Show simple item record

dc.contributor.authorRostamian, R.en_US
dc.contributor.authorSeidman, T.I.en_US
dc.contributor.authorNambu, T.en_US
dc.date.accessioned2007-05-23T09:35:45Z
dc.date.available2007-05-23T09:35:45Z
dc.date.issued1986en_US
dc.identifier.urihttp://hdl.handle.net/1903/4484
dc.description.abstractThe abstract parabolic equation x = Ax (A sectionial) is marginally stable if the nullspace H_0 of A is non-trivial but e^(+A) is exponentially stable on a complement H_1. An example is u_t> = DELTA u with Neumann boundary conditions. Assume B has the form: Bx := -SIGMA_j,k*WEIRD GREEK LETTER_j,k*WEIRD GREEK LETTER_k(x) WEIRD GREEK LETTER_j and is such that y = EPSILON(QB)y(Q := projection on H_0 along H_1) is exponentially stable on H_0 for small EPSILON > 0. Then x = Ax + EPSILONBx is exponentially stable for 0 < EPSILON < EPSILON_0.en_US
dc.format.extent535645 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1986-59en_US
dc.titleFeedback Control for an Abstract Parabolic Equation.en_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record