Show simple item record

Geometric Phases, and Optimal Reconfiguration for Multibody Systems

dc.contributor.authorKrishnaprasad, Perinkulam S.en_US
dc.date.accessioned2007-05-23T09:45:37Z
dc.date.available2007-05-23T09:45:37Z
dc.date.issued1990en_US
dc.identifier.urihttp://hdl.handle.net/1903/4987
dc.description.abstractRelative Motion in a system of coupled rigid bodies can yield global reorientation (or phase shift.) We give a formula to compute such a phase shift and interpret the same in geometric terms. The theory of connections in principal bundles provides the proper setting for questions of the addressed in this paper. A related optimal control problem leads to singular riemannian geometry.en_US
dc.format.extent350864 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1990-39en_US
dc.subjectIntelligent Servomechanismsen_US
dc.titleGeometric Phases, and Optimal Reconfiguration for Multibody Systemsen_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record