Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deconvolution for the Case of Multiple Characteristic Functions of Cubes in R_n.

    Thumbnail
    View/Open
    TR_86-46.pdf (1.399Mb)
    No. of downloads: 456

    Date
    1986
    Author
    Patrick, E.V.
    Metadata
    Show full item record
    Abstract
    Explicit error bounds are exhibited for a case of deconvolution with elementary convolutors on R_n. The convolutors studied are a set of n + 1 characteristic functions of cubes (e.g., with side length SQRT j, j = 1, 2, . . ., n + 1 which operate by convolution on L^1 SET INTERSECT L^2 (R^n). For a suitable choice of the approximate identity, a set of n + 1 functions (deconvolutors) in L^2(R^n) are exhibited which restore L^1 SET INTERSECT L^2 (R^n), up to convolution with the approximate identity, from the n + 1 convolutions. For the case of the convolutors operating on L^1 SET INTERSECT L^2 SET INTERSECT L^p (R^n), 1 <= p < INFINITY, explicit bounds for the reatoration error in the norm L^p (E), E compact, are exhibited; that is, error bounds for restoration restricted to a compact subset. The motivation for this study is the digital implementation of this deconvolution for the application to signal detectors which act by integrating over cubic regions. This motivation is discussed along with remarks on the significance of the topology for signals that are implied by the notion of restoration or deconvolution.
    URI
    http://hdl.handle.net/1903/4471
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility