Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Bound Approach to Asymptotic Optimality in Nonlinear Filtering of DifFusion Processes.

    Thumbnail
    View/Open
    TR_87-185.pdf (1.046Mb)
    No. of downloads: 462

    Date
    1987
    Author
    Saydy, L.
    Blankenehip, Gilmer L.
    Metadata
    Show full item record
    Abstract
    The asymptotic behavior as a small parameter EPSILON --> 0 is investigated for one dimensional nonlinear filtering problems. Both weakly nonlinear systems (WNL) and systems measured through a low noise channel are considered. Upper and lower bounds on the optimal mean square error combined with perturbation methods are used to show that, in the case of WNL, the Kalman filter formally designed for the underlying linear systems is asymptotically optimal in some sense. In the case of systems with low measurement noise, three asymptotically optimal filters are provided, one of which is linear. Examples with simulation results are provided.
    URI
    http://hdl.handle.net/1903/4690
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility