SRC TR 88-45

A Linear Time Algorithm for
Circular Permutation Layout

by

C.S. Rim, N.J. Naclerio, S. Masuda,
and K. Nakajima

A Linear Time Algorithm for Circular Permutation
Layout!

Chong S. Rim
Electrical Engineering Department and Systems Research Center
University of Maryland, College Park, MD 20742

Nicholas J. Naclerio?

Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base, Ohio 45433

Sumio Masuda?®
Department of Information and Computer Sciences

Osaka University, Toyonaka, Osaka 560, Japan

Kazuo Nakajima
Electrical Engineering Department,
Institute for Advanced Computer Studies and Systems Research Center,
University of Maryland, College Park, MD 20742

I This work was supported in part by National Science Foundation grants MIP-84-51510 and
CDR-85-00180 and a grant from AT&T.

2 N. J. Naclerio was with the Electrical Engineering Department and Systems Research Center
at the University of Maryland, College Park MD 20783. He was also supported during the course

of this work by a fellowship from Westinghouse Electric Corporation.
3 The work of S. Masuda was done while he was visiting the Electrical Engineering Department

and Systems Research Center at the University of Maryland, College Park, MD 20742.

Abstract

Suppose that two sets of terminals ¢y, 1,,...,t, and by, b, ..., b, are located on two concentric
circles C,yt and Cyy,, respectively. Given a permutation 7 of integers 1,2, ..., n, the circular
permutation layout problem is the problem of connecting each pair of terminals ¢; and b,;
fori =1,2,...,n with zero width wires in such a way that no two wires which correspond to
different terminal pairs intersect each other. In this paper, we present a linear time algorithm
for the following case: (i) no wire can cross Coy, (i1) at most one wire can pass between
any two adjacent terminals on Cj,, and (iii) no wire can cross C;, more than once. The

previously known algorithm for the same case has time complexity O(n?).

1. Introduction

Suppose that two sets of terminals ty,1,,...%, and b, b,,..., b, are located on two con-
centric circles Cyyy and Ci,, respectively. We assume that the circle C,y; is outside the circle
Cin and that the terminals on each circle are labeled in ascending order of their subscripts
in the clockwise direction. Given a permutation 7 of integers 1,2, ..., n, the circular permu-
tation layout (CPL) problem is the problem of connecting each pair of terminals t; and b,;
for : = 1,2,...,n with zero width wires in such a way that no two wires which correspond
to different terminal pairs intersect each other.

The CPL problem was first proposed by Ozawa [6] as an extension of the linear permu-
tation layout (LPL) problem which has widely been studied [2,3,4,5,7,8]. As pointed out
by Ozawa [6], the CPL problem may arise in the design of hybrid integrated circuits and
printed circuit boards (PCBs). Consider, for example, the problem of connecting a series
of incoming wires to the pins on a particular module on a PCB (see Fig. 1). We assume
that no two pins on the module are electrically equivalent and hence any two wires for the
connections must not intersect each other. The order of the incoming wires is previously
determined and may not be the same as that of the pins on the module. If only one layer
is available to realize the connections, this problem is equivalent to the CPL problem. The
terminals on C;, correspond to the pins on the module and the terminals on C,.; represent
the incoming wires. Since the pins have fixed spacing and the wires have finite width, we
assume that the number of wires which can pass between two adjacent pins is limited to one.
No wires may cross the boundary represented by C,,: since they would intersect the existing

incoming wires.

From the observations mentioned above, we consider the CPL problem with the following
constraints on the wires in its solution layout [6]:

1. No wire can cross Coy;,

2. At most one wire can pass between any two adjacent terminals on Cj,, and

3. No wire can cross (;, more than once.

We call a layout in which wires satisfy the above constraints a CPLI-solution. For example,
Fig. 2 shows a CPL1-solution for the permutation = = (1 24 2221 96 58 74 10 20 19
1514 13 18 16 17 12 11 3 23 2). For simplicity, we label each terminal ¢; or b; as ¢ in the
figures throughout this paper. Ozawa [6] developed an O(n?) time algorithm for finding a
CPL1-solution if one exists, where n is the number of terminal pairs to be connected.

In this paper, we present an O(n) time algorithm for the same CPL problem. In Section 2
we introduce some basic definitions and notation. Section 3 describes some useful properties
of a CPL1-solution. In Section 4 we explain merging operations, which play an important

role in our algorithm. The algorithm is presented in Section 5.

2. Definitions and Notation

Let m be a given permutation of integers 1,2,...,n. If there exists a CPL1-solution for
7, we say that 7 is realizable. A net is an ordered pair of terminals (%, b,,(i)) which must be
electrically connected. Let N(7) = {n; = (ti,br5) | 1 < ¢ < n} be the set of nets.

Assume that 7 is realizable and let Ly () be a CPL1-solution for it. We denote by w; the
wire in Ly (x) which realizes the net n; = (t;, byr(;)). If w; crosses the circle Cyy, it is called an

indirect wire; otherwise it is called a direct wire. For example, in Fig. 2, w, is a direct wire

and w, is an indirect wire. We assume that a net is routed by an indirect wire in Ly if
and only if it can not be replaced with a direct wire.

We definel®@1tobel+4+1if1 <I<n-1and1lifl=n. Because of the third constraint
on a CPL1-solution, each indirect wire in Ly, crosses Cy, exactly once. If a wire w; crosses
Ci» between two terminals b; and b;g,;, we denote this fact by w;1eb;g;. For example, w10 b,
in Fig. 2.

Let pi,p2,...,pr be distinct integers between 1 and n. A sequence [pi,ps,...,px] is
called an increasing consecutive sequence (icseq) if p; ®1 = p;yy fort =1,2,...,k — 1. Let
M = {n,, = (t,,b,,) |1 < i,j < k} be a nonempty subset of N(7) such that [p1,ps,...,p
and [g1,42,...,qx) are icseqs. We call M a cluster in N(r) if m(p;) = gr_iy1 for 1 <
¢t < k. If a cluster consists of only one net, it is called a trivial cluster; otherwise it is
called a nontrivial cluster. A cluster is mazimal if and only if it is not contained in any
other cluster. For example, the instance shown in Fig. 2 has the following fifteen maximal
clusters: {ns,n4}, {ns}, {ne,n7}, {ns,no}, {n10}, {n11}, {n12,n13}, {n14,71s,716}, {n17},
{nis}, {n1e}, {n20,n21}, {n22}, {n2s} and {n24,n1,n2}. It is easy to see that if two distinct
clusters C' and C’ are both maximal, then CNC’ = ¢. Furthermore, if CUC' = N(x), then
N(n) itself is a cluster. Thus, if N(7) is not a single cluster, it can uniquely be partitioned
into three or more maximal clusters.

Let M" = {ny = (t;,by) |1 < ¢,j < m} be another subset of N(r) such that

1> Phy .., Ph] and [g1,¢5,-..,4.,] are icseqs. We say that M is parallel to M', denoted
by M || M’, if and only if p, @1 = p| and ¢x ® 1 = ¢;. For example, {ne,n+} || {ns,ns} and

{n14,n15,n16} || {n177n187n19} in Fig- 2.

3. Layout of Maximal Clusters

Assume that the given permutation « is realizable and that N(x) has three or more
maximal clusters. In this section, we investigate how maximal clusters are realized in a
CPL1-solution for .

Let C = {n,, = (tp;, bg_,;,) |1 < 2 < k} be a cluster in N(r), where [py,ps,...,px] and
[g1,92, .- -, qk] are icseqs. It is clear that the layout of C has at most one direct wire in any
CPL1-solution for m. We first define two types of layouts of C' which have a direct wire.

Note that [z] denotes the smallest integer which is not less than z.

1. A Type DL layout of C is the layout such that Wppxsryz 18 @ direct wire and wy, 1 @ by,

for ¢ # [(k+ 1)/2] (see Fig. 3 (a)).

2. A Type DR layout of C is the layout such that Wppy/z 18 @ direct wire and wy, 1 @ bygn

for ¢ # [k/2] (see Fig. 3 (b)).

We call the layouts defined above Type D layouts for simplicity. In Fig. 2, the layout of
{n24,n1,n2} is a Type DL layout and that of {ne,n-} is a Type DR layout.

It may also be possible to route the nets in C' using only indirect wires. Let C’ = {np: =
(tp, by .)1 <t < m} be another cluster in N(r), where [p},p},...,pl,] and [¢], g5, ..., q,]

[qm—t+l

are icseqs. We define three types of layouts for C U C’ which have only indirect wires:

1. A Type IL layout of C'U C’ is the layout such that m = k, and w,, l e bq'{ and wy le by,

for 1 <1 < k (see Fig. 4 (a)).

2. A Type IR layout of CUC" is the layout such that m = k, and Wy 19byig1 and wyr 10 by en

for 1 < < k (see Fig. 4 (b)).

3. A Type IM layout of C'U C" is the layout such that either (i) m =k — 1, w,, 10 by g1,
and wy, 1 ® by and wpr 1@ by, for 1 < ¢ < k—1 (see Fig 4 (c)) or (if) m = k + 1,

Wpr 18 by, g1, and wy, L e bq."“ and wy L@ by, for 1 <1< k.

We call these three types of layouts Type I layouts. In Fig. 2, {ns,ns} U {nz;} forms a
Type IM layout. The layout of {niz,n13} U {na,n21} is a Type IL layout and that of
{ns} U {nio} is a Type IR layout. If C U C’ forms a Type I layout, we say that C (resp.,
C') is the mate cluster of C’ (resp., C). For example, in Fig. 2, {ny,} is the mate cluster of
{ns,n4} with respect to their Type IM layout.

Let Ly(rnbe a CPLl1-solution for 7 and, for any subset M of N(=x), let Ly denote the
layout of M in Ly(x).
Lemma 1. Let C be a nontrivial cluster in N(x). If Lc consists of only indirect ‘wires, then
there exists another cluster C' such that |C'| = |C| — 1 and Loy is a Type IM layout.
Proof. Let C' = {n,, = (tp;, bg_;y,) |1 <2 <k}, where [p1, pa,...,pi] and [q1,92,. .., q] are
icseqs. Fort =1,2,...,k~1, let ¢/ and p! be the integers such that wy,leb, and 7 (p}) = ¢;_;-
Let C" = {ny = (ty, by _)|1 < i < k—1}. Since [p1,p2,...,p) and [q1, 2, . . ., g] are icsegs,

wy 1s an indirect wire and passes between b, and by, for i = 1,2,...,k —1. By the second

141
constraint on a CPL1-solution, both (¢}, 45, ...,qi_;] and [p}, p5,...,p}_,] are icseqgs. Thus,
C’ is a cluster and Leoyer is a Type IM layout. [J

If the only net in a trivial cluster C is routed by an indirect wire, it may have no mate
cluster. In such a case, we say that C forms a Type IM layout by itself. For example, in

Fig. 2, {n1-} forms a Type IM layout by itself.

We are now ready to show the following theorems.

Theorem 1. Let C be a mazimal cluster. If Lo has a direct wire, it is a Type D layout.
Proof. Let C = {n,, = (t,,,bq,_,,) |1 < ¢ < k}, where [p1,p2,...,pk) and [q1,q2,. .., q]
are icseqs. If C is trivial, the theorem clearly holds. Suppose that C is not trivial and let
w,, be the direct wire in Lo. Without loss of generality, we assume that j —1 > k — j. Let
Cy = {np, |1 <i<j—1}. It is obvious that C; is a cluster and its layout consists of only
indirect wires. For ¢ = 1,2,...,7 — 1, let ¢/ and p| be the integers such that wy, { e by and
7 (p;) = gj_;- Note that ¢;_, may be equal to gx—;11 (= 7(p;)). Let Co = {n, |1 <i < j—1}.
See Fig. 5. From Lemma 1, C; — {ny; } is a cluster and Cy U C; — {ny } forms a Type IM
layout in Ly(r).

Assume that ¢/_; # gx—;41. Due to the constraints on a CPL1-solution, wy: is the unique
indirect wire that passes between by, ., and b,,_ ,,. Thus, p| = p; @1 and {n,,,n,} is a
cluster. This implies that C; U C2 U {n,,} is a cluster and it forms a Type DL layout in
Ly (xy. This statement holds even if ¢}_; = gx_j41. Since j —1> k—j,C =C,UC U {np]}
or C —{n,} = C1 UC, U {n, }. It is easy to show that, in the latter case, w,, 1 ® b, g and
Lc is a Type DR layout. O
Theorem 2. Let C be a mazimal cluster. If Lo consists of only indirect wires, thén C
forms a Type IM layout by itself or there exists a mazimal cluster C' such that |C| —1 <
|C'| <|C|+1 and Loyer is @ Type I layout.

Proof. Suppose that C is not trivial. By Lemma 1, there is another cluster C;y such that
|C1] = |C| — 1 and Leyc, is a Type IM layout. Let C’ be the maximal cluster which
contains Cy. Clearly, |C’| > |C|—1 and C N C’" = ¢. Thus, Ler has only indirect wires due

to Theorem 1, which implies that there exists a cluster C; such that, |Cy] = |C’| — 1 and

C' U C, forms a Type IM layout. Since C N Cy; # ¢ and C is maximal, C' D Cy, and hence
|C'| < |C|+1. If |C’| = |C|+1, then C = C,. If |C'| = |C| -1, then C' = C;. As mentioned
above, C and C' form a Type IM layout in these cases. Furthermore, it is easy to see that
if |C| = |C’|, then Leoycer is either a Type IL or Type IR layout.

If C is trivial and has a mate cluster C, then the maximal cluster containing C; has at
most two nets. Thus, either Ly is a Type IM layout by itself or C forms a Type I layout

with a maximal cluster of one or two elements. OO

4. Components and Merging Operations

Let M = {n,, = (t,,b,,) |1 < 7,5 < k} be the union of one or more maximal clusters

such that [p1,p2,...,pk] and [q1,42,-..,qk] are icseqs. Let by, and b,, ., be the terminals

Tk+1

such that ¢; = ¢o® 1 and gx41 = g D 1. We call M a component of N(r) if it has a property

that if 7 is realizable, then its layout in any CPL1-solution satisfies the following restriction
(%):

(*¥) Fori=1,2,...,k, w,, is either a direct wire or an indirect wire which passes between

two adjacent terminals in {by, b,,,. .., gy, bge,, }-

If there is a layout of M which satisfies all of the constraints on a CPLI1-solution and
the above restriction (%), we say that M is locally realizable and call such a layout a local
realization of M. Locally realizable subsets are not always components. For example, any
maximal cluster is locally realizable, but not all maximal clusters are components as {nz,n4}
in Fig. 2 is not. On the other hand, every component is locally realizable as long as 7 is

realizable.

A merging operation is an operation that creates a new component by combining a com-
ponent called the core with another component or one or two maximal clusters. In our
algorithm, which will be described in the next section, we first partition N(7) into maximal
clusters and find a component among them. We then repeatedly perform merging operations.
If we find a component which is not locally realizable, we know that 7 is not realizable. On
the other hand, if all of the maximal clusters are merged into a locally realizable component,
then clearly = is realizable. In this section, we define two types of merging operations and
explain how we test the local realizability of a component.

Suppose that M is a component and it has a local realization Lys. If there is a wire w
in Lps such that either wle b, or wleb, g, then we call w a boundary wire. The only nets
which may be the boundary wires in Ly are w,, and w,,, and if so, they are routed in such
a way that w,, 1 e b, and w,, 1 b, g:. For example, if M is a maximal cluster and L,s is
a Type DL (resp., Type DR) layout, then w,, (resp., w,,) is the boundary wire. Although
there may be many local realizations of M, if we only consider the necessity of boundary
wires, we can classify M into one of the following types:

1. Type 0 if no boundary wire is necessary.

2. Type z if exactly one of the wires w,, and w,, must be a boundary wire but either
one may be selected.

3. Typel if w, must be a boundary wire while w,, need not be.

4. Type r if w,, must be a boundary wire while w,, need not be.

5. Type Ir if both w,, and w,, must be boundary wires.

Note that if a component M is a trivial (resp., nontrivial) maximal cluster, it is of Type 0

(resp., Type z). Fig. 6 illustrates typical examples of the above five types and their symbolic
representations. In a symbolic representation, an arrow indicates that any layout of the com-
ponent needs a boundary wire on that side. Dotted arrows are used for Type 2 components
only.

We now define two types of merging operations. The first one is the merging of two
parallel components. Let M = {n,, = (t,;,b,,) |1 < i,5 <k} and M’ = {n, = (2, by) 1<
t,7 < m} be components of N(x) such that [p1,p2,...,pk, P1,Phs .-, P and [q1,2,. .., qx,
41,95, - - -, 4, are icseqs. It is clear that My.,, = M UM’ is a component of N(7). Suppose
that both M and M’ are locally realizable. If wy, and wp; must be the boundary wires in any
local realizations of M and M’, respectively, then both wires have to pass between b, and
by . Therefore, the nets in M UM’ can not be routed without violating the second constraint
on a CPL1-solution, and hence 7 is not realizable. On the other hand, if at least one of w,,
and Wy need not be a boundary wire, M,,.,, is clearly locally realizable. We call this merging
of two parallel components a P-merging and call M and A’ P-merging operands. Either M
or M’ may be the core of the merging.

The type of the new component M., depends on the types of M and M'. For example,
as shown in Fig. 7 (a), if M is of Type [and M' is of Type z, then M,., becomes a Type [
component. Table 1 shows the component type of M,., for every possible combination of
the component types of M and M’. There are four cases in which the merging is not possible
due to a conflict of the boundary wires. We denote this by ‘nil’ in the table and we say
that the merging fails. Fig. 7 (b) shows such an example where M is of Type r and M’ is of

Type L

The second merging operation is the merging of a component and two maximal clusters.

Let M be a component defined above and assume that it is locally realizable. Let C; =
{ny; = (tusbn_ip) |1 £ i <m} and Cp = {nu = (tu;,bu;_m) |1 <7 <1} be two disjoint
maximal clusters such that [uy,us,...,un], [V1,02,...,0n], [ul, us, ..., uj] and [v],v],...,v]]
are icseqs. Suppose that u, ®1l =p1, pr Bl =ul, v/ 1 =¢ and ¢ B 1 = v;.

Lemma 2. Ifr is realizable, C1 U C; forms a Type I layout in any CPL1-solution Ly(.
Proof. Let M = N(7) — (M UCyUC,). If M is an empty set or a maximal cluster,
C1 UM U C, is a cluster, which contradicts the maximality of C; and C,. Thus, M has at
least two maximal clusters.

For any subset M’ of N(r), let Ly denote the layout of M’ in Ly(ry. If L¢, is a Type D
layout, all wires in Ly; must pass between b,, and b,, (see Fig. 8). This is not allowed since
M has at least two nets. Thus, L¢, is not a Type D layout. Similarly, Lc, is not a Type D
layout, either. If w,,, does not pass between b, and b,,, then w,: ! @ b,,. This implies that

Wy, le bvi since w,; can not pass between by, and b,,. On the other hand, if w,,, 1 ® b,,, then

915
Wy 1@ b,, since w,__, can not pass between b,,{ and b,,. It is easy to see that Leyes is a
Type I layout in either case. O

Lemma 2 implies that M,., = C; U M U, is a component. We call this merging of
a component and two maximal clusters an X-merging and call C;, M and C, X-merging
operands. In this case, the component M is the core of the merging operation. An example
of an X-merging is shown in Fig. 9(a). In the figure, each maximal cluster is represented by

a triangle with the mark ‘¢’ in its inside.

If Cy and C; do not satisfy that |Cy] — 1 < |C;| < [C2] + 1, they can not form a Type I

10

layout by Theorem 2, and thus there is no CPL1-solution for 7. Furthermore, if a necessary
boundary wire of M conflicts with any wire for C; UC5, then 7 is not realizable. For example,
if w,, must be a boundary wire and |Cy| = |C2|+1, then both w,, and w,,, must pass between
by and b,,, which violates the second constraint on a CPL1-solution. Let d = |C4| — |Ca|.
The type of the new component M,., depends on the value of d and the component type
of M. Table 2 shows the type of M., for every possible case. For example, as shown in
Fig. 9 (a), if M is a Type 0 component and d = —1, then M., becomes a Type r component.
There are five cases for which an X-merging fails, which is denoted by ‘nil’ in the table.
They are all due to a conflict between a boundary wire of M and some wire for C; U C.
Fig. 9 (b) shows such an example where d = —1 and M is a Type r component.

Lemma 2 holds even if Cy (resp., C3) is trivial and C; (resp., C;) dose not exist. If x is
realizable, C; (resp., C;) forms a Type IM layout by itself in any CPL1-solution, and hence
M,e,, = Cy UM (resp., M U C3) is a component. We also call this merging of a component
and a maximal cluster an X-merging. Table 2 can still be used for this case by assuming that

Cy = ¢ (resp., C; = ¢). Fig. 9 (c) shows an example of such a special X-merging operation.

5. Algorithm Description

If N(7) itself is a cluster, then 7 is realizable and finding a CPL1-solution is trivial. We
arbitrarily select a net and route it by a direct wire. The remaining nets can be routed in
such a way that the layout is either a Type DL or a Type DR layout. Thus, we assume that

N(7) consists of three or more maximal clusters.

11

The algorithm consists of two main phases, the merging phase and layout type assignment
phase. In the merging phase, the algorithm tests whether = is realizable or not by using the
merging operations described in Section 4. If 7 is realizable, the algorithm constructs a
CPL1-solution in the layout type assignment phase by determining the layout type of each

maximal cluster.
5.1 Merging Phase

We show below the outline of the merging phase.
Step 1. Partition N(7) into maximal clusters.
Step 2. Execute the following substeps until a merging operation fails or there remain no
merging operands.
(a) Find P- or X-merging operands.

(b) Perform the merging operation.

Step 3. if Step 2 results in a single component whose type is not Type Ir
then go to the layout type assignment phase (7 is realizable)

else terminate the algorithm (7 is not realizable).

In Step 1, we construct a circular doubly linked list, called CLIST, which initially stores
all the maximal clusters in the order of their appearances on the outer circle C,,;. The
contents of CLIST will be changed during the execution of Step 2.

In Step 2, the first merging operands can be found according to the following lemmas
whose proofs are provided in the Appendix.

Lemma 3. If a subset M of N(x) is locally realizable and consists of two or more mazimal

12

clusters, then it has at least one pair of parallel mazimal clusters. O

Lemma 4. Let C and C' be mazimal clusters. If C||C’, then both C and C' are components.

O

Since N(7) consists of three or more maximal clusters, if there are no parallel maximal
clusters, then 7 is not realizable by Lemma 3, and thus the algorithm terminates. If N(7)
has two parallel maximal clusters, they are components due to Lemma 4. When a maximal
cluster is found to be a component, its component type is determined as Type 0 (resp.,
Type z) if it is trivial (resp., nontrivial). In Step 2, the algorithm selects an arbitrary one
among the components thus found as the initial core and begins the merging operations.

If merging operands including the current core are found, the algorithm tests whether
they can be combined into a larger component which is locally realizable. This is done by
checking the corresponding item in Table 1 or Table 2 which is identified by the component
types (and d in the case of an X-merging) of the merging operands. If it is nil, = is not
realizable owing to the argument in Section 4 and the algorithm terminates. Otherwise,
the algorithm produces a new component M, by performing the merging operation and
gives an appropriate component type to it. Then M,,., becomes a new core and the merging
operands are replaced by M,.,, in CLIST. At this time, the algorithm may find another new
component according to the following lemma whose proof is also given in the Appendix.
Lemma 5. If there exists a mazimal cluster C such that C{{ M,ey, or My, || C, then C is
a component.

If there are no merging operands including the current core for a P- or X-merging, the

next component in the clockwise direction in CLIST becomes a new core.

13

Lemma 6. If a component in CLIST becomes the core for the second time, then there
remains no merging operands.
Proof. If a component is selected as the core twice, all of the other components in CLIST
have been the core before at least once. The lemma clearly follows from this fact. O

Merging operations are iteratively performed until a merging operation fails for some
merging operands or there remain no merging operands in CLIST. Then, in Step 3, the
algorithm tests the realizability of # based on the following theorem whose proof is shown
in the Appendix.
Theorem 3. 7 is realizable if and only if all mazimal clusters in N(w) are merged into a
single component which s not of Type Ir. O

During the merging phase, a directed graph called the merging tree is constructed. Ini-
tially, the graph has only isolated nodes which correspond to the maximal clusters. If a
merging operation succeeds, the algorithm adds to the current graph a new node which cor-
responds to the resultant component and creates directed edges from this node to the nodes
corresponding to the merging operands. Thus, if all the maximal clusters are eventually
merged into a single component, the graph becomes a directed tree whose root corresponds
to N(7). And, if N(r) is not of Type Ir, the merging tree will be used in the next phase to
determine the layout types of the maximal clusters. We provide here a simple example. If
the algorithm is applied to the instance of Fig. 2 and {ne, ns} is first selected as the core of
the merging, then the final merging tree becomes as shown in Fig. 10, where the maximal
clusters which have been recognized to be components are not marked ‘c’.

Theorem 4. The time complexity of the merging phase is O(n).

14

Proof. It is casy to find all the maximal clusters in O(n) time. Since the number of maximal
clusters is at most n, both the construction of CLIST and finding parallel maximal clusters
can be done in O(n) time. In Step 2, if the algorithm can not find any merging operands
including the current core, it selects a new core. By Lemma 6, such selections require only
O(n) time in total. The total number of the merging operations performed is at most n — 1
because each merging operation reduces the number of elements in CLIST by at least one.
Furthermore, one execution of a P- or X-merging operation takes a constant time. There-

fore, the merging phase can be completed in O(n) time. O

5.2 Layout Type Assignment Phase

Once the merging phase is successfully completed, the layout type of each maximal
cluster is to be determined. The merging tree is now a rooted directed tree that has at most
2n — 1 nodes. Its leaves correspond to the maximal clusters in N(7) and its nonleaf nodes
correspond to the components which have been found in the merging phase. For convenience,
if a node in the tree corresponds to a subset M of N(x), we call it node M.

In the layout type assignment phase, we first check whether the root N(7) is a Type z
component, and if so, we change its type to either Type lor Type r. This selection is arbitrary.
Then, starting from the root, the algorithm visits every nonleaf node M of the merging tree
by depth-first search [1]. For each child M’ of M, if it is a Type x component, then its type
is modified to either Type ! or Type r so as to be consistent with the component type of
M. If M’ is a maximal cluster, then its layout type is determined. These modifications and
determinations are made in the following manner.

Case 1. M was created by a P-merging.

15

Let M; and M, be the components such that M = M; U M, and M; || M,. Suppose that
M, 1s a Type x component. If the component type of M is Type l or Type Ir, then we change
the type of M; to Type [, otherwise we change it to Type r. Similarly, if the component type
of M, is Type z, then it is changed to Type [or Type r depending on the component type of
M. If My or M, is a maximal cluster, then its layout type is determined by its component
type. If it is a Type 0 component, then it is a trivial cluster and the unique net is routed by
a direct wire. Otherwise, it forms a Type DL or Type DR layout depending on whether it is
a Type lor Type r component. We show a simple example in Fig. 11. In this case, the type
of M, is changed from Type z to Type rsince M is a Type r component. Furthermore, since
M, is a maximal cluster, its layout type is determined as Type DR.

Case 2. M was created by an X-merging.

Let Ci and C; be the maximal clusters and M’ be the component such that M =
Cy UM’ U C; and that the terminals of Cy, M’ and C, appear on the outer circle C,,; in
this order in the clockwise direction. Let d = |Cy| — |C3|. If d = 0, then the layout type of
C1 U C; is determined as Type IL or Type IR depending on whether the component type
of M is Type lor Type r. If d = —1 or d = 1, then C; and C; form a Type IM layout. In
particular, if Cy = ¢ (resp., C; = ¢), then C; (resp., C;) forms a Type IM layout by itself.
Suppose that M’ is a Type z component. Its layout type is changed to the same as that of
M if d=0. And, if d = 1 (resp., d = —1), then it is changed to Type r (resp., Type). For
example, in Fig. 12, the layout type of Cy UC; is determined as Type IM and the component
type of M’ is changed to Type [

Since the number of nodes in the merging tree is O(n) and the algorithm spends a

16

constant time at each node, the time complexity of the layout assignment phase is O(n).

Since the merging phase takes O(n) time by Theorem 4, we obtain our main theorem.
Theorem 5. Given a permutation @ of 1,2,...,n, a CPLI1-solution for = can be found, if

one ezists, in O(n) time. 0O

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms. Reading, MA: Addison-Wesley, 1974.

[2] S. Choe, T. Kashiwabara, and T. Fujisawa, “A Permutation Layout with Limited
Between-pin Congestion,” Papers of Technical Group on Circuit and Systems of the

IECE of Japan, CAS 83-74, 1983.

[3] S. Choe, T. Kashiwabara, and T. Fujisawa, “Restricted Permutation Layout,” Trans. of

the IECFE of Japan, vol. J68E, pp. 269-276, 1985.
[4] M. Cutler and Y. Shiloach, “Permutation Layout,” Networks, vol. 8, pp. 253-278, 1978.

[5] T. Kashiwabara, K. Itagaki, S. Masuda, and T. Fujisawa, “On Certain Permutation
Layout,” Proc. 1985 IEEE Int. Symp. on Circuits and Systems, Kyoto,Japan, June

1985, pp. 1043-1046.

[6] T. Ozawa, “A Routing Procedure for an IC Module with Many Pins - A Solution to a

Circular Permutation Layout Problem,” Networks, vol. 15, pp. 33-48, 1985.

17

[7] 1. Shirakawa, “Some Comments on Permutation Layout,” Networks, vol. 10, pp. 179-182,

1980.

[8] S. Tsukiyama and E. S. Kuh, “Double-Row Planar Routing and Permutation Layout,”

Networks, vol. 12, pp. 287-316, 1982.
Appendix. Proofs of Lemmas 3,4 and 5 and Theorem 3

Let M = {n,, = (t,;,b,,) |1 < 4,5 < k} be a locally realizable subset of N(7) such
that [p1,p2,...,pk) and [q1,q2, ..., gk are icseqs. Suppose that M consists of two or more
maximal clusters. We denote by cnjps the number of maximal clusters contained in M. Let
Ljs be any local realization of M, and for any subset M’ of M, let L be the layout of M’
in Lps. We start with the following lemma.

Lemma A-1. If Ly contains a Type I layout, then M has a proper subset which is locally
realizable and consists of two or more mazimal clusters.

Proof. Suppose that two maximal clusters C = {n,, |h < i <[} and C' = {n,, |m <i <
s, I < m} form a Type I layout. Let M’ = {n,, |{+1 <i<m —1}. It is clear that M’ is
locally realizable. Furthermore, c¢nps > 2; otherwise C U M' U C' would be a single cluster,
a contradiction.

Next, suppose that M contains a trivial maximal cluster C = {n,,} which forms a
Type IM layout by itself. Let m be the integer such that ¢, = #(py). In the following,
we consider the case in which w,, 1 ® b, for some integer | < m. The other cases can
be treated similarly. Let By = {bg,,0q,,,...1b4,_1}, B2 = {bg;,bg,,..., g, } — {b,,} — Bu,
Ty = {tppyirtonsar- - o tongma} and To = {t, 15, ... 1} — {t,,} — T1. Note that |By| =
|Ty) = m —1 > 1. Assume that M contains a net (tp,,br(,,)) such that t,, € T3 and

18

br(p,) € B1. See Fig. A-1. Let M’ = {ny, | t,, € Ty}. Since |B; — {brpy H < |T1|, Las has
a wire, say w', which connects a terminal in T and a terminal in B,. However, because
of w,, and w,,, w’ has to cross Ci, at least twice, which violates the third constraint on a
CPL1-solution. Therefore, every net in M’ contains a terminal in By, which implies that M’

is locally realizable. Furthermore, cnp > 2; otherwise C'U M’ would be a single cluster. O

Proof of Lemma 3. We prove the lemma by induction on the value of cnpr. If M has
only two maximal clusters, then they must be parallel clusters; otherwise, their union would
be a single cluster. Assume that, for an integer j > 2, if 2 < cnpy < 7, then M has at least
one pair of parallel maximal clusters. Suppose that cnas = 7 + 1. If Ly contains no Type I
layout, clearly M has parallel maximal clusters. On the other hand, if Ly has a Type I
layout, then M has a locally realizable subset M’ such that 2 < cnppy < j by Lemma A-1.

Thus, M has at least one pair of parallel maximal clusters by the induction hypothesis. O

Proof of Lemma 4. If C forms a Type I layout with a maximal cluster C” # C’, then the
nets in C’ can not be routed. Furthermore, if C' and C’ form a Type I layout, then no nets in
N(7)—(CUC’) can be routed. Assume that C is trivial and it forms a Type IM layout by itself
in any CPL1-solution Ly(x. Let C = {(t,,,54,)}, and let [p1, p2,...,p,] and [q1,92,. .-, ¢n]
be two icseqs. Suppose that wy, 1 e b, in Ly(r) for some integer j. We define four sets of
terminals By = {bg;, bg;41s- > 0gn}s B2 = {bgy1ba5y- -3 0g;_1 3, Tt = {tpy,tpss -+ s tpa_yyn}» and
T2 = {tp._,43rtpnjsar- - - »tpn}- By the same argument as in the proof of Lemma A-1, every
terminal in Ty (resp., T») is connected to a terminal in B; (resp., B2). Since n,, and the
net containing by, belong to C’, every net containing a terminal in B; belongs to C’. This

implies that n,, € C’ and hence C' = N(n) — C, which contradicts the assumption that

19

N(7) consists of more than two maximal clusters. Consequently, C' forms a Type D layout

in any CPL1-solution, and hence it is a component. Similarly, C’ is a component. O

Proof of Lemma 5. Assume that 7 is realizable and let Ly (r) be any CPL1-solution for it.
Using the same argument as in the proof of Lemma 4, we can show that C forms a Type D
layout in Ly(x) if (i) C is not trivial or (ii) there exists a component M such that C || M or
M || C and M UC # N(r). If M., is the result of a P-merging operation, then it has a
subset that satisfies the condition (ii). Suppose that C is trivial, that C'U M, = N(x) and
that M., was created by an X-merging operation. It is clear that the net in C can not pass
between the terminals of the nets in M., and thus it is routed by a direct wire in Ly (-

This completes the proof. O

Proof of Theorem 3. It is easy to see that if all the maximal clusters can be merged into
one component which is not of Type Ir, then 7 is realizable. Assume that the algorithm fails
in making such a component. If all the maximal cluster are merged into a Type Ir component,
7 is not realizable since the two boundary wires of the component have to pass between the
same two adjacent terminals. Suppose that 7 is realizable and the algorithm terminates
when CLIST has two or more elements. Let Ly(r be any CPLI1-solution for #. CLIST at
the termination of the algorithm has a maximal cluster which forms a Type I layout in Ly (x);
otherwise any two consecutive elements in the list would constitute P-merging operands. Let
Y be the set of all such maximal clusters and S be the set of indirect wires w; in Ly(n) such
that n; € UgeyC.

Each wire w; € S divides the sets {by,bs,...,b,} — {br()} into two subsets (like By and

B; in the proof of Lemma 4). We define the width of w;, denoted by wd;, as the smaller

20

cardinality of such two sets. Let w; be a wire in S whose width is the minimum and k be the
integer such that wileby in Ly(x). Let M = {(t,,,b,,)|1 < 4,5 < h}, where [k = ¢1,¢2, s Qr)
is an icseq. Without loss of generality, we assume that h = wd;. See Fig. A-2. Let C be
the maximal cluster which contains n;. It is clear from the definition of w; that M NC = ¢.
Furthermore, M is not a cluster; otherwise M U C would be a single cluster. These imply
that if M is an element of CLIST at the termination of the algorithm, the list has X-merging
operands. Thus, CLIST at that time has at least two elements whose union is equal to M.
Since those elements contain no P-merging operands, one of them is a maximal cluster which
forms a Type I layout in Ly(r). This implies that S has a wire whose width is less then wd;,
which contradicts the definition of w;. Therefore, if the algorithm terminates when CLIST

has two or more elements, then 7 is not realizable. O

21

23 2 6 7
N 1 23 4 5 8 o
- 23 5~.
22 24 7 L8
22 9
21 — 11 «—39
21 IC 10 7;5
20 11 :
12 4
20 / 19 12 10
17 10
et 18 17 16 15 14 13 .

Fig. 1. Application of circular permﬁtation layout in a single layer routing
around an IC (module).

Fig. 2. A CPL1-solution for the permutation
T=(12422219658741020191514 1318161712113 23 2).

22

(b) Type DR layouts.

Fig. 3. Type D layouts of clusters.

(a) A Type IL layout. (b) A Type IR layout. (c) A Type IM layout.

Fig. 4. Type I layouts of clusters.

23

Fig. 5. An illustration for the proof of Theorem 1.

2 3 4
,j ?; :\\ 2f4
< 4 6 “« 4 6

(a) A Type 0 component.

(e) A Type Ir component.

Fig. 6. Typical components of the five types.

24

(b) A failed P.~merging.

Fig. 7. Examples of P-merging operations.

25

DDA

DAL
/\Y/\/\Y N ﬁ nil

‘/\"/\A’ - <Z/_\&. nil

Fig. 8. An illustration for the proof of Lemma 2.

27

Mhnew

WASWAGWACTY
78 46 1 3
C1 M Ca

(c) A successful X-merging with C, = ¢.

Fig. 9. Examples of X-merging operations.

28

Table 2. X-merging table.

i

nil

Palbd e

nil

nil

nil

nil

29

7\01111213N171718181919%22222323%
[+ c

10 10 18 20 13 15 18 18 16 16 17 17 11 12 3 3 23 23 24 2

Fig. 10. Result of merging operations for the instance of Fig. 2.

N
(o}
8N7
oy ©Nw
oM NN
J754
N Ny

BWA_/ Mn/_
™ 2/'

n

™ Al

Fig. 11. An example of layout type assignment for P-merging.
31

Fig. 12. An example of layout type assignment for X-merging.

M C,

=

Fig. A-2. An illustration for the proof of Theorem 3.

32

