Feedback Control for an Abstract Parabolic Equation.
dc.contributor.author | Rostamian, R. | en_US |
dc.contributor.author | Seidman, T.I. | en_US |
dc.contributor.author | Nambu, T. | en_US |
dc.contributor.department | ISR | en_US |
dc.date.accessioned | 2007-05-23T09:35:45Z | |
dc.date.available | 2007-05-23T09:35:45Z | |
dc.date.issued | 1986 | en_US |
dc.description.abstract | The abstract parabolic equation x = Ax (A sectionial) is marginally stable if the nullspace H_0 of A is non-trivial but e^(+A) is exponentially stable on a complement H_1. An example is u_t> = DELTA u with Neumann boundary conditions. Assume B has the form: Bx := -SIGMA_j,k*WEIRD GREEK LETTER_j,k*WEIRD GREEK LETTER_k(x) WEIRD GREEK LETTER_j and is such that y = EPSILON(QB)y(Q := projection on H_0 along H_1) is exponentially stable on H_0 for small EPSILON > 0. Then x = Ax + EPSILONBx is exponentially stable for 0 < EPSILON < EPSILON_0. | en_US |
dc.format.extent | 535645 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/4484 | |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | ISR; TR 1986-59 | en_US |
dc.title | Feedback Control for an Abstract Parabolic Equation. | en_US |
dc.type | Technical Report | en_US |
Files
Original bundle
1 - 1 of 1