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ABSTRACT

The asymptotic behavior as a small parameter ¢ — 0 is investigated for one dimensional nonlinear
filtering problems. Both weakly nonlinear systems (WNL) and systems measured through a low
noise channel are considered. Upper and lower bounds on the optimal mean square error combined
with perturbation methods are used to show that, in the case of WNL, the Kalman filter formally
designed for the underlying linear systems is asymptotically optimal in some sense. In the case of
systems wiyh low measurement noise, three asymptotically optimal filters are provided, one of
which 1s linear. Examples with simulation results are provided.
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1 INTRODUCTION :

We consider the Ito stochastic model:

dzr, = g(t,z,) dt + o(t) dw,

dy. = h(t,x)dt + p(t) dv, (1)

z(0) = zo ; 0<t<T
where g, h, o and p are smooth functions of their arguments, {v; }, {w;} are independent
Wiener processes, z a random variable independent of {v, }, {w, }. Given this model one is
interested in computing least squares estimates of functions of the signal =  given
o{y, ,0<s <t} the o-algebra generated by the observations, i.e., quantities of the
foom E [¢(z;) | o {y, ,0<s <t }]|. In many applications this computation must be
done recursively. This involves the conditional probability density pY(¢,2z) which satisfies
a nonlinear stochastic partial differential equation, the Kushner-Stratonovich equation [1]. By
considering an unnormalized version of p?¥ , the above problem can be reduced to the study

of the Duncan-Mortenson-Zakai (DMZ) equation which is linear ([6]).

The filtering problem was completely solved in the context of finite dimensional linear Gaus-
sian systems by Kalman and Bucy [2], [3] in 1960-61, and the resulting Kalman filter (KF) has
been widely applied. Apart from a few special cases [4], [5] the nonlinear case is far more
complicated; the evolution of the conditional statistics is, in general, an infinite dimensional

system.

Although progress has been made using the DMZ equation, optimal algorithms are not gen-
erally available. The performance of suboptimal designs, however derived, may be based on
lower and upper bounds on the optimal mean square error (MS-error)) p(t) ([7]). This
approach is used here to investigate the asymptotic behavior of a class of nonlinear filtering
problems, namely weakly nonlinear systems ([8]) and systems with low measurement noise

level ([9]-[12]). Systems of the first type are modeled as:



dr, = a(t)z, dt + €ef (¢,2,)dt + oft)dw,
2
dyy = c(t)z, dt + p(t)dv, (2)

while those of the second type are:

dr, = g (t,2)dt + o(t)dw,

dy; = h(t,z,)dt + € dv, (3)
It is well known that for filtering problems of this type there may be no finite set of equations
which propagate the conditional mean. We are interested in (one dimensional) suboptimal
filters which are asymptotically optimal in the sense that the corresponding a priori mean

square error (MSE) is identical, up to some power of ¢, to the optimal one.

Weakly nonlinear systems have been studied in [12],[16],{17]. In [12], Brockett showed that in
the general case, even to be optimal in the asymptotic sense, such filters must evolve in
higher dimensional spaces than z; does. One question of particular interest is to study the
effect of the weak nonlinearity on the filtering performance. In other words the question is
whether the Kalman filter (‘ KF”), formally designed for the underlying linear system and
driven by the observation {y; } in (2) is asymptotically optimal for small €. (Notice that these

are observations from a nonlinear system).

In section 3, it is shown that for a particular class of nonlinearities f (those with bounded
derivatives), the “ KF” and the so-called bound optimal filter (BOF', section 2), both of which
are one dimensional filters with precomputable (non random) gains, are asymptotically

optimal as € — 0.

Next, the low measurement noise case, first studied in [9]-[12], is treated in section 4 where
the BOF and a constant gain version of it are shown to be asymptotically optimal, in addi-
tion, an even simpler (not involving the drift and linear) asymptotically optimal filter is
obtained. Some of these results have been obtained in [9], [12] by a different approach (e.g.
an elaborate WKB procedure applied directly to the DMZ equation in Fisk-Statonovich form
[9]), while here, basic bounds on the a priori optimal MS-error and perturbation methods are

used. Examples with simulation results are provided in section 5.



2 LOWER AND UPPER BOUNDS ON THE OPTIMAL MS-ERROR :

Let us consider the one dimensional version of (1) where z, is for simplicity assumed to be

N(0,68); g and k are such that (1) has a unique solution ([18]), differentiable with continu-

ous partial derivatives and satisfying the following hypotheses:
H, : |g.(t,x)-a(t)] < Aot)
H, : |k (t,x)-8t)] <AB(t) ; Bt):=p(¢t)-AB8¢t)>0

which we denote by

g e<alt), Aa(t)] ; he<[AL),AH)]
define
a(t) = a(t)+ Aalt) ; alt) = a(t) - Aa(t) 4)
Bt) = At)+ ABE) 5 A) — At) - AAE) (%)
p(t) = E (5 - E(z | Yo) ) (6)
p*(t) = E (2 -2 )

where ;" is the BOF and is given by

dz,” = g(t," ) dt + %22((;)) u(t)|dy, —h(t,z )dt] ®)

The stochastic process satisfying the above nonlinear SDE is referred to as the bound optimal
filter (BOF). Clearly the BOF is readily implementable with precomputable (non random)
gain and it coincides with the Kalman filter when f and g are linear. Moreover, the BOF is

“ bound optimal” in the sense that, among all nonlinear filters given by (8) but with arbitrary

B4(t)
pe

non random, continuous gains k (¢ ), the choice k() := u(t) yields a nonlinear filter

(the BOF) that has the tightest upper bound on the corresponding MS-error. Furthermore,



this upper bound is precisely u (t) (see [7],[13],[14]).

The following result, proved in [7]([13]), provides explicit lower and upper bounds on the

(unknown) optimal MS-error p (¢ ).

Theorem 2-1:

Let p(t),p”(t) and u(t) be asin (6),(7) and (9) respectively. Then:
0<I(t) < p(t) S p'(t) < ult)

where

(1) — o2 o 1 p(t) alt )21 12
()= 201035 (B -4 B el
1(0) = o

Remark:

Since /(¢ ) and u (¢) both satisfy ode’s of the Riccati type, the Theorem says that the optimal
MS-error p(¢) in the nonlinear filtering problem is bounded by those in two corresponding

Kalman filtering problems, the coefficients of which are obvious from (9) and (10).

Definition:

Let {z} be  any  suboptimal  filter, p(te) =FE (2 -z )° and
p(te):=E [z — E(=, | y(t) )]J?. Then {z} is said to be asymptotically optimal if

p(t,e) and p°(t,e) agree up to some power of € in a nontrivial way.

Proof of asymptotic optimality for a given suboptimal filter {z,°} uses the argument that if
one can bound p (¢ ,¢), p°(t,e) asin

0<I(t)<p(te) S p'(te) S u’(tye)
for some tractable bounds /° and u?, then it suffices to show that the first terms in the

corresponding asymptotic expansions are identical.

3 WEAKLY NONLINEAR SYSTEMS :



Let z; and y, be given by

dy, = g(t,)dt +ef (t, ) +o(t)dw, , 0<¢t<T .
dy, = h(t,z;)dt + p(t)dv, (1)

where z, is N(O,aog), {w; }, {v; } are Brownian motions independent of zo; f, ¢, and h

have enough smoothness to guarantee the well posedness of (1).

In the case € > 0 is a small parameter, ¢ and h are linear, this type of systems are referred
to as weakly nonlinear systems (WNL). WNL systems were studied in [8] where it was shown
that if, e.g., f (¢,7) = =% then there does not exist a reduced order (i.e. one dimensional)
filter which has the optimal asymptotic performance. Our goal here is to exhibit one dimen-
sional filters that are always asymptotically optimal for a restricted class of nonlinearities [ ,

namely those with bounded derivatives.

In the next two subsections upper and lower bounds on  p(t) = E (2, — E (2 | y; )) 3
p*(t) = E (% -2")% and p*(t) == E (=2 -2/)® (%, #F Dbeing the BOF
and ¢ KF” estimators respectively) are used to establish that in the weakly nonlinear case,
that is in the case ¢ and & are linear, both filters are asymptotically optimal in the sense

that p,p” and p* are the same up to first order in .

3-1 Asymptotie optimality of the BOF:

Let 2, and y; by (1) and assume that:

- ge<[a(t),Aa(t)] 5 fe<[nlt),rnt)]
- he<[c(t),Ac(t)]

- e(t)=c(t)-Ac(t) >0 ; t>0

We recall that here the BOF g, is given by:



de," = g(t,o)dt + ef (¢t,2)dt + c(t) u(t)[dy, — h(t,)dt]

P(t)
z°(0) = 0
i = ) 2(@e) +am(t) u(t)- L2 L u) = o
p(t)

Proposition 3-1:

If Aa(t)=Ac(t)=—0 and c(t) > 0, then the BOF is asymptotically optimal as

€ — 0, i.e.

where

Remark :
If furthermore, the system is time invariant then

pUt) = p(t) = r(t)+2en [ o(t,s)r(s)ds + Ofe, An)

where

2 A 26t
r(t) = P_Z{a +5ﬂ_}
[

1+Ae ™2
02 9
7 (a +6) — 0y
6 = d2+_;2_ ¢? s A = o2
0'02—_9 (a-6)
p
c2 ot
d(t,s) = e2t)exp 2— [ r(ndr
p 3

here O (z,y) means order of each one of the arguments separately.

Proof :

It readily follows from the above assumptions

(¢ +ef)e < alt)+eunlt),Aa(t)+eApt))

(3)

that



From Theorem 2-1 we get

where:

w(t) ~ 3 w(t)e
i=0
gives :
[o0]
wi(t) ~ 3 o
k=0
n
o o= 35 ui(t)ua;(¢)
J=0
Substituting (12) and (13) in (10) and equating powers of ¢ yields:
2
do = o)+ 2m(uo- S wd L o) = of
p

i = 270 - Sl ) o+ omnt) ) — 0

Proceeding similarly for [(¢), one obtains:

Iy, = o*(t) + 2a(t)l, - iz [€%(t) + 4p_2(t_) Aa¥t)] 1§

P o*(t)
l[o(0) = 002
=2 (a(t)- (0‘2(t>+4fj§§§§ Aa(t)) o] 1y + 2u(t) Lo~ 8222 17
1,(0) = 0

(here Aad® = (Aa )?)

(10)

(11)

(13)



It is clear from (14) and (16) that wuq(¢) and {o(¢t) are different in the general case but coin-
cide with r(t) if Ae = Ac = 0 thatis:
g(t,x) = a(t)r and A(t,z) = c(t)z

This completes the proof.

Now if the system is time invariant, i.e.,

a(t)y =a ; plt) =p ; c(t) = ¢ ; oft) = 0o and p(t) = p
then one easily gets the results in the remark above by using the Riccati transformation
r ==

0 -
p—2 il to solve (4) and the variation of constants formula in (15) and (17).
¢ w

3-2 Asymptotic optimality of the KF :

The question considered here is whether one could, in the case of weakly nonlinear sys-
tems, ignore the nonlinear part in the drift, use the Kalman filter designed for the underlying
linear system ( driven by y; ) and be able to achieve asymptotic optimality as ¢ — 0. It is
important, however, to notice that eventhough this scheme is being referred to as the “ KF”,
it has little to do with the regular Kalman filter, the reason being that the “ KF” is driven by

observations from a nonlinear system.

Accordingly,  Let g(t,2) = a(t)x , h(t,g) = c(t) and  assume  that

fe<[ut),Au(t)] , c(¢) > 0;then the “ KF” is given by:

dit — a(t)abat + XL () [ay - c(O)bat] 5 at) = 0 (18)
p(t)

where r(¢) is asin (4).
Proposition 3-2 :

Under the above assumption, the “ KF” is asymptotically optimal as ¢ — 0 in the sense
that:

pk(t) ~ p(t) = r(t)+ O (¢€) 0<t<T



Proof :
We first derive an upper bound on p*(t) := E(s, — 2f)? where z* is given by (18).
Let 7 := z, — 2 ; then
B = [T e (0)G (Rt + oft) du, - a(t) G(2) doy (19)
where G (t) — c;) r(t) and 3 — a(t)% +¢f (t,7,). Applying Its' s chain rule
([1]) gives
dz,> = [0 + p® G?] dt + 2%, dz, (20)

Taking expectations on both sides yields :

LB R = (1) = o2+ 0% + 2R [T, - oCF
pF(t) = P+ p*G*+2E %5 -2¢ G E 5% p*(0) = of
p* = 0P +p*G2(a—cG )p* +2¢E T f (t,1;) (21)
Clearly
2E m f (t,3) < E 52+E fz(tﬂ?t) = Pk(t)+E f2(t,zt) (22)
By the comparison theorem (see Appendix): p#(t) < ¢(¢t) ; ¢(0) = of where
q(t) = o*+ p’G?+ 2a—cG)g +¢(qg + Ef %)

= 0>+ p*G?+ eEf 2+ [2(a—cG) + € ¢ (23)

which we rewrite as

g = i(t)+3(t)g , q(0) = of
2
. o [ 2
i(t) = 02+—;2—r +eE f¥t,x) (24)
. c?
i) = e+2[a-—r(t)]
p
We therefore have the following bounds:
1(t) < p(t) < p*(t) < ¢(t) (25)

where:
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2
p
5 [ e?+ 45 ApPe? |1

| = o®+2a + oL
TrAs ) p o (26)

1(0) = of

Expanding ¢(¢) in the form:

and equating powers of ¢ yields:

2 2
— o)+ L) e (t)
go = o(t)+ ri(t) + (t)- q ; 0) = o
0 pg(t) ) [ ) pz(t) ( )] o 90() 0
Let w := gqqo(t)—lo(t). Then from the previous section it follows by making Ae = 0 in

(16) that w(t) = go(t) - r(t). By differentiating we get

W o c(t) 2 alt) - c?(t) r ¢ _oalt)r c?(t) 2
) = Sttt e+ 2l - Z v Jag - 2e0r )+ S )

This in turn easily becomes:

+

b — 2la()- 2 vy lw 5 w(o) — o

The solution of which clearly is w(t) = 0 which implies ¢q = r.

The proof is complete.

4 LOW MEASUREMENT NOISE LEVEL :

Consider the system :

dz, = g (t,z,)dt + o(t)dw;
dy, = h(t,z;)dt + € dy, (27)
where g E<|a(t),Aa(t)]
he<(et),ne(t)] ; e(t) 20 ; >0

and ¢ > 0 is asmall parameter (this is the case in many practical situations [10], [12]).

The optimal a priori MS-error is bounded from above and below; perturbation methods for

the bounds are used to show that the upper bound approaches the lower one as ¢ becomes
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smaller.

The result is quoted for k linear but holds for nonlinearities h which tend asymptotically to
a linear function, i.e., Ac is small (see remark 2). This type of (almost linear) nonlinearities

arise in practice and are usually modeled as being linear [14].

Proposition 4-1 :

Assume that Ac¢ = 0 (i.e. his linear) and ¢(t) > 0, then the optimal MS-error p(t)

satisfies the following

ot
p(t) = C((t))6+0(e)=E(xt—xtF)2 (28)
where limo 0 () — 0 and =z denotes any one of the three asymptotically optimal
€ — €

filters listed below.

(F;) The BOF :

de,” = g(t,:t,')dt + Cg) u(t) [ dy —e(t)g’dt] , 2'(0) =0 (29)
u(t) = Ug(t)+26'(t)u(t)——c—2—(-2t—)u2(t) i u(0) = of (30)

(F3) The constant gain BOF (CGBOF) :

dz = g¢(t,z5)dt + E_(eL)_ [dy, —cxfdt ] ; 250) = 0 (31)
(F3) The linear (first approximation) BOF :

a(t)

dzt = [dy, —c(t) o dt | ; gl (0) =0 (32)

(28) is proven for each case separately.
Proof of (F,):

From Theorem 2-1 we get :

I(t) < p(t) < p"(t) = B (m - < u(t) (33)
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v = o¥(t)+2a(t)u - 226(;) u? 5 w(0) = of (34)
I = o%t)+ 2a(t)l - = [€(¢t) + 4?‘2%)(Aa )22 (35)
1(0) = of

It can be easily seen by inspection of (34) and (35) that u(¢) and [(t) are of different

orderin € if Ac is nonzero. Let’s show this explicitly.

Expanding «(¢) as

w(t) ~ ¥ w(t)e€ (36)
n =0
yields
o0
w?(t) ~ 3 d, €
dn(t) = E ”J(t)un—J(t)
J=0
e.g.
do(t) = ug(t)
di(t) = 2uo(t)uy(t)
doft) = 2uquy+ uf
Substituting (36) and (37) in (34) gives:
o 00 c—2 0
E i, 6" = o%t)+ 2a Mu, e - — Y d et (38)
n=0 0 € 0

Equating powers of ¢, starting with ¢, yields dy = 0 , ie., ug(t) = 0. This in turn

implies that d;, = 0.

Similarly o? — ¢2d, = 0. But since d, = u, it follows that u(¢t) == :((tt)) , l.e.,
u(t) = ﬂ(—tt—)Le+O(e2) forevery 0<t < T (39)
c
- o(t) .
By a similar procedure we get {y, = 0 and ;| = _(t); that is
c
() = 4o 0@ 0<t=<T (40)

c(t)
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We conclude from (39) and (40) that if Ac = 0,ie., h(t,2) = ¢(t)z then:

w(t) ~ 1(t) — %e-&— O 0<t<T (41)

which establishes the asymptotic optimality of the BOF as ¢ — 0.

This completes the proof of (F';).

Note: These approximations are obviously not valid in the immediate vicinity of t = 0
where u(0) = [(0) = of. This (boundary layer) problem is negligible. It can
indeed be easily shown that the duration of the transient regime for this type of

ode’sis O () (also see figure 2).

This suggests the following:

(i) Since u(t) = euq(t)+ 0(62), one can replace «(¢) in (22) by eu; = ¢ olt)

c(t)
and attempt to achieve asymptotic optimality as well. The new filter clearly would have the
advantage that the gain &k {(t) = i(e—t-l , thus avoiding solving a Riccati equation, resulting
in faster computations.

(ii) If the answer to (i) is affirmative, the next question is whether the same thing would

hold for the first approximation (when expanding z,) filter:

dat = A Lay e (1) bar |

It turns out that both filters are asymptotically optimal as is shown next.

Proof of (F,):

An upper bound on the MS-error corresponding to filters such as (F,) can be obtained by fol-

lowing the first steps in the proof of proposition 3-2 (also section 2-2 in [7]). In this case

E(z-z)Y < u®(t) (42)
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f (13)

By setting u*(¢) ~ Y w(t)e in (43), one easily obtains

O N O
Hence:
p(t) = E (n-2S) ;‘((tt)) e+ 0@, 0<t<T
(Recall hat:  p(1) 2 (1) = Zik e+ O(eh)
Proof of (Fy):

Similarily, it is readily obtained that p%(t):=E [, — 2] ? satifies

; — c(t)ol(t
b’ 20%(t) + 2 E (a - ot )g(t ) - 22 1(—) pt
Using the Schwartz inequality:

1 L
Eab < E%q2 . E? b2

and the comparison theorem (see appendix) we get pt (t) < u L (¢) where

W0 a0t 4 a0() (ub)F - 2.2 (o0) (44)

€
£

1 o0
with 6(t) = EZ2¢%t,s,). Expanding v’ ~ ) ufe? in (44) and equating powers of ¢
0

ives uf = uf = and v} = olt) ence
g 0 1 0 d ug c(t) , h
k(1) = :((tt))€+ O() . o<t<rT (45)
Therefore
p(t) = pf(t) = c((i))e—l—O(e) 0<t<T

The proof is complete.

Remark (1) :
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(i) If o(t) = o and c(¢t) =¢ then a,(t) = i1(t) = 0 and the next terms in

the expansion of u(f) and [(¢) are:

wlt) = =5 @)
) = = alt)

so that u(t) = 1(t)+ O(¥) ifand only if Aag = 0, ie, both g and k are

linear.

(ii) In [19], it was shown that for incrementally conic nonlinearities we have the following

lower bound L (¢t ):

p(t) = L(t) = (1-s(t))r(t) (46)

where s(¢) is the unique nonnegative root of
(1-s(t))e’®) = ¢-40) (47)
10 = LR S et z

¢ ¢ (49)
q(0) = o
2
P = o)+ 2a(e)y - L o
r(0) = od
From (34) and (39) we readily get that r(t) = :((tt)) e + O (e%). It is therefore clear from
(46) that if s(t) = 0(6), then L(t) = olt) €+ 0(62), as we have used here. This

c(t)
is  indeed  the  case:  (49)  implies g(t) = O and  (48)  that

n

d(t) = O(e) (Ac = 0). Assuming s(t) ~ s, €* and letting € go to zero in (47)

OMS

gives that 1-s7 = e 0 necessarily. This has the unique solution sy = 0, hence

s(t) = O{e).
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Remark (2) : Almost linear observations.

The same results in the previous proposition can be extended to the particular class of non-
linearities h € < [¢ , Ac] where Ac¢ is also a small parameter. Indeed, the upper and
lower bounds u and [ on p(t) and p°(t) = E(z, - 2,)° where 2 is the BOF in

(F\) (with ez,”and ¢ replaced by h(z) and ©) are given by (39) and (40):

_ o)
u(t) = (1) e+ O()

= A (14 854 O(ae) )+ 0@
(1)
(1)

€+_.6Ac + O3 + 0 ((AcP)

Thus for small A ¢

Similarly

o),
=20
:J(%e =+ O((acy) )+ O
_ o)

(1)

It is not hard either to establish that for the analogous of the filters (F'y) and (F3) (as in (31)

e+ O(e, Ac))

and (32), but with cz replaced by A (z) ) the upper bounds are

and

r(t) 7
al(t) = £(t)eJrO( )

which makes these filters asymptotically optimal too as Ac and e become smaller with

€ + 0(e).

Application to the Benés filter ([4]):
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Let
dyt = T dt + d'vt (52)
where the drift f satisfies
Jo(@)+ fHz)=a 2?4+ b z + ¢ (53)

with @ 2 0 to prevent finite time escape situations.

As mentioned earlier, this is one of the few nonlinear filtering problems which was shown to

admit a finite number of sufficient statistics.

We are interested here in investigating this type of filtering problems when the diffusion pro-
cess {z; } is measured in a low noise channel. In particular, we would like to know what type

of implementation simplifications will result from this additional assumption. Accordingly, let

{z, } be as in (51) and:

dyt = :L't dt + € d'vt (54)
In order to know how € enters Benes ’ original formulas, let us resolve the DMZ equation in
Fisk-Stratonovich form by following the steps outlined below. The unnormalized pdf u (¢,z)

satisfies the following stochastic PDE:

¥ 2
o — (L (u)y- 12 wyar+ Luay
. . ‘ ‘ (55)
L (u)—_?"u (f u),
which in our case is
2 2
du=[iun—f u,—(f,+-}-z—)u]dt+—z—udy (56)
2 2 ¢ e?
Loy
t
By letting V(t,x)=c¢ « u(¢,z), the stochastic differentials in (65) are eliminated.
We obtain the following classical PDE ( robust DMZ ):
V. — 1 v e v Ye 122 1y )V (57)
t = 5 Ve +(?‘—f) z_(?f + f. +§‘*;2——‘2*6—4



18

. d . .
Using V(t,z)=c¢ [y 1@ p(t,z) and (53) in (57), we get after some computations that:

2
_ 1 1 1% 11 24102 - Lpe - L
P =5 bt U pa t [ m gl Ca)et—Sbe — e ] p
It can be easily verified that p is given by
(z - )’
¢ = e
where
B(t) —1- 2(1+ %) 6%t) , 60) =0
].6 1 1 (58)
dpy = - = (1 + €a) 0(t )p, dt -5 0(t) b dt + = o(t)dy,
€ €
1
2 : 1 (z - )
u(t,g) = e° exp{‘/; f(a)dU—E—-T(t)—— (59)

Our goal is to see under what circumstances can pu; be a good approximation for the condi-

t
tional mean E (z, | Y, ) given by:

t
E [z | yo]:fx_“(ti)_dz
Ju(t,z)
It turns out that for cone bounded drifts in (53) (e.g. f (z) = th(z) or linear ), the following
holds.
Claim :

{u, } is asymptotically optimal as ¢ — 0 .

To see this, rewrite (58) in the more suggestive form:

ot 1
du =2 (g~ oy ) Loy s

€

and notice that 0(t) = — th( (1 + %) :t ) ~ e+ O(¥. It is not hard then to

1+ @al
(+6a2

show that g, = p + O (€) where

1
dpd = — [ dye — " dt ]



19

is precisely the linear BOF obtained in last proposition which was shown to be asymptotically

optimal as € becomes smaller.

Notice that for the particular case f (z)=th(z), ¢ =b =0 and ¢ =1 and hence

th (<)
dpy = . [ dy, — p¢ dt ]

5 EXAMPLES AND SIMULATION RESULTS :

Example 1 : In this example, the asymptotic optimality of ¢ KF” for WNL systems (section

3-2) is illustrated. We consider:

dz, = az, dt + ¢ th(z,)dt + odw,
dy, = cx; dt + p dv;
Tg ~~ N(m0,002)

where f(.)=th(.)€<[%,%],i.e., L=0, g=1, u=Au=%.

Simulation resuls were done using Monte Carlo technique and the following numerical data:

¢ =1, 0=p=03

l

c 1, mg=0, op=0.1

The results are summarized in the plots of figures 1(a),1(b) and 1(c), which correspond to
different values of ¢ (¢ = 0.2, 0.1 and 0.05 respectively). In each figure, we have plotted
pk(t):=E (2, — «F ) r(t) and I(t); the latter being the lower bound on the optimal MS-

error p (t) which therefore lies between /(¢ ) and p* (¢).

The plots corroborate the results of Proposition 3-2 in which it is stated that the “ KF” is

asymptotically optimal as € becomes smaller and that r(¢) is a good approximation for the

(unknown) optimal MS-error p (¢) in the sense that p* (1) ~ p(t) = r(¢) + O (e).

Example 2 :
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This second example deals with the asymptotic optimality of the BOF and CGBOF in the

case of low measurements noise level filtering problems. The following model is considered:

dz, = arctg (z, )dt + odw,
dy, = cxy dt + ¢ dv,

Tog —~ N(m0,0'02)

where g (.) = arctg () € < | % ) %], le,a = Aag = % and

The simulations are summarized in figures 2(a) and 2(b) which correspond to the performance
of the BOF and CGBOF respectively. Each figure contains 3 sets of plots corresponding to
e = 0.3, 0.1 and 0.05 from top to bottom. Each set of 3 curves consist of the upper bound
u(t) on the BOF, the MS-error pF(¢t) = E (2, — # )* and the lower bound /(¢) on the

optimal MS-error p (t).

Again, these plots agree with the results of Proposition 4-1 in which it is stated that the BOF

a(t)
e (¢)

and CGBOF are both asymptotically optimal as € becomes smaller and that

€ ( equal
to € here ) is a good approximation for the (unknown) optimal MS-error p ().

Remark : It can be seen in figure 2(b) that the MS-error p°(t) exceeds the (BOF) upper

bound u (¢) in all three cases as might be expected. To see why this is so, it suffices to recall

that the CGBOF was obtained by approximating the BOF gain k“(t) := c(t) u(t) by

olt)
c(t)

does not hold in the immediate vicinity of ¢ = 0 (boundary layer problem). Outside this

olt) since u(t) ~ ¢. However, it was remarked earlier that this last approximation
€

region (which shrinks to zero as e — 0), the CGBOF performes in a comparable fashion than

the BOF with the speed advantage.

6 CONCLUSION
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We investigated the asymptotic behavior question of one dimensional nonlinear filtering
problems involving drifts with bounded derivatives using an upper and lower bound approach
to show that the a priori mean square error associated with some suboptimal filters

approaches the optimal one asymptotically.

This approach proved that significant information relevant to this type of problems can be
infered from the knowledge of the derivative bounds ( i.e., of the cone in which the nonlinear-
ities reside ).

In particular, it is shown that in the case of weakly nonlinear systems, that the “ KF ” (

designed for the underlying linear system ) is asymptotically optimal as € — 0. In other

words the nonlinearity can be ignored as long as the asymptotic behavior is concerned.

In the case of diffusions measured in a low noise channel, three asymptotically optimal filters
were obtained, one of which is linear. Furthermore, asymptotic values for the unknown
optimal MS-error were obtained in both cases.

The main point is that upper and lower bounds on the optimal MS-error, when available, may
be used (in addition to performance testing of suboptimal designs) as a relatively simple tool

to study certain nonlinear filtering problems.

APPENDIX

Comparison theorem [15] :

Let F(z,y) and G (z,y) be continuous in the rectangle
D: |o-2| <@a , |y-go| <
and suppose that F(z,y) < G(z,y) everywhere in D. Let y(z) and z(z) be the solu-

tions of
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|

¥ Fley) , yl(zg)=0o

;= G(z,y) , z(zo)=a

Let I be the largest subinterval of (29— a , 29+ a ) where both y(z) and z(z) are

defined and continuous ; then for 2z €1

z(:c < y(a:) , z < 79
z(z y(z) , 2 >
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program weak

Program "weak'" carries out Monte Carlo simulations
for one dimensional filtering problems of the form:

dxt = a xt dt + eps * f(xt) dt + sig*dwt , 0<=t<=ziT
ayt c Xt dt + rho*dvt
x0 " N ( xm0 , sig0 ** 2 )

where the nonlinearity has a bounded derivative
xmuu <= fx(x) <= xmub

Program weak generates E [ ( xt - zt )**2 ] together with
the upper and lower bounds u(t) and 1(t) on the optimal

MS error.

If ioption=1 then zt is the "KF" filtered estimate.

If ioption=2 then zt is the BOF filtered estimate.

When ioption=0, two sample paths for xt and zt are generated;
where zt is either from "KF" (iflag=1) or BOE (iflag=2).

INPUT DATA:

iT = time horizon
N = number of subdivisions in the time interval [ 0, ziT ]
(should be large enough in order for the discretized
stochastic differential to yield a good approximation) .
N<=5000, unless the array dimensions are changed.
(ii) xm0,sig0,sig, a,c,rho,dseed0,dseedl, dseed2:
xm0,sig0,sig,a,c,rho: parameters of the model
dseedl, dseedl,dseed2: initializations for the random number
generator. These could be any (distinct) numbers between 0
and 1.0e20, preferably as large as possible.
(iii) M, NS :
M = number of values to be printed out.
NS = number of sample paths used to compute expectations.
(iv) ioption, iflag : already described.

An array of 2N values is generated. The first set of N numbers
corresponds to the (simulated) true state; i.e.:

x(i*dT), i=0,1,...,N-1, where dT = ziT/N.

The other N values are those of the filtered estimate zt (either
"KE" or BOF, depending on iflag).
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ioption > 0

An array of 3N numbers is obtained the first N values of which

are those of p(t) = E [(xt - zt)**2] (zt being either "KF" or

BOF, depending on ioption), namely:

p(i*dT), i=0,1,....,N-1, where dT=ziT/N.

Similarily, the second and third set of values are those of u(t)

and 1(t) respectively.

remark: in the case of the "KF", no computable upper bound exists.
Instead of u(t), the solution of the riccati equation
associated with the limiting linear system r (t) is printed

(a) Progam weak uses the IMSLS library for random number

generation. E.g. low could be run as follows:

%4 £77 -o runlow low.f -limsls

% runlow <inputfile >outputfile

where inputfile is a file in which the data is prealably
stored.

(b) The nonlinearity f ( currently equal to tanh(x)) may be
changed by modifying fk accordingly in the subroutines
observy, kalfilt and bofilt.

(c) The quality of the simulation results depends strongly on
how large N and NS are. Typically, N=1000 and NS>=500.

dimension er (5000) ,xx(5000) ,xxf (5000)

dimension u(5000),x(4),dx(4)

double precision dseed0l,dseedl, dseed2

common /const/deltat,sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a, eps, xmuu, xmub

read *,iT,N

read *,xm0,sig0,sig,a,c,rho,dseed0,dseedl, dseed?
read *,M,NS

read *,ioption,iflag

read *,eps,xmuu, xmub

deltat=1.0*iT/N
sqgd=sqrt (deltat)

if (ioption.eq.0) go to 63

do 50 i=1,N

er (i)=0.

continue

if (ioption.eq.2) go to 29

ioption=1 ---> N values of u(t) (=r (t) here) are computed

and used to compute the mmse for the "kf" applied to
the w.n.1 filtering pb.

kr=0
kswitch=0
call ric(kr,kswitch,u)

do 60 j=1,NS
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119

121

65

66

0

call kfsub (dseed0,dseedl, dseed2, xx,xxf,u)

do 70 k=1,N
er (k) =er (K) + (xx (K) -xxf (k) ) **2
continue

continue
go to 22

ioption=2
upper bound (N values:u(0)...u(iT)) are computed
and used to compute the BOF mmse error next

kr=1

kswitch=0

call ric (kr, kswitch, u)

do 37 j=1,NS

call bofsub (dseed0, dseedl, dseed2, xx, xxf,u)
do 38 k=1,N

er (k) =er (k) + (xx (k) ~xxf (k) ) **2

continue

continue

M (<=N) values of the mmse error are printed next

er (1)=sig0**2
print *,er (1)
do 80 k=2,M

er (k) =er (k) /NS
print *,er (k)
continue

go to 67

ioption=0
two sample paths of the true and (*-) filtered state are
computed.

iflag=1 ----> kf-filtered ; iflag=2 ----> bof-filtered
if (iflag.eq.2) go to 119

kr=0

kswitch=0

call ric(kr,kswitch, u)
call kfsub (dseed0, dseedl, dseed2, xx, xxf, u)
go to 121

kr=1

kswitch=0

call ric(kr,kswitch,u)

call bofsub (dseed0, dseedl, dseed2, xx, xxf,u)

do 65 k=1,M
print *,xx (k)
continue

do 66 k=1,M

print *, xxf (k)
continue

upper bound u(t) is printed next.



c In the case of the "KF", i.e. ioption=1 this is
c just r(t) which is neither an upper bound for
c pk(t) nor for p(t).
c
67 do 135 i=1,N
135 print *,u(i)
C
c lower bound 1(t) is first computed then printed
c
kr=1
kswitch=1

call ric(kr,kswitch,u)
do 136 i=1,N
136 print *,u(i)

0

137 stop
end

KkkhkKkKKAkAKkkhkkk
SOUBROUTINE KESUB
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subroutine kfsub(dseedo,dseedl,dseedz,xx,xxf,u)

O

real xk,xfk,vyk,yyk

double precision dseed0,dseedl, dseed?2

dimension xx(5000) ,xxf (5000)

dimension u(5000)

common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,eps, xmuu, xmub

do 10 k=1,N
kml=k-1
call kalfilt (kml, dseed0, dseedl, dseed2, xk, Xfk, yyk,u)
xx (k) =xk
xxf (k) =xfk
10 continue

return
end

khkkkhkhkhkhkhkhkhkhkhkkhkkhkkkk

SUBROUTINE BOFSUB

khkkkhkhkhkkkhkhkkkkkkkkk
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subroutine bofsub (dseed0, dseedl, dseed2, xx, xxf, u)

)

real xk,xfk,yk,yvyk

double precision dseed0,dseedl, dseed2

dimension xx(5000) ,xxf (5000)

dimension u(5000)

common /const/deltat,sqd,xm0,sig0,siqg,c,rho,N,iT
common /param/a,eps, xmuu, xmub

do 10 k=1,N
kml=k-1

call bofilt (kml, dseed0,dseedl, dseed2, xk, xfk,yyk,u)
xx (k) =xk

xxf (k) =xfk
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continue

return
end

kkkkhkkhkhkkhhkhkhkhkkkhkkkhk

SOUBROUTINE OBSERVY

hkhkhkkhkhkhkhkhkhkkkhkhhkhkkhkkhkkkk

subroutine observy (kml, dseed0, dseedl, dseed2, xk, yk)

LR E R RS SRR RS L EESESEEREEESSEEREEEEEREEEEEEREREEEEEEEEEEE

observy generates the observation yk=y (k*deltat)

and xk=x (k*deltat) from the model

dx (t)=f(x(t)) .dt + sig.dw(t) , x(0)=x0 N(m0,sig0~2)

day (k) =g(x(t)) .dt + rho.av(t) , y(0)=0

w(t).v(t) standard N(0,t) , deltat=iT/N , sqgd its sqrt
ggngf (dseed) generates a N(0,1)-variate Zk (dseed)

the value of dseed is internally changed by ggngf for

a future call.
AEAAKKAKAKAAAARAAAKAAAARARAAA A AAAA A AARITA AR A A ARk A A AR AR A Ak XA K

real xk,xfk,yk,yvk

real ggnqf, Zk, Qk

double precision dseed0,dseedl, dseed2
common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a, eps, xmuu, xmub
if(kml.gt.0) go to 98

xk=sig0*ggngf (dseed0) +xm0

yk=0.

go to 99

Zk=ggnqf (dseedl)

Qk=ggnqf (dseed2)

fk=a*xk+eps*tanh (xk)

gk=c*xk

xkpl=xk+fk*deltat+sig*sqgd*Zk
vkpl=yk+gk*deltat+rho*sqd*Qk

xk=xkpl

yk=ykpl

gfg=0.

return

end

kkkkkkkkkkrxkkkkkkk k%
SOUBROUTINE KALFILT
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subroutine kalfilt(kml,dseedO,dseedl,dseedz,xk,xfk,yyk,u)

AKKAAAKRAKRAKKRKRKAAKRKAKRAAKRKRRKRAAAAANKANAARAAAAKRAKR A A A A A A A A AT A K%

Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)
where xf(t) is the kalfilt (constant gain filter)

dxf (t)=f(xf(t)) .dt + sig/rho[dy(t) - c.xf(t).dt]

xf (0) =E (x0) =m0

kalfilt is asymptotically optimal as rho--->0, f cone
bounded and observations linear.

(kalfilt also returns the true state xk)
AhkAAKKKKAKRAKRAIAKXKAKRAKRAKRARAAKARKRA Rk A AR A ARA XA A A Ak Ak xk bk kkkkxk
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real xk,xfk,yk,yyk

real ggngf, Zk, Qk

dimension u(5000)

double precision dseed(, dseedl, dseed2
common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a, eps, xmuu, xmub

if(kml.gt.0) go to 78

x fk=xm0

yyk=0.

call observy (kml,dseed0, dseedl, dseed2, xk, yKk)
go to 79

fk=a*xfk

call observy (kml, dseed0, dseedl, dseed2, xk, yk)
yykpl=yk

dyyk=yykpl-yyk

gain=c*u (kml) / (rho**2)
xfkpl=xfk+fk*deltat+gain* (dyyk-c*xfk*deltat)
xfk=xfkpl

Yyk=yykpl

return

end
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SUBROUTINE BOFILT:
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subroutine bofilt (kml, dseed0, dseedl, dseed2, xk, xfk, yyk, u)
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Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)
where xf (t) is the kalfilt (constant gain filter)

dxf (t)=f(xf(t)) .dt + sig/rho[dy(t) - c.xf(t).dt]

xf (0) =E (x0) =m0

kalfilt is asymptotically optimal as rho--->0, f cone
bounded and observations linear.

(kalfilt also returns the true state xk)
LEEEEREREEEEEEEEEEEEEREEEEEEEESEEEREREEEESEEERESEEE RS EE

dimension u(5000)

real xk,xfk,yk,yyk

real ggngf, Zk, Qk

double precision dseed0, dseedl, dseed2
common /const/deltat,sqd,xm0,sig0,siqg,c,rho,N,iT
common /param/a,eps, Xmuu, Xmub

if (kml.gt.0) go to 78

x fk=xm0

yYk=0.

call observy (kml, dseed0, dseedl, dseed2, xk, yK)
go to 79

fk=a*xfkt+eps*tanh (xfk)

call observy (kml,dseed0,dseedl, dseed2, xk, yK)
yykpl=yk

dyyk=yykpl-yyk

bofgain=c*u (kml) / (rho**2)
xfkpl=xfk+fk*deltat+tbofgain* (dyyk-c*xfk*deltat)
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17
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10
25

15

xfk=xfkpl
yYk=yykpl

return
end

khkkkhkkkkhkhkhkkkkhkkk

SUBROUTINE RIC:
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kr=kswitch=0 ---> r(t) is computed
kr=1 ; kswitch=0 ----- > u(t) is computed
kr=1 ; kswitch=1 ----- > 1(t) is computed

subroutine ric (kr,kswitch,u)
dimension u(5000),x(4).dx(4)
common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,eps, xmuu, xmub
h=deltat

deltmu= (xmub-xmuu) /2

if (kswitch.eq.1l) goto 17
pl=xmub

go to 18

pl=xmuu

s2=sig**2

c2=c**3

r2=rho**2
quant=4*r2* ( (eps*deltmu) **2) /s2
wca=c2+kswitch*quant

nn=1

x(1)=sig0**2

u(l)=x(1)

t=0.0

k=0

m=0

write the ode

dx (1) =s2+2.0* (atkr*eps*pl) *x (1) ~wc2* (x (1) **2) /r2
call runta(nn,k,ii,x,dx, t, h)

go to (1,2),1ii

m=m+1

u (m+1)=x(1)

if (t.le.iT) go to 1

return

end

subroutine runta(nn,k,ii,x,dx,t, h)
dimension y(4).z(4).x(4),dx(4)
k=k+1

go to (1,2,3,4,5) .k

do 10 j=1,nn

z (3) =dx (3

v (3) =x (3) .
x(3)=y (3) +0.5*h*ax (J)
t=t+0.5*h

ii=1

return

do 15 j=1,m
z(j)=z(J)+2.0*ax(3J)
x(J)=y (J) t0.5*h*ax (J)

ii=1

return
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do 20 j=1,mn

2 (3) =z (3) +2. 0*dx (4)
x(3) =y (3) +h*dx (J)

go to 25

do 30 j=1,mn

x(3)=y (3) + (z (3) +dx (§) ) *h/6.0
ii=2

k=0

return

end
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program low

Program '"low" carries out Monte Carlo simulations
for one dimensional filtering problems of the form:

dxt f(xt) dt + sig*dwt , 0<=t<=ziT
dyt c xt dt + eps*dvt
X0 " N ( xm0 , sig0 ** 2 )

where f has bounded derivatives : alphau<=fx (x)<=alphab.
Program low generates E [ ( xt - zt )**2 ] together with

the upper and lower bounds u(t) and 1(t) on the optimal

MS error.

If ioption=1 then zt is the CGBOF filtered estimate.

If ioption=2 then zt is the BOF filtered estimate.

When ioption=0, two sample paths for xt and zt are generated;
where zt is either from CGBOF (iflag=1l) or BOF (iflag=2).

INPUT DATA:

ziT = time horizon
N = number of subdivisions in the time interval [ 0, ziT ]
(should be large enough in order for the discretized
stochastic differential to yield a good approximation) .
N<=5000, unless the array dimensions are changed.
(ii) alphab, alphau: upper and lower bounds on the derivative.

xm0,sig0,sig,c,eps: parameters of the model
dseed(,dseedl,dseed2: initializations for the random number
generator. These could be any (distinct) numbers between 0
and 1.0e20, preferably as large as possible.
(iv) M, NS :
M = number of values to be printed out.
NS = number of sample paths used to compute expectations.
(v) ioption, iflag : already described.

OUTPUT DATA:

joption = 0

An array of 2N values is generated. The first set of N numbers
corresponds to the (simulated) true state; i.e.:

x(i*dT), i=0,1,...,N-1, where dT = ziT/N.

The other N values are those of the filtered estimate zt (either
CGBOF or BOF, depending on iflag).

ioption > 0 :

An array of 3N numbers is obtained the first N values of which
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are those of p(t) = E [(xt - zt)**2] (zt being either CGBOF or
BOF, depending on ioption), namely:

p(i*dT), i=0,1,....,N-1, where dT=ziT/N.

Similarily, the second and third set of values are those of u(t)
and 1 (t) respectively.

(2) Progam low uses the imsls library for random number

generation. E.g. low could be run as follows:

% £77 -o runlow low.f -limsls

% runlow <inputfile >outputfile

where inputfile is a file in which the data is prealably
stored.

(b) The nonlinearity f (by default equal to atan(x)) may be
changed by modifying fk in the subroutines observy, cgfilt
and bofilt.

(c) The quality of the simulation results depends strongly on
how large N and NS are. Typically, N=1000 and NS>=500.

dimension er (5000) ,xx(5000) ,xxf (5000)

dimension u(5000),x(4),dx (4)

double precision dseed0, dseedl, dseed2

common /const/deltat, sqd,xm0,sig0,sig,c,eps,N ,ziT, alphab

read *,ziT,N

read *,alphab, alphau

read *,xm0,sig0,sig,c, eps,dseedl, dseedl, dseed2

read *,M,NS

read *,ioption,iflag

ioption: =1 ---> cgbof =2 ----> bof (ms-errors)
iflag: =1 ----> cgbof =2 ----> bot (sample paths)

deltat=1.0*ziT/N
sqd=sqrt (deltat)

if (ioption.eq.0) go to 63

do 50 i=1,N
er (i)=0.
continue

call ric(u)
if (ioption.eq.2) go to 29

do 60 j=1,NS
call cgsub (dseed0, dseedl, dseed2, xx, xxf)

do 70 k=1,N
er(k):er(k)+(xx(k)—xxf(k))**2
continue

continue
go to 22

ioption=2
upper bound (N values:u(0)...u(ziT)) are computed



c and used to compute the BOF mmse error next

29 do 37 j=1,NS
call bofsub (dseed0, dseedl, dseed2, xx, xxf,u)
do 38 k=1,N
er (k) =er (k) + (xx (K) -xxf (k) ) **2

38 continue

37 continue

c

c M (<=N) values of the mmse error are printed next
c

22 er (1)=sig0**2
print *,er (1)
do 80 k=2,M

er (k) =er (k) /NS
print *,er (k)
continue

the upper bound values u(k)'s are printed.
remember it known that this upper bounds bof
but not necessarily cgbof.

ao0a0ar
(@]

do 81 k=1,M
1 print *,u(k)

the lower bound is printed next by giving new
values to ric-subroutine.

nonon

dalpha= (alphab-alphau) /2
alphab=alphau
tempo=c**2+ (2*eps*dalpha/sig) **2
c=sqrt (tempo)

c next u is really 1
call ric(u)
do 82 k=1,M

82 print *,u(k)

go to 67
c
c joption=0
c two sample paths of the true and (cg-) filtered state are
c computed
c
63 if (iflag.eq.2) go to 181

call cgsub (dseed0,dseedl, dseed2, xx, xxf)
go to 182
181 call ric(u)
call bofsub (dseed0, dseedl, dseed2, xx, xxf,u)

182 do 65 k=1,M
print *,xx (k)
65 continue

do 66 k=1,M
print *,xxf (k)

66 continue

C

67 stop
end

C
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SOUBROUTINE CGSUB
subroutine cgsub(dseedO,dseedl,dseedz,xx,xxf)

real xk,xfk,yk,yyk

double precision dseed0, dseedl, dseed?2

dimension xx(5000) ,xxf (5000)

common /const/deltat, sqd, xm0,sig0,siqg,c,eps,N, ziT, alphab

do 10 k=1,N

kml=k-1

call cgfilt(kml,dseedo,dseedl,dseedz,xk,xfk,yyk)
xx (k) =xk

xxf (k) =xfk

continue

return
end

khkkkkhkhkhkhkhhkkkhkkhkkkkxk

SUBROUTINE BOEFSUB

khkkhkhkkhkkkhkhkkhkkkhkkkk

subroutine bofsub (dseed0, dseedl, dseed2, xx, xxf, u)

real xk,xfk,yk,yyk

double precision dseed0, dseedl, dseed2

dimension xx(5000) ,xxf (5000)

dimension u(5000)

common /const/deltat, sqd,xm0,sig0,siqg,c,eps,N,ziT, alphab

do 10 k=1,N

kml=k-1

call bofilt (kml, dseed0, dseedl, dseed2, xk, xfk, yyk, u)
xx (K) =xk

xxXf (k) =xfk

continue

return
end

SOUBROUTINE OBSERVY

subroutine observy (kml, dseed0, dseedl, dseed2, xk, yk)

AAKAA KKK AKAAARAAkAkARAAAhkhkAhkhkhhkhhhkhkhkhkhkhhhkhkhkhhkkhhkkhhkhhkhkkkkxk

observy generates the observation yk=y (k*deltat)

and xk=x (k*deltat) from the model

dx (t)=f(x(t)) .dt + sig.dw(t) , x(0)=x0 N(m0,sig0~2)

dy (k) =g (x(t)) .dt + eps.dv(t) , y(0)=0

w(t),v(t) standard N(0,t) , deltat=ziT/N , sqd its sqrt
gongf (dseed) generates a N(0,1)-variate Zk (dseed)

the value of dseed is internally changed by ggngf for

a future call.
AAKRKAAAAARARNARRKAARKRARAARAKARAARKARARRKRKARARARARARRKAKRKARNKARAKRKAKARKKRKKRARKRRRKRKKKARREKRK

real xk,xfk,vyk,yyk
real ggngf, Zk, Qk



aoocoo0an0000QQQn0

OO00a0QQ0

98

99

78

79

double precision dseed0, dseedl, dseed2
common /const/deltat, sqd,xm0,sig0,siqg,c,eps,N,ziT, alphab
if(kml.gt.0) go to 98

xk=sig0*ggnqf (dseed0) +xm0

vyk=0.

go to 99

Zk=ggngf (dseedl)

Qk=ggnqf (dseed2)

fk=atan (xk)

gk=c*xk

xkpl=xk+fk*deltat+sig*sqd*Zk
ykpl=yk+gk*deltat+eps*sqd*Qk

xk=xkpl

yk=ykpl

gfg=0.

return

end

SOUBROUTINE CGEILT

subroutine cgfilt (kml, dseed0, dseedl, dseed?2, xk, xfk, yyk)

IR E RS EEEEE SRS EREELEEEEEEEESEEEEREEEEEEEE RSN

Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)
where xf(t) is the cgfilt (constant gain filter)

dxf (t)=f(xf(t)) .dt + sig/eps[dy(t) - c.xf(t).dt]

xf (0) =E (x0) =m0

cgfilt is asymptotically optimal as eps--->0, f cone
bounded and observations linear.

(cgfilt also returns the true state xk)
I E S S S S TS SRS SRS S SRS SR ER SRR EREREEEEEREREEEEEESEEERSE

real xk,xfk,vyk,yyk

real ggnqgf, Zk, Qk

double precision dseed0, dseedl, dseed2

common /const/deltat, sqd,xm0,sig0,siqg,c,eps,N,ziT, alphab
if(kml.gt.0) go to 78

X fk=xm0

yyk=0.

call observy (kml,dseed0, dseedl, dseed2, xk, yk)

go to 79

fk=atan (xfk)

call observy(kml,dseedO,dseedl,dseedZ,xk,yk)
yykpl=yk

Ayyk=yykpl-yyk
xfkpl=xfk+fk*deltat+ (sig/eps) * (dyyk-c*xfk*deltat)
xfk=xfkpl

YYK=yykpl

return

end

Kkkkkhkkkkkhkhkkhkhk
SUBROUTINE BOFILT:

khkkkkhkkhkkhkkhkhhkhkkkkxk

subroutine bofilt(kml,dseedo,dseedl,dseedz,xk,xfk,yyk,u)
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Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)
where xf(t) 1is the cgfilt (constant gain filter)

dxf (t)=f(xf(t)) .dt + sig/eps[dy(t) - c.xf(t).dt]

xf (0)=E (x0) =m0

cgfilt is asymptotically optimal as eps--->0, f cone
bounded and observations linear.

(cgfilt also returns the true state xKk)
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dimension u(5000)

real xk,xfk,yk,yyk

real ggngf, Zk,Qk

double precision dseed0, dseedl, dseed2
common /const/deltat,sqd,xm0,sig0,sig,c,eps,N,ziT, alphab
if(kml.gt.0) go to 78

X fk=xm0

yyk=0.

call observy (kml, dseed0, dseedl, dseed2, xk, yk)
go to 79

fk=atan (xfk)

call observy (kml, dseed0, dseedl, dseed2, xk, yk)
yykpl=yk

dyyk=yykpl-yyk

bofgain=c*u(kml) / (eps**2)
xfkpl=xfk+fk*deltat+bofgain* (dyyk-c*xfk*deltat)

xfk=xfkpl
yyk=yykpl
return
end

kkkkhkAhkkkAAhkAkAkAkk%k

SUBROUTINE RIC:

kkkhkkkhkkkhkhkkkhkk

subroutine ric (u)

dimension u(5000),x(4),dx(4)

common /const/deltat, sqd,xm0,sig0,sig,c,eps,N,ziT, alphab
h=deltat

nn=1

X (1)=sig0**2

u(l)=x(1)

t=0.0

k=0

m=0

write the ode

dx (1) = sig**2 + 2.0*alphab*x(l) - (c**2)* (x(1)**2)/(eps**2)
call runta(nn,k,ii,x,dx,t, h)

go to (1,2),ii

m=m+1

u(m+1)=x(1)

if (t.le.ziT) go to 1

return

end

subroutine runta(nn,k,ii,x,dx,t, h)



dimension y (4).,z (4),x(4),dx(4)
k=k+1
go to (1,2,3,4,5) .k
do 10 j=1,mn
z (3) =dx (3)
Y (3)=x(3)
x(J )_Y(J)+0 S*h*dx ()
t=t+0.5*h
ii=1
return
do 15 j=1,nn
z () =z () +2.0*dx (3)
x (3) =y (3) +0.5*h*dx (J)
ii=1
return
do 20 j=1,mn
z (§) =z (j) +2.0*ax (3)
x (3) =y (3) +h*ax (3)
go to 25
do 30 j=1,nn
x(3)=y (3) +(z (3) +&x(3) ) *h/6.0
ii=2
k=0
return
end



