= (Cl/Cs)ép + (c2/e3)Ty (3.53)
u can be expressed as in (3.15). M represents the inertia of the motor and is
known. @ incorporates all of the friction since the first term on the right hand
side of (3.53) represents viscous friction {(and back emf) and the second term
includes other friction terms like kinetic friction. Therefore, Q) can be redefined

to supply different friction models.

Friction model (a) is the simple kinetic plus viscous friction model used by

Craig in his design such that

Q® = pi6, + p2sgn(6,) (3.54)

where p; and p, are the unknown parameters. Thus, r = 2, where r 1s the

number of unknown parameters. Model (b) assumes the asymmetric kinetic

85



plus viscous friction model represented by:

QB = plg'plis_%"__(’iz;) +p2,9'p1_—_8_92ﬂd

(3.55)

bp)+1 fp)=1
+ps 89"(2p)+ + pa sgn(gp)
where p; and p; are the unknown viscous friction parameters in the positive and
negative directions, respectively and ps and p4 are the unknown kinetic friction

parameters in the positive and negative directions, respectively. In this case

r =4,

Model (c) includes a linear model of Stribeck friction in addition to kinetic
plus viscous friction. From (2.38) and (2.40) with a = 2, Stribeck friction can
be modelled as

Fiyr = (Fy — Fy)e~ol0’ sqn(4) | (3.56)

However, Adaptive Controller II requires dynamics that are linear in the un-
known parameters. To derive a linear model, the exponential in (3.56) is re-

placed with its Taylor series approximation as follows:

Fur = (Fo= FL = (72)sgn(d,) (3.57)

= (F = Fu)sgn(d,) — (F557%)(0,)*sgn (0, -

2
gstr

Adding this term to the kinetic plus viscous friction model of (3.54) gives

Q© = p1b, + pysgn(0,) + paby sgn(fy) (3.58)

and r = 3.

For comparative purposes, Model (d) includes kinetic plus viscous

plus Stribeck friction terms according to the linear model (2.44) by
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[Canudas de Wit, 1989] such that » = 3 and

QW = Plép + P259n(ép) + Paléplllzsgn(ép) . (3.59)

Q is the estimate of ) and is written identically to () except that the unknown

parameters are replaced with estimates

ala)

Q" = p16, + pasgn(6,) (3.60)

Therefore, Q = Q — Q can then be written as

~(2)

Q" = (p1 — $1)0 + (pz — P2)39n(6;) , (3.61)

which can also be expressed as

0" =wi(é,)e, (3.62)
W(ép) = [ép Sgn(ép)] ) (3'63)
X P — D1 ,
d=P-P= : (3.64)
P2 — P2

where P = [p; p;]T and P =[p; p,]7. The above expression can be used for

any of the other friction models by adding the appropriate terms to W and 9.

The input control torque applied to the motor is given by (3.16) which leads
to the error equation (3.17). Since M=M-M-= 1/cs — 1/e3 = 0, the error

equation for Adaptive Controller II with any of the four friction models becomes

E+ Kpé+ Kpe = cs W0 (3.65)
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From [Craig, 1988] let e; represent a filtered error signal such that

e1(s) = (s +v)e(s) . (3.66)
Then
€1(S = _5__3_-{:_1{)___ C3 S
( ) 3 +Kus+Kp( W(I))( ) (367)
= G(3)(csWo)(s) .

1 should be chosen such that G(s) is a strictly positive real (SPR) transfer

function. Then, given the minimal state-space realization of (3.67)

¢ = Az+ B(csW®) (3.68)
€ = Cz

where z = [e  ¢]7, we have by the Kalman-Yakubovich Lemma that there exist

positive definite matrices R and @ such that

ATR+RA = —Q (3.69)

RB=CT.

A state-space realization for (3.67) is given by (3.69) with

0 1 0
A= , B = , C = [v 1] (3.70)

~K, -K,

o

which is controllable and is observable if

—K,
rank[CT (CA)T] = rank v = 2. (3.71)

1 ¢ — K,
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To show stability of the equilibrium point (e, €¢) = (0, 0), a Lyapunov function

candidate is selected to be
Vie,é,®) = V(z,®) =27 Rr + 17719, (3.72)

where
[ = diag[y1,7v2,--1] % >0 (3.73)

such that V is a positive definite function. Differentiating V' with respect to

time yields
V =2TQz + 20T [W¥cse; +719] . (3.74)
Let
d = —TWlcse, . (3.75)
Then
V=-z7Qz, (3.76)

and hence by Lyapunov’s theorem [Vidyasagar, 1978], because ) is positive

definite, 27 = (e, é) = (0,0) is an asymptotically stable equilibrium point.

The parameter adaptation law can be derived from (3.75). Specifically, since
® = P — P and P is assumed to be constant or slowly-varying, the parameter

adaptation law is
P=—b=TWcse; = TWTes(e+¢) . (3.77)

Figure 3.6 shows the block diagram for Adaptive Controller II. Note that K,

and K, in Figure 3.6 have absorbed the constant 1/cs.
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3.4.3 Adaptive Controller III

Adaptive Controller III provides friction-compensating control according to the
strategy of [Walrath, 1984] described in Section 3.3. This strategy uses the Dahl
model of friction to dynamically predict and compensate for friction. Specifi-
cally, friction is computed according to a first-order equation (3.20) character-
ized by a time constant 7. Walrath empirically derived a relationship for 7 as a
function of operating conditions and found that 1/7 was a linear function of 5,,
(3.24). As previously noted, this relationship is inconsistent with Dahl’s model

which predicts 1/7 as a linear function of 4, (3.23).

On the other hand, a consistent relationship for 7 was found for the electric
motor of this study. Indeed, experiments similar to Walrath’s were performed on
the motor to determine 7 as a function of operating conditions. The empirically

derived relationship took the form
1/T=w=a+blép| (3.78)

where a and b are constants. Thus, 1/7 is a linear function of §, as predicted
by Dahl. Details of the experiments are provided in Section 4.5.4. Relationship
(3.78) is incorporated in Adaptive Controller 11T in place of Walrath’s calculation

of T (3.24).

Additionally, while Walrath’s controller only used proportional feedback con-

trol in conjunction with the friction compensation, Adaptive Controller III uses
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feedback control based on the computed torque method with integration. The

control input u is defined by
w=(1/ca), + Koé + K,e + K,-/e + 7y (3.79)

where T is the friction torque estimate. Figure 3.7 shows a block diagram of

Adaptive Controller III.

Since Walrath did not provide a stability analysis for his controller, an origi-
nal stability analysis has been developed based on the passivity formalism. The

definitions and theorems of the passivity formalism used below are taken from
[Hill and Moylan, 1976,Hill and Moylan, 1977 ,Hill and Moylan, 1980].

Definition: A system of the form

t = f(z)+G(z)u
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y = h(z)+ J(z)u (3.80)

with supply rate (an abstraction of input power associated with the concept of

stored energy in a physical system)

w(u,y) = yTQy + 2yTSu + uT Ru (3.81)
is dissipative if
ty
/ w(t)dt >0 (3.82)
to

along trajectories of the system (3.80), for all locally square integrable u(-), all

t]_ Z to, and m(to) =0 If
w(u,y) = vy — e’y (3.83)
for € > 0 then the system is Y-strongly passive (YSP).

Consider Adaptive Controller III with friction prediction and derivative feed-
back only as shown in Figure 3.8. Then according to [Hill and Moylan, 1977],
if both H; and H, are YSP, then the feedback system is asymptotically sta-
ble. The fact that H, = 1 from Figure 3.8 is SPR implies that H, is YSP

[Astrom and Wittenmark, 1989]. It remains to prove that H; is YSP.

System H; can be described by the following equations:

5,, + clép = —c Ty + c2Tf + c3K4é (3.84)
Ty = —wTy + wT.sgn(d,) , (3.85)
T = —oTy + 6Tusgn(6,) - (3.86)
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Assuming a ~ 0 from (3.78) then w = b|d,| and & = 5|6, and so (3.85) and

(3.86), respectively, become

Ty = —b|6,|Ty + bT.6, , (3.87)
Ty = b6, T + 4704, . (3.88)

Defining the four states (z1,z2, 23, z4) = (6,, 6Ip, Tf,Tf), H, can be presented in

~

the form of (3.80) as

3/:1 Iy 0
Lq —C1Ty — C2T3 + CaT4 c3Ky
T3 —blza|zs + 0Tz, 0
113‘4 B|$2,$4 + ETCJI'Z 0
Y=z (3.90)
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where u = ¢é. Now define ¢ : R* — R as

$(z) = el

s=12” + z3(z1 — M/b) — Teb(z1 — 1 /b)? + [ bzyzs|zy
+z4(21 ~ ‘/2/?7) - %Tcz’(l'l - 72/13)2 + f8$1$4|352|]
(3.91)
where K, v, and 7, are constants to be defined later. Differentiating (3.91)
with respect to time yields the supply rate

C
2 [z975 — K2oxs + 1 |2a|Ts + Tams + Kz + 2|22]4]
cs KKKy

$(z) = uy —ey® +

(3.92)
where € = ¢;/¢; Ky > 0. First consider the case when z, = 6, > 0. Then (3.92)

becomes

C2

SRR K M)|z2lTs + (1 + K + 2)|waled] . (3.93)

$(z) = uy — ey® +

So choose 7y > —1 and 4, < —1 such that v + v, = ~2, then K =147
—~1 -9 >0 and

d(z) = uy — ey? . (3.94)
If on the other hand 2, = 6, < 0, then (3.92) becomes

C2

d)(x) = Uy — 6y2 -+ Cg]{]{d[(_-l +I( -+ ’)’1)!1‘2[.’1)3-}' (—-1 - K + ’)’2)‘$2l$4] . (395)

Choose 73 < 1 and 42 > 1 suchthat 1+ =2then K =1—vy =147 >0
and (3.94) holds.

According to [Hill and Moylan, 1976] to show that H, is dissipative with

respect to the supply rate given by (3.94), #(0) = 0 and ¢(z) > 0 Yz must hold.
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These do not hold for the function ¢(-) as defined by (3.91). However, for z, =
ép >0 (or 9 = 9,, <0) zyz3 = T40, > 0 and zoz4 = Tf(),, > 0. Additionally,
ry and z3 are both bounded since 0 <z =6, < 2r and -T. < z3=T; <T..
Therefore ¢(-) from (3.91) is bounded below. Define C as the greatest lower
bound of ¢(z). Then there exists some zo € R* such that ¢(zg) = C. Next

define the map ¥ : X — Y such that ¥(zo) =0, i.e.,
U(z)=2z—20=y. (3.96)
Then define ¢(-) by

3(y) = d(¥™(y)) = ¢y + zo) - (3.97)

So ¢(0) = C and ¢(y) > C Vy. Finally, let ¢(-) be defined by

$(y) =¢(y) - C. (3.98)

Then $(0) = 0 and ¢(y) > 0 Vy. Note that qz(y) = @(y) = &(y) which is given by
(3.94). Thus H, is YSP and the feedback system of Figure 3.8 is input-output

asymptotically stable. This implies that é,, will follow ;.
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Chapter 4

Experimental Program

4.1 Hardware Description

The experimental system (shown in Figure 4.1 [Wang, 1987]) consisted of a
direct-drive, brush-type dc motor, angular position and velocity sensors, a power
amplifier, an IBM AT personal computer (PC), and supporting hardware and
software for communication and control. A DDAO06 board manufactured by
Metrabyte provided digital-to-analog (D/A) conversion and digital I/0, and a
Metrabyte DASH16 board provided analog-to-digital (A/D) conversion. The
motor, manufactured by Inland Motors, used samarium-cobalt permanent mag-
nets and produced a peak. output torque of 40 Ibf-in and a maximum no-

load speed of 14 rad/s [Frank, 1986]. The motor parameters measured by
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Figure 4.1: Experimental System (reproduced with permission from L.-S. Wang

MS thesis)

[Frank, 1986,Wang, 1987] were as follow:

K, 2 motor torque constant = 21.62 Ibf-in/amp
K, 2 motor voltage constant = 2.443 volt-s/rad

R — equivalent motor resistance = 33.6 ohms

J 2 inertia of motor, shaft, and table = 0.1 1bf-in-s?/rad

The IBM PC was used to control the operation of the motor. By means
of controller software, the PC generated a digital control signal. Before being
input to the motor this digital control signal passed through the DDA06 D/A

converter where it was converted into an analog voltage signal. The original
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digital signal ranged from 0 to 4095 (12 bit signals) where ideally 0 converted
to -10 volts and 4095 converted to +10 volts. In reality a digital signal equal to
2005 corresponded to 0 volts. Additionally, the digital signal was limited in the
software to the range 5 to 4005 to avoid saturation in the D/A converter and
power amplifier. From the D/A converter the voltage signal passed through the
power amplifier. The amplifier multiplied the voltage signal by a factor of 6.02

[Wang, 1987]. The output of the power amplifier was input to the motor.

Angular position of the motor was measured by an optical shaft encoder.
Two digital I/O channels of the DDA06 board were used to input the 12 bit
encoder data to the PC. This yielded a position measurement resolution of

0.00154 radians (0.088 degrees).

A tachometer measured angular velocity of the motor. The tachometer mea-
surement, an analog voltage signal, was passed through a low-pass filter to re-
move high-frequency noise before being converted to a digital signal through
one channel of the DASH16 board. In the A/D converter the analog voltage
signal which ranged from -10 volts to +10 volts was converted to an integer
from -2048 to +2047. The tachometer was scaled such that it developed 0.408
volts per rad/s [Frank, 1986], i.e., 2.45 rad/s per volt, which yielded a velocity

measurement resolution of 0.012 rad/s.

The digital sampling rate was set using the timer on the DASH16 board. A

50 Hz sampling rate was used throughout the experimental program.
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4.2 System Model and Verification

Neglecting the equivalent inductance of the motor, the following equations pro-

vide a second order model of the motor:

T =Kg=J0,+ p, +T; (4.1)
V=Ri+V (4.2)
Vi = K0, (4.3)

where: .
7 is torque to the motor (Ibf-in)
¢ is current through the motor (amps)

V is voltage across motor (volts)

Substituting (4.3) into (4.2) and solving for 7 yields:

i=V/R-K,0,/R (4.4)

\

Then substituting (4.4) into (4.1) for ¢ gives the system dynamics as:

0, + (K:K,/RJ + pn) )b, = —(1/ )Ty + (K./RI)V (4.5)

which is identical to (3.2) for ¢; = K;K,/RJ +pu/J, c =1/J, c3 = K;/RJ, and

u=V.

The system can also be modelled in state-space form where the state vector

is [0, 9,,], and the input to the system is the motor voltage, i.e., u = V. The
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state-space description of the system is then:

t=Az+ Bu+ NL (4.6)
where:
0 1 0 0
A = , B = , NL = (4.7)
0 —¢q c3 —coTy

For system simulations, friction was modelled as kinetic plus viscous friction.

The friction parameters, assumed to be constant, were measured in previous

work by [Wang, 1987] as follows:

0.73 lbf-in, 6, >0
F, =

~1.12 Ibfin, 6, <0

0.63 Ibf-in, 6§, >0 (4.8)
F, = A

—0.81 Ibf-in, 6, <0

¢ = 0.048 lbf-in-s/rad
For the simulations, the magnitude of F) and F, were defined as the average of
the measured magnitudes in the positive and negative velocity directions, i.e.,
A . A . . ) )
Fy — 0.72 sgn(6,) and F, — 0.92 sgn(d,). Integration of the two-dimensional
state-space system was performed in simulations using a midpoint technique
with a 1 millisecond time step. The nonlinear friction term was assumed to be

constant throughout each time step.

In order to verify the motor model, results of experiments performed on

the motor were compared to simulator results. The experiments consisted of
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Figure 4.2: Comparison of Measured and Calculated Responses to the Same
Input

sending voltage pulses to the motor and measuring the angular position and
velocity responses. The same pulse signal was input to the simulated motor and

the resulting position and velocity responses were calculated.

A comparison of the measured and calculated responses to the same input
is shown in Figure 4.2. In this experiment a constant -8 volts was input to the
motor for 20 samples (0.4 seconds) followed by a constant +8 volts for 20 sam-
ples, etc. As can be seen in the figure, the simulator responded somewhat more
slowly than the actual motor. Figure 4.3 shows the same comparison except that
in the simulator calculation motor inertia J was reduced to 0.04 lbf-in-s?/rad.

The comparison reveals better correspondence between the experimental and
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Figure 4.3: Comparison of Measured and Calculated Responses to the Same
Input, J = 0.04

simulator responses which may indicate that motor inertia has been overesti-
mated. Nonetheless, when using the motor model to determine PID controller
gains, as will be described in the next section, the value of the inertia J was not
changed to 0.04 Ibf-in-s*/rad since it had an insignificant effect on the controller

gain selection.

In both Figures 4.2 and 4.3, it can be seen that the measured motor velocity
response is not smooth as predicted by the simulator. This is because the
simulator does not include a model of torque ripple. Torque ripple can be
observed in Figure 4.4 which shows the angular velocity response of the motor

to a constant low voltage input. In effect, torque ripple generates a position-
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Figure 4.4: Experimental Evidence of Torque Ripple in Motor

dependent deviation. An investigation of the effect of torque ripple on the results

of the experimental program is described in Section 4.6.

Based on the techniques described in Chapter 2, the experimental system can
be analyzed for the possibility of stick-slip oscillations. According to Section 2.3,
phase plane analysis can be used to determine a minimum velocity below which
a stick-slip limit cycle might occur. Substituting the model parameters into the

equation for slipping conditions (2.31) yields:

Ji+p(r—V)+ Kz = F (4.9)

where V and z are as described in Section 2.3. System stiffness K has been added

for completeness and is estimated to be K = 1.5 x 10° 1bf-in/rad [Frank, 1986].
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Figure 4.5: Phase-Plane Plot Close-up for System with Static, Kinetic and Vis-
cous Friction, V = 0.1 rad/s

The solution to (4.9) is:

(Fr + uV)/K + aye P cos At + aze Ptsint (4.10)

e~ [(—a1B + ag))cosAt + (—azf — a3 \)sint]
where f = p/2J, A= /K/J — B2, a1y = (Fs — Frx — uV) /K, a3 = (V + Bay)/ .

Using (4.11) the phase plane plot of the system with kinetic and static friction
can be made for a given V. Figure 4.5 shows the phase plane plot for'V = 0.1
rad/s. Under these conditions no stick-slip is predicted. However, for V = 0.01
rad/s, phase plane analysis predicts the possibility of a limit cycle as shown in

Figure 4.6.  Using this graphical technique, the critical velocity is calculated

as approximately 0.019 rad/s which is of the same order as the resolution of the

105



T T T T T T T "'rr—r-zf—'"?"”'s coplott B, 22l 19:30:22
01001 — —
R B i
n — —
<
2 - V = 0.01 rad/s 4
£ o1 -
-
o] - .
<
> L _
o
.00999 |— —
.00998 | 1 | J ! ! ! I ! I 1 ! | I 1 1 ! ! l 1 ! 1 1 ! t ! Il L

2x107" 3x10”" 4x10”" 5x10”" 6x107" %1077 8x107"
x (rad)

Figure 4.6: Phase-Plane Plot Close-up for System with Static, Kinetic and Vis-
cous Friction, V' = 0.01 rad/s

tachometer measurement.

4.3 Experiment Design

The experimental program on the electric motor consisted of comparative posi-
tion trajectory tracking tests using five different controllers. The purpose of the
program was to explore the relative effectiveness of these controllers. In each
experiment the motor was required to track a sinusoidal position trajectory such

that:

6; = Asin(2rft)
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0, = 2nfAcos(2nft) (4.11)

0, = —(2rf)*Asin(2xft)

where A is the amplitude and f the frequency of the demanded trajectory.
This required sinusoidal motion provided a useful means for investigating fric-
tion compensation since the motor was forced to repeatedly pass through zero
velocity where friction behavior is most difficult to control. The sinusoidal mo-
tion also provided a reasonably realistic scenario since manipulators are often
required to perform repetitive tasks that demand sinusoidal joint motions. Addi-
tionally, robotic manipulators that are airborne or operate in environments such
as factories are susceptible to disturbances. The manipulator may be required to
stabilize a given position despite these disturbances. Sinusoidal trajectory track-
ing can be viewed as roughly equivalent to position regulation under sinusoidal

disturbances.

The sinusoidal trajectories tracked in the experimental program ranged in
frequency f from 0.1 Hz to 1.0 Hz. The lower limit of this range was selected
to minimize motor velocity and to not introduce large errors due to velocity
measurement resolution. The upper limit of this range was selected to maximize
motor velocity without generating gross errors due to the limitations of the 50 Hz
sampling rate. A 0.25 radian amplitude A was used for all sinusoidal trajectory

tracking experiments.
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The first of the five controllers tested was a PID controller that used op-
timized gains determined as described in Section 4.4. This PID controller was
designed to provide excellent linear control and be used as a benchmark for com-
parison with the other four nonlinear controllers. A PID controller was chosen
as the benchmark since it is not only a very typical design but also effective for
controlling dc motors. The second controller employed dither to illustrate the
relative effectiveness of a smoothing technique for friction compensation. The fi-
nal three controllers, Adaptive Controllers I, II, and III, were tested to illustrate
the improved accuracy provided by adaptive friction compensation. Addition-

ally, these controllers were used to investigate a variety of friction models.

The direct-drive feature of the electric motor was advantageous for investi-
gating friction-compensating control strategies. In particular, friction was gen-
erated only in the motor bearings. Gears would have introduced more friction
making the nature of the system’s friction more complex. The absence of gears
in the direct-drive system provided an isolated friction source and thus a more

straightforward test bed for experimental research.

4.4 Optimal PID Controller Design

The PID controller gains were selected to optimize the motor response to a 0.25

radian step demand in angular position. CONSOLE, a numerical optimization
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tool described in [Fan et al., 1987], was used to perform the optimization. The
gains, K,, K;, and K;, were used as the three design parameters in the opti-
mization problem. Two functional objectives were specified, one to minimize
the overshoot of the step response and one to maximize the rise of the step
response. In performing the optimization, CONSOLE called a simulation of the
controller and the motor. The motor was modelled as described in Section 4.2.

The controller was modelled according to the following equation:

u=0i/cs + Kpe + K;[e + Kyé (4.12)

Figure 4.7 shows the resulting response of the simulated motor to the 0.25
radian position step demand when using the PID controller with optimized gains

determined by CONSOLE. The optimized controller gains are as follows:

K, = 126 volt/rad

K; = 22.0 volt/rad-s

K, = 4.32 volt-s/rad
Figure 4.8 shows the actual motor response to a 0.25 radian position step de-
mand using the PID controller with the above optimized controller gains. The
smooth, fast, and accurate response observed in this figure verifies the effective-

ness of the selected optimal controller.
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Figure 4.7: Simulated Data for PID Controlled Motor Response to 0.25 Radian
Position Step

4.5 Implementation of Control Strategies

All of the five controllers tested were implemented digitally on the IBM PC.
The sampling rate of 50 Hz was assumed to provide a small enough sample
size such that the digital implementations were fairly good approximations of
the continuous controllers. Tustin’s rule was used for transformations from

differential equations to difference equations [Franklin et al., 1990]:

d 2 (1-271
&~ T <1 +) (413)

The implementation of the PID controller was described fully in the previous
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Figure 4.8: Experimental Data for PID Controlled Motor Response to 0.25
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section. Details of the implementation of the four nonlinear controllers are

provided below.

4.5.1 Controller with Dither

The controller with dither was implemented identically to the PID controller
except that a dither signal was added to the control input. The frequency of
the dither signal was 25 Hz which is the maximum possible given the 50 Hz
sampling rate. The amplitude of the dither signal was 4 volts. This corresponds

to 2.6 Ibf-in which is more than twice the magnitude of the static friction.
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4.5.2 Adaptive Controller I

Adaptive Controller I was implemented according to the equations of Section

3.4.1. The ideal model of (3.29) was defined by the following parameters:

dl = 23.33 s7!
d, = 210 s72

-1

P = 14 S

-1

P2 = 15 S

The gains of the adaptive component were p3 = 1 and ps = 9.

The gains in the adaptation law (3.50) were selected such that B; = B, Vj
and C; = C, Vj where B and C are constants. A variety of B and C values
were used since it was found that while higher values of B and C improved
controller performance, they also magnified system noise. Additionally, both
tracking accuracy and noise magnification were increased when the controller
was used to track a high frequency sinusoidal trajectory as opposed to a low
frequency sinusoidal trajectory. For example, B = 250, C' = 150 provided good
performance for the 0.5 Hz sinusoidal trajectory tracking experiment. However,
these gains led to instability in the 1.0 Hz experiment. For the 1.0 Hz experiment

B =20, C = 10 provided the best performance.

Adaptive Controller I was designed to make the servomechanism follow the
output of the ideal model. Therefore, to make the results of the experiments

consistent with the other controllers it was necessary for the output of the ideal

112



model 0, §,,, and 0,, to be defined by the sinusoidal trajectory equations of
(4.12). Let H(s) be the trénsfer function of the ideal model (3.29) and H~!(s)
be 1/H(s). Then the demand trajectory used for Adaptive Controller I was
9,0 = g1 (s)84 so that 8, = H(s)ﬁdm = 6. Since the demand signals in all
of the experiments were sinusoidal, the new demand trajectory 6,1 was easily

computed using the gain and phase of H™!(jw), i.e.,
0.9 = M Asin(2r ft + ¢) (4.14)

where M and ¢ are the magnitude and phase of H~!(jw), respectively, evaluated

. (I)

at w =27 f. édm and 6; ~ were found similarly.

4.5.3 Adaptive Controller II

Adaptive Controller II was implemented according to the equations of Section
3.4.2. Since integral control was not used in the nonadaptive feedback loop, K,
and K, were recalculated using CONSOLE. K, = 129 volt/rad and K, = 4.24
volt-s/rad were the resulting optimized PD controller gains. For the filtered
error calculation of (3.66), 1 = 2 was chosen such that G(s) of (3.67) was SPR

and the observability requirement of (3.71) was satisfied.

The adaptive gains +; were chosen to balance the effects of adaptation speed
and noise. High gains yielded noisier but faster adaptation while low gains

yielded less noisy but slower adaptation. The best values were found to be
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v =1, Vi.

According to the stability analysis of Section 3.4.2 [Craig, 1988], the angular
position error e is expected to go to zero. However, the adaptive parameter
errors p; — p; will go to zero only if the input to the system is persistently

exciting (PE). The criteria for persistent excitation is [Craig, 1988]:

to+N
0<al, < / WTW, dt < bl, (4.15)

to
for all ¢ty where a, b, and N are all positive, and Wy is W evaluated on the de-
sired trajectory instead of the measured trajectory. In the presence of bounded
disturbances, however, the PE condition is difficult to state [Craig, 1988]. This
difficulty is relevant since noise, torque ripple, and possibly unmodelled friction
dynamics provided bounded disturbances in the motor experiments. Nonethe-
less, limited identification of friction parameters was performed using Adaptive

Controller II. For these experiments 9 = 27 and ~; = 1, Vi were used.

4.5.4 Adaptive Controller III

Adaptive Controller IIT was implemented according to the equations of Section
3.4.3. The equation for friction time constant 7 as a function of operating condi-
tions was derived experimentally following the technique described in Section 3.3
[Walrath, 1984]. Five different sinusoidal tracking experiments were performed

using Adaptive Controller ITI with constant 7. Each experiment was repeated
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many times, each time varying only 7, until the optimum 7 was found.

Figure 4.9 shows the results of one of the five experiments. Root-mean-
square (RMS) angular position error is plotted against w = 1/7 for sinusoidal
trajectory tracking with f = 0.25 Hz and A = 0.25 rad. These experimental
operating conditions resulted in an RMS acceleration of 3.8 rad/s?, and an RMS
velocity of 0.3 rad/s. Each point on the plot represents a single repetition of the
experiment. The repetitions of this experiment were each run for 320 seconds.
The optimal w was found to be 3.5 s™! which yielded an RMS position error of
0.0054 rad. Figure 4.10 plots the optimal values of w for all five experiments as
a function of RMS acceleration and velocity. From the velocity plot, w,p: is

observed to be a linear function of RMS velocity. The relationship wag derived
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Figure 4.10: Optimal Values of w as a Function of Operating Conditions

from this plot as follows:
Wopt = 1/Topt = 14.18 Oy — 0.85 57 (4.16)

(4.16) was implemented in Adaptive Controller III as a predictive means of
determining 7. The absolute value of 9,, was passed through a 1.0 rad/s digital

low-pass filter to yield an approximation for Orms.

4.6 Results

The results of four seconds (200 samples) of the sinusoidal trajectory tracking
experiment with the benchmark PID controller for f = 0.5 Hz are shown in

Figure 4.11. The plot in the upper left corner shows the control input to the
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Figure 4.11: Results of Sinusoidal Trajectory Tracking Experiment with PID
Controller

motor as a function of time. The plot in the lower left corner shows the motor
angle as a function of time. The dashed line is the demanded position 8, and
the solid line is the measured position 6,. The position error, 8; — 8, is shown
in the upper right corner, and the demanded and measured velocities 0, and ép
are shown in the bottom right plot. The RMS position error for 16 seconds of
this experiment was 0.0069 radians. The initial position of the motor was at 0.0

radians.

Figures 4.12, 4.13; 4.14, and 4.15 show the same plot as Figure 4.11 for
the same experiment performed with the controller with dither, and Adaptive

Controller I, II, and III, respectively. Note that for Adaptive Controller
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Figure 4.12: Results of Sinusoidal Trajectory Tracking Experiment with PID
Controller with Dither

I in Figure 4.13, the measured signal follows the ideal model output (dotted
line}), not the actual demand signal (dashed line). As described in Section 4.5.2
the ideal model output is the same as the demand signal used for the other
four controllers. Consequently, error in angle of Figure 4.13 is calculated as
the difference between the ideal model output and the measured signal. For
Adaptive Controllers‘ ITand I11, in Figures 4.14 and 4.15, the component of input
torque used for friction compensation is plotted. As can be seen in Figure 4.15,
the shape of the friction-compensating torque generated by Adaptive Controller
III is as predicted by Dahl’s friction model. For all three adaptive controllers,

the four seconds of the experiment shown are not the first four seconds of the

experiments. A later four second period is shown since each controller takes
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Figure 4.13: Results of Sinusoidal Trajectory Tracking Experiment with Adap-
tive Controller I

a little while to adapt. The exception is Adaptive Controller I which took a
long while to adapt. Figure 4.14 shows the Adaptive Controller II experiment
beginning 400 seconds (20,000 samples) into the experiment. The other two

controllers are shown beginning 12 seconds (600 samples) into the experiment.

The RMS position error for each of the controllers is listed in Table 4.1. Each
RMS position error is calculated based on 16 seconds (800 samples) of data.
To further appreciate the differences in performance achieved by the different
controllers, the position error from each controller is plotted as a function of time

on the same graph as the position error from the benchmark PID controller.

Figures 4.16, 4.17, 4.18, and 4.19 show the absolute value of PID controller
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Figure 4.14: Results of Sinusoidal Trajectory Tracking Experiment with Adap-
tive Controller II

position error compared to the position error from the controller with dither,
Adaptive Controllers I, 11, and III, respectively. In each case the PID controller
result is shown in a solid line and the nonlinear controller result is shown in a
dashed line. Note that the two seconds (100 samples) shown correspond to the

first two seconds of the experimental results shown in Figures 4.11 - 4.15.

As can be seen in Figure 4.16, the controller with dither does not significantly
improve the tracking performance. This is most likely due t.o the fact that the
dither frequency is limited to 25 Hz. In fact, tests were done at a 100 Hz digital
sampling rate that showed that the controller with a 50 Hz dither signal provided

almost twice as much percent reduction in RMS error than the 25 Hz dither
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Figure 4.15: Results of Sinusoidal Trajectory Tracking Experiment with Adap-
tive Controller III

signal. Additionally, while the controller with the 25 Hz dither signal generated
significant vibrations in the motor, the controller with the 50 Hz dither signal

showed no evidence of vibrations.

Figure 4.17 illustrates that Adaptive Controller I made significant improve-
ments on the PID controller performance. According to Table 4.1, the RMS
error was reduced by 52 percent for this experiment. The adaptive controller
gains used were B = 250, C = i50. The same experiment run with B = 20,

C = 10 only yielded a 20 percent reduction in RMS error over the PID controller.

Figure 4.18 shows results of the improved performance provided by Adaptive

Controller II. From Table 4.1, the RMS position error was reduced by 41 percent.
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Type Trajectory | RMS Position | Time Elapsed | % Error
of Frequency f Error Before Error | Reduction
Controller (Hz) (rad) Calculated from PID
PID 1.0 0.0106 0 -
Dither 1.0 - - -
ACI 1.0 0.0048 400 55
ACII 1.0 0.0079 12 25
AC III 1.0 0.0054 12 49
PID 0.5 0.0069 0 -
Dither 0.5 0.0066 0 4
ACI 0.5 0.0033 400 52
ACTI 0.5 0.0041 12 41
AC III 0.5 0.0028 12 59
PID 0.25 0.0063 0 -
Dither 0.25 0.0055 0 13
ACI 0.25 0.0043 400 32
ACII 0.25 0.0037 12 41
AC III 0.25 0.0036 12 43
PID 0.1 0.0060 0 -
Dither 0.1 0.0045 0 25
ACI 0.1 - - -
ACII 0.1 0.0044 12 27
AC III 0.1 0.0040 12 33

Table 4.1: Results of Sinusoidal Tracking Experiments

Similarly, Figure 4.19 illustrates the effectiveness of Adaptive Controller I1I. Ac-
cording to Table 4.1, Adaptive Controller III reduced RMS error by 59 percent.
A comparison of these plots and performance results suggests that Adaptive
Controller II is not as effective at friction compensation as Adaptive Controller
III. This can be explained by noting that there are a couple of relatively large
error peaks in Figure 4.18 for Adaptive Controller II. Referring back to Fig-
ure 4.14, one can observe from the plot in the upper left corner that Adaptive

Controller I overcompensates when friction changes instantaneously. That is,
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Figure 4.16: Position Error for PID Controller with Dither Compared to Bench-

mark PID Controller

after the instantaneous change in friction compensation, the magnitude of the

input torque drops to zero in response to the overcompensation. The large error

peaks seen from the plot in the upper right corner (as well as in Figure 4.18) cor-

respond in time to the instantaneous friction changes. This overcompensation

and corresponding large error indicates that the classical friction model does not

describe friction during transient velocity reversals as well as the Dahl model.

Table 4.1 provides a comprehensive account of the results of the experimen-

tal program. As indicated by the significant percent reductions in RMS position

error, each of the three adaptive controllers effectively improved tracking per-

formance for the range of sinusoidal trajectory frequencies tested. The lower
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Figure 4.17: Position Error for Adaptive Controller I Compared to Benchmark
PID Controller

values of percent reduction in RMS error for the 0.1 Hz experiment are most

likely due to the resolution of the position measurements.

The numbers listed in Table 4.1 are averages of results from experiments
made over a period of a few days. However, over the course of about six months
during which these experiments were performed, there was a great deal of re-
peatability in the percent reduction in RMS position error achieved by the three
adaptive controllers. The experiments were run during different seasons and
during different stages of motor “warm-up” such that friction parameters may
have varied from experiment to experiment due to temperature differences. Ad-

ditionally, over the six month period the friction parameters may have changed
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Figure 4.18: Position Error for Adaptive Controller II Compared to Benchmark
PID Controller

due to system aging. The fact that the adaptive controllers were consistently

effective under these varying conditions provides evidence for the effectiveness

of the adaptability of these controllers.

The controller with dither was increasingly effective with decreasing trajec-
tory frequency. Since a higher dither frequency is more desirable for effective
nonlinearity smoothing, the result can be attributed to the fact that at lower

trajectory frequencies the dither frequency was higher relative to the trajectory

frequency.

The results for Adaptive Controller II provided in Table 4.1 correspond to

experiments performed using Model (a) friction. Experiments using Model (b)
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Figure 4.19: Position Error for Adaptive Controller III Compared to Benchmark
PID Controller

friction showed an insignificant change in performance. This result indicates that
for this set of experimental conditions, additional adaptive terms to account for
friction asymmetries are not necessary. Experiments using Models (¢) and (d)
for friction showed only a slight improvement in performance as compared to
the Model (a) experiments. Specifically, the percent reduction in RMS position
was increased by < 1 percent for Model (c) and < 2 percent for Model (d).
Since the additional friction terms in Model (c) and Model (d) were intended
to account for Stribeck friction, this result is to be expected. Specifically, it
can be attributed to the fact that Stribeck friction is probably not completely
measured by the experimental system since the critical Stribeck velocity may be

approximately of the same order as the velocity measurement resolution.
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Figure 4.20: Parameter Adaptation for Adaptive Controller II, Model (a)

Adaptive Controller IT was successful at identifying the friction parameters of
Model (a) only. Figure 4.20 shows p; and p, of Model (a) for the first 16 seconds
of the experiment. p; which according to (3.53) and (3.54) corresponds to ¢;/c3
converged to 1.1 volt-s/rad. This compares to an expected value of ¢;/cz = 2.5
volt-s/rad from Section 4.1 and (4.5). It is possible that the difference between
the estimated and expected values is due to an inaccurate value of the motor
voltage constant K,. p, which according to (3.53) and (3.54) corresponds to
(ca/c3)|Fk| converged to 1.3 volts. This compares well to the expected value of
(ca/¢e3)|Fi| = 1.1 volts from Section 4.1, (4.5) and assuming |F%| = 0.72 Ibf-in.
In fact, assuming the expected value of cy/c3 is correct, the converged value of

P2 predicts that |Fi| = 0.83 1bf-in. It seems reasonable that this value is slightly
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higher than the expected 0.72 Ibf-in since p, may be accounting for static friction

as well as kinetic friction.

As described above the disadvantages of the controller with dither were pre-
dominately a result of the limitations associated with the 50 Hz sampling rate
used in the experimental program. Since the dither frequency was limited to
25 Hz, the controller was less effective in compensating for friction than the

adaptive controllers. Additionally, undesirable system vibrations resulted.

The main disadvantage associated with Adaptive Controller I was its exces-
sively slow rate of adaptation. Although tracking performance began to improve
immediately, it was not until 400 seconds into the experiment that the best re-
sults were achieved. Another disadvantage was that the adaptive gains had to
be adjusted for the different experiments. This implies that gain scheduling
would need to be applied for general use of Adaptive Controller I. Additionally,
Adaptive Controller I forces the output to follow the output of the ideal model
instead of the demand signal. Accommodating this effect was straightforward
for the sinusoidal demand signals of this experimental program. However, it

could be more complicated to do so for a more general demand signal.

Adaptive Controller IT had the disadvantage that for the implementation that
yielded the best results, the adaptive parameters tended to drift and performance
deteriorated after a while. This could be avoided by resetting the parameters

when they went out of a predefined range as suggested by [Craig, 1988].

128



Adaptive Controller III, on the other hand, was very reliable and performed
best of all the controllers. However, this controller is disadvantaged in that
it requires a lengthy experiment up front to determine the constants in the
relationship between the friction time constant 7 and the RMS velocity. Ad-
ditionally, since kinetic friction T is held constant, Adaptive Controller III is
not best suited for adapting to changes in friction due to temperature or aging.

This could be fixed, however, by adding an adaptive component to update T..

Finally, as described in Section 4.2 torque ripple adds a position-dependent
component to the motor dynamics and could have affected how each of the
controllers performed. All of the data in Table 4.1 applies to experiments run
such that the initial position was 0.0 radians. However, it was observed that the
performance of the controllers varied when different initial positions were used.
To investigate this torque ripple effect, the experiment with f = 0.5 Hz was run
again on the PID controller and Adaptive Controllers II and III at 15 different
initial positions chosen randomly. The results of these experiments are shown
in Table 4.2. According to these results, neither Adaptive Controller II nor III
performed on average as well as at an initial position of 0.0 radians. However, the
greater effectiveness of Adaptive Controller III relative to Adaptive Controller
IT was observed at every initial position. Therefore, it can be concluded that
while torque ripple does affect somewhat the performance of these two adaptive

controllers, it does not affect their relative effectiveness.
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Initial RMS Position Error | % RMS Position Error
Position | with PID Controller | Reduction from PID
(rad) (rad) ACII I AC 111
-2.698 0.0086 16 23
-2.484 0.0082 26 33
-2.075 0.0091 21 23
-1.546 0.0081 30 35
-1.080 0.0079 30 39
-0.709 0.0079 28 29
-0.261 0.0072 33 36
-0.069 0.0071 32 41
0.000 0.0067 34 52
0.086 0.0068 34 46
0.689 0.0060 28 42
1.172 0.0061 15 56
1.758 0.0066 18 39
2.484 0.0076 32 37
2.720 0.0074 22 39
Average 0.0074 27 38
Std. Dev. 0.00087 6.4 8.9

Table 4.2: Experimental Results at Different Initial Positions (f = 0.5 Hz)

The effect of digital sampling rate on the performance of Adaptive Controller
IT and III was also investigated by repeating the experiments of the experimen-
tal program with a 100 Hz sampling rate. Table 4.3 lists the results of these
experiments. According to Table 4.3, the increased sampling rate did not have a
dramatic effect on the performance of Adaptive Controller III. However, Adap-
tive Controller II performed significantly be;cter with the 100 Hz sampling rate
than with the 50 Hz sampling rate, particularly for experiments with f = 0.5 Hz
and f = 1.0 Hz. This improved performance may be explained by the fact that

overcompensation provided by Adaptive Controller II for instantaneous changes
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Trajectory || % RMS Position Error Reduction from PID
frequency f ACTI AC III

(Hz) 50 Hz | 100 Hz || 50 Hz | 100 Hz

1.0 25 64 49 42

0.5 41 60 99 56

0.25 41 45 43 56

0.1 27 35 33 29

Table 4.3: Comparison of Tracking Experiment Results with 50 Hz and 100 Hz

Sampling Rates

in friction is not as prolonged with a 100 Hz sampling rate as it is with a 50
Hz sampling rate. Based on the results of Table 4.3, one can conclude that the

relative effectiveness of Adaptive Controllers II and III is greatly affected by the

digital sampling rate.
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Chapter 5

Conclusions

In this thesis a comprehensive investigation was presented of control strate-
gies for friction compensation in servomechanisms. Both the theoretical and
experimental results of the investigation provide insights into improving preci-
sion control of a servomechanism in the presence of non-negligible friction. The

major conclusions of the investigation are as follows:

o For friction-compensating control, friction model components must be
selected carefully since different components predict varied dynamic re-
sponses and are relevant under different operating conditions. For exam-
ple, if the servomechanism is to be controlled for high velocity, unidirec-
tional applications, a simple viscous friction model that provides damping
is most likely sufficient. If velocity reversals are desired, the classical fric-
tion model and the Dahl friction model are more appropriate options. If

measurement resolution is such that Stribeck friction cannot be measured,
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then modelling Stribeck friction terms will not be useful. However, these
terms may become important if measurement resolution is very good and

low velocity applications are desired.

Adaptive Controllers I, II, and III all provide improved servomechanism
position control compared to an optimized PID controller. Theoretical
analyses predict that in the absence of noise and friction modelling er-
rors, Adaptive Controllers I and II will drive position error to zero and
Adaptive Controller III will drive velocity error to zero. Experimen-
tal results support this prediction for low-frequency sinusoidal position
trajectory tracking experiments on a direct-drive dc motor. Addition-
ally, the experimental results of this thesis coupled with the results of
[Gilbart and Winston, 1974,Craig, 1988, Walrath, 1984] provide evidence

for the general applicability of these adaptive controllers.

An adaptive controller can be more effective than a traditional controller
with dither for friction compensation in servomechanisms. In particular
if the controller is implemented digitally and the sampling rate is lim-
ited, dither may be relatively less effective and may generate undesirable

vibrations in the servomechanism.

The Dahl model provides a realistic and reliable model of friction, particu-
larly during sinusoidal motion of the mechanism. Evidence for this can be

found (1) in the fact that the empirically derived model of the friction time
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constant 7 as a linear function of velocity is consistent with Dahl’s original
model and (2) by the relatively high effectiveness of Adaptive Controller
IT which is based on the Dahl model. This conclusion is noteworthy since
friction is typically considered to behave according to the classical friction

model.

The “adaptability” of the adaptive controllers tested in this thesis performs
effectively since performance results were repeatable over the course of
six months. Additionally, Adaptive Controller II can be used for friction

parameter identification.

Mechanical considerations play an important role in the performance of
the adaptive controllers. For example, the effectiveness of both Adaptive
Controllers IT and I1I deteriorates with increasing torque ripple magnitude.
On the other hand, the effectiveness of Adaptive Controller II improves
with increased digital sampling rate while the effectiveness of Adaptive

Controller 111 does not.

To further explore friction compensation in servomechanisms, future work

should involve continued testing of the friction-compensating adaptive con-

trollers. Experimental programs that consider different servomechanisms and

supporting hardware and/or experiments other than sinusoidal position trajec-

tory tracking would help determine the general effectiveness of the controllers.

If an experimental setup were to be used with sufficiently high measurement
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resolution, the effectiveness of friction compensation in the Stribeck velocity
regime could be investigated. Additionally, the consequences of frictional time
lag on friction-compensating control strategies for servomechanisms need to be
explored experimentally. This time lag was not considered in the experiments
of this thesis. However, theory predicts that the time lag affects friction dy-
namics in such a manner that the potential for stick-slip oscillations is less than

otherwise expected.

Finally, research should be pursued to understand the relationship between
the classical friction model and the Dahl friction model. Based on the results
of this thesis, the Dahl model provides a reasonable representation of friction
behavior about the zero-velocity point and thus cannot be ignored. A deter-
mination of how to link the Dahl model of pre-sliding displacements with the
classical model of sticking and sliding would provide a more complete and cohe-
sive understanding of friction that could potentially be used to improve friction-

compensating control strategies.
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