Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feedback Control for an Abstract Parabolic Equation.

    Thumbnail
    View/Open
    TR_86-59.pdf (523.0Kb)
    No. of downloads: 483

    Date
    1986
    Author
    Rostamian, R.
    Seidman, T.I.
    Nambu, T.
    Metadata
    Show full item record
    Abstract
    The abstract parabolic equation x = Ax (A sectionial) is marginally stable if the nullspace H_0 of A is non-trivial but e^(+A) is exponentially stable on a complement H_1. An example is u_t> = DELTA u with Neumann boundary conditions. Assume B has the form: Bx := -SIGMA_j,k*WEIRD GREEK LETTER_j,k*WEIRD GREEK LETTER_k(x) WEIRD GREEK LETTER_j and is such that y = EPSILON(QB)y(Q := projection on H_0 along H_1) is exponentially stable on H_0 for small EPSILON > 0. Then x = Ax + EPSILONBx is exponentially stable for 0 < EPSILON < EPSILON_0.
    URI
    http://hdl.handle.net/1903/4484
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility