A Linear Time Algorithm for Circular Permutation Layout.
A Linear Time Algorithm for Circular Permutation Layout.
Files
Publication or External Link
Date
1988
Authors
Rim, C.S.
Naclerio, N.J.
Masuda, Sumio
Nakajima, K.
Advisor
Citation
DRUM DOI
Abstract
Suppose that two sets of terminals t_l,t_2,...,t_n and b_1,b_2,...,b_n are located on two concentric circles C_out and C_in, respectively. Given a permutation PI of integers 1,2,...,n, the circular permutation layout problem is the problem of connecting each pair of terminals t_i and b_PI(i) for i = 1,2,. . .,n with zero width wires in such a way that no two wires which correspond to different terminal pairs intersect each other. In this paper, we present a linear time algorithm for the following case: (i) no wire can cross C_out, (ii) at most one wire can pass between any two adjacent terminals on C_in, and (iii) no wire can cross C_in more than once. The previously known algorithm for the same case has time complexity O(n^2).