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Introduction: Deconvolution and Machine Vision

Our interest in deconvolution is in part a consequence of a point of view
in machine vision [1] that we have been developing. In this introduction we
shall indicate this point of view and we shall also indicate certain
constraints to deconuvolution that arise in machine wision.

The deconvolution problems that are of interest here are of the type: on
R y given N distributions of compact support pl,yz,...,pN (called
convolutors), determine the existence, support, and construction of N

distributions CIEADYERRRL Y {called deconvolutors) such that
N

}”i*vi = 8,
i=1

vhere & is the Dirac distribution.

For wachine vision the interest is in IR2 or ﬂ?t3 . Existence of the
deconvolutors depends on the PR O the By cannot all be smooth (Cm)
functions. A condition can be placed on the Hi s called strong co-prineness,
such that the desired v, exist and have compact support [2]. The cases for
vhich the u; are characteristic functions of a) two intervals on R and b}
two discs on IR2 have been examined by Berenstein, Taylor, et al [3],[4],[5].
For these cases deconvolutors with compact support exist when, for example,
the interval lengths or the disc diameters have the ratio v 2 . Explicit
formulas for the deconvolutors in cases a) are reported in [6].

let us consider a role for deconvolution, or signal reconstruction, in
machine vision. In machine vision one seeks information about objects by
means of one or wore images. Let us consider objects that can be modelled as

a finite wnion U “,j of C1 2-manifolds M,j in IRB. fin emitted or reflected
J
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radiation can be associated with an object by defining a density F on the

sphere bundle of IR3 restricted to U "j ’ SIRBIU HJ , vhere the density is

dJ J
with respect toc a choice of volume form for SIR3|U M. . To include the
‘i o
variable time we consider the product space SIRBIU MJ XR . Let il dencte a
J

subset of the set of such densities along with their support

mc{F:5m3|UH‘jXIR——aIR}.
J

Let E2 denote a subset of fRz. This suhset will represent what is typically

referred to as the 'image plane’. Let F denote a subset of the set of time

varying image intensities

Fc{f:E, xR— R }.

2
A basic problem in machine vision is the definition and construction of a

suitable left inverse 4 of an iwege forwming map p,

m F .

Additionally, and nost inportantly, appropriate topologies are sought so that
# is continuous. For example, if M is a finite set with the discrete topology
then F should consist of disconnected cowponents, each containing at most one
point from p(fM), and on each component 4. is constant. If p{m) is in comwponent
C then the conwolution ¢xp{m) of a given function ¢ with p{m) my not be in C.
In this exanple, the role for deconvolution is to mep ¢¥*p{m) back into C.
Since we require only that the decornvmlution yield a point in a neighborhood
of p{m), we use the term approximate deconvolution

We shall leave further nathematical details on this point of view to a

future paper, but we will discuss the mptivation. The notivation is that we
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wish to consider separately the questions of imege quality and the questions
of machine vision, and then to join these questions through continuity of
vision on an appropriate space of images. We separately consider these
gquestions because it seems ill advised to address the issue of vision over
some neighborhood of an image (wvhich might include the image plus some
additive noise, convolutions of the imege, or non-linear sensor degradation of
the image) vhen the isswe of vision at the idealized, perfect imege remains an
open question. With this separation, we consider the idealized, perfect image
(e.g., p(m) for m € M ) as a limit point in an appropriate function space ¥,
and wve shall require that any well defined wvision algorithm $# be continuous
on this space. (fAn exawple of a topology for fil is the smllest topology
such that p is continuous.)

We now turn to the specific issues in image quality and
conwolution-deconvolution that are the subject of this paper. For any image

f €F we never know f: we measure, for example, f f , vhere Q is a
Q :
neighhorhood of {0,0) € E‘,2 X R, instead of £{®,0). To use our continuous

vision algorithm, if we cannot know f then we would like to be sufficiently
close to f. Let us consider an example of vhat we can know about £. The set

Qeoould be (-5, 3) x (-5, 5) x (-T, @) . That is, Q nodels a square

detector of side length a > @ centered at @ € E2 C IR2 and which integrates
over the time interval (-T , @), T > &. Llet

a a
27 2)

and let RR be the characteristic function of A. Then

A= (—% , g) x (- X{@,T)={x:-x€EQ}=-Q,

jqf = f fRQ = (&g * £)(0,0).
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Let us model a staring array with a sinple integration tinme response. A

set of non-overlapping subsets vhich covers E2 X R {up to Lebesque measure

zero) is
a a a a
{ Qb;q = (—§+pla ' i+p1a) X (—§+p2a ' §+pza) x {{g-1)T , qT} :
P = (pl’pZ) € 22 y g €2 }
let each Qb q mdel a square detector of side length a centered at
¥
pa = (pla,pza) € E, vhich integrates over the time interval ({q-1)T , qT).

Let (Xg)r(, o)) be the shift of ¥, by (u,s) ,

(RA)[(u'S)](x,t) = Rﬁ(x—u,t—s) .

With this (RQ)[(pa,qT)] = qu,q y and
10 (pa,qmy® = (fa® £} (P2oaT)-

For the staring array wve do not measure f € F but rather

{ (% £)(pa,qT) : p € 7, q €z, (pa,aT) €E)

vhere E is some bounded subset of E2 XR .

fn answer to the question of vhat can be said about £ based on the
measured data is that for £ in a suitahle choice of normed fimction space,

these measured valves can be uvsed to approximate RE(RH* f) by the

interpolation
N 1*
R E(aﬁ £)(pasaT)¥, o,
Psd
vhere V¥ is a choice of interpolating function (e.g., ¥ =
g P:q

RQ(x—pa,t-qT) ). Moreover, for suitable normed spaces, RE(RQ*E)
approximates REE . For a choice of A let 3§ denote the set of all

interpolations

3= {8 pig(uhg f)(pa,qT)Tp,q : £ €EFY} .



Introduction page 3

let SN denote the direct product of N such sets, in each of which a

different characteristic function is used,

N
9N=X

. (R T (X% €)(paj,al)¥, ,: EEF).

1 p,q i 4

Thus, what is known about £ is a set of approximeting interpolations of
approximating convolutions.

We sunmmarize the abowve by the diagram

m "____’ F
p -
r I8
N

The relations ¢ and p are betveen objects and images in the sense we have
mdelled them above. The map r is the conposition (interpolation o sample o
convolution) just discussed.

‘ The map n is the subject of this paper. For a given choice of norm on
F, ~ is a map fromr(f) , f € F , to an approximte reconstruction of f.
This may be viewed as a numerical implementation of the deconvolution from

{Rﬁ * f}i—l N to £, for the reconstruction is based on a finite set of
. =3 I

values from the conuvolutions. The existence and continuity of the operator

which deconunlues {Rﬂ *f). 1.2 N iF discussed later. Given this
- 1= ' ’III
1

operator, its continuity permits us to discuss approximate deconvolution bhased

on approximetions of Nﬂ ¥f by interpolation.
i

We now turn to a second itewm, certain physical constraints on

deconvolution. Let A, Q, Bp q’ E, and f : E2 X R —.R be as above.
]
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It has already been suggested that the set {Qp q} is to be a cover of
¥

E2 X R by non-overlapping sets. Recall
(Rnﬂf)(pa,qT) = _fRQ £ .
P:q

The physical constraint is that Qp q N Qb' q = @ for (p,q) # (p'.q'})-
3 ’

This is because tun detectors cannot ocoupy the sane space similtaneously.

This constraint can be modified {e.g., using beam splitters) such that the

constraint is

e{p,q)® {x,t) = 1
p,§q Qp 19

vhere ¢ 1 Z2 X Z — [0,1]. For the staring array exanple c =1 . ({Here we
do not include detector efficiency in our discussion.) This constraint will
determine in part the 'observation points!, that is, points at which RQ* £
can be evaluated. For exawple, the set
(R £(pByt ) : p€Z° )
is not physically realizabhle for B ( a .
In addition to constraints on the points at which RE(RQ* f) is measured,

ve also have hounds on the nmeaswed walues. From Holder's inequality

: ' . LA P
R X% £) M, € WRY N WEW oo, =1, Lo
Let |A&| be the three dimensional Lebesgue measwre of i, i.e., [A] =1 Ry Wy
= a\2 T. Thus

. . i/p
R (R % £) 0 < A new L
and for p { o, EELp,(iR’) '

R (X% £}l — 0.
RE f41 o IQI
(For p =, f € L, (an) s we get pointwise convergence by the Dominated

Convergence Theorem, [RE(RQ* £} {x#,t) —— @ .}
‘ ia|—e
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In the case where noise or errars for each measurement do not decrease as

17p y and for f with wunit P norwm, we have a lower bound a  on [al

LY
imposed as an additional constraint.

For i as abowe, the simplest pattern of observation points in IR2 XRis
the staring array with simple integrator,

{(Pa,qT)=p€ZZ.q€l}-

See Figure 1.
With |a] = a  , we my rescale a and T,

a(s)=(—s§,sg)x(—sg,sg)x(o,T/sz), 50,
so that |A(s)]| = |a] = a_ . See Figure 2a and 2b. In other words, the
detector size can be reduced if the integration time is appropriately
increased, and visa versa, without altering the upper hound due to Holder.

f second simple observation scheme is a conlimous scamning pattern. Let
v be a unit vector in IR2 and define

B={ (xt) R x[0,T] : x-~vt € (-2, x (2,8 cr.

See Figure 3. Note that |B| = |&] .

i third scheme is an alternative to the continuous scan, the shift
scanning pattern of Figure 4.

In all of these cases, the number of ohservation points in a fixed set
EC E,2 X R 1is approximately IEl/aD . We have here the ‘mesh size' or
sampling interval bhounded below due to a -
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let us examine the consequences of f being independent of time. Let

£(x,t) = g(x) , and let P(1/n}) = ( y P =P(1). For the

a a
')

rescaling case of the staring array

( Rp(i/my* E100t) = (Rpy /0y ¥ 0,021y 1% £ (%0t)
= J I KP(I/n)("—y) g{y) dy ds

[t—nzT,t]

B2T( Ry g py* 9 ) (1)
a1 P(im) g )(x) .

e (1/m)"s

The observation points are (p%,qnzT) + P € 2{2 » g €EZ , and

% £)(p3,qn’T) = a’T ( rpm) )(ed)
e (1/n)

®a(1/m)

We conclude
Remark 1 For rescaling of f to A{l/n), and for g € Lp(le) y 1zp{o,
a) The underlying convolution which is sampled converges in I_.p togasn
increases:
2“Pgl/n! 2
a | *g)————;aog ian(fR);

© o /)"y n—o

b) the number of observation points on any set in E2 increases as n2;
c) the time interval associated with each cobservation point increases in
2
length as n .

For shifted scanning, a choice for an cbservation point set is

(ppy)a + i(hE)a , iT) & () €20, ez ),

vhile the set i remains the same for any n. See Figure 5. Moreover,
.1 ,1,2 . )
(R £)(pa + ja(s,(2)°) , JT) :peZ’’ jez) =
., 1,2
{ T(Rp* g)(pa + ja( (5)7)

(T(Rex g) (k(@,1)2 + §(1,0)2) : (§,k) €2° ) .

cpez ,jezY =
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We conclude
Remark 2 For shifted scanning according to
{tpa + i (DPa, i) :peZ, jez)
a) the underlying convolution remmins
3
o fg——g— H
IIRPII1
b} the nunber of chservation points on any set increases as n2 H
c) the tiwe required to acquire a full observation set increases as n2 .
Let us conpare rescaling (Remark 1) and scanning {Remark 2). For a
fixed and for £ independent of tiwe, to reduce the mesh size of the
ohserwvation points projected onto E2 y we can use smaller detectors and
observe over a longer tiwe interval, or we can use (shifted)} scanning and a
sequence of time intervals. In both cases || = a_ and the total observation

time to get all observation points is the sane.
Theréfure,

1. Rescaling awmd scanning are equivaient in terms of obserwvation tiwme

required.

Hovever,

2. BRescaling and scamnming differ in that

a) rescaling uses decreasing detector size to approach the desired
function g ,

b) scanning uses a fixed detector size to approach NP* g .
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Our interest is in the scanning case. In particular, we examine the case

of

o> W

((Rpug)(xi): J€EZY,
i=1 i v
that is, more than one detector of fixed but appropriate sizes and a sequence
of observation points whose wmesh size can be as fine as required. For such a

case, the desired approximate reconstruction of g can be given.
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Constroction of an approximate deconovolution on .

While we shall address in detail the case in which the conuvolutors are
the characteriste functions of cubes in R {e.g., the cubes Pl' Pz, and P3 in
IR2 mentioned just above), we mey begin somewhat wore generally. Specifically,
we shall assume ve are given N convolutors Moy i=4,2,...,N , and each My is

in Lm(an) and has compact support. let f be in lem(mn) . We wish to

approximately reconstruct £ from r{f) € SN y where r and SN are as in

the Introduction. Approximate will mean any of the L? norms, 1<p(w {and
p = @ with sone additional qualifications).

For approximate reconstruction of f it suffices that the reconstruction
approximate, for sufficiently large ~* ) @ , 'PT*E , vhere ¥ € Ll(IRn) and
‘PT(x) = 'rn‘f’('m) for x € R° , sinoe

¢ x — £ in L°(R) , Lipte .
T—03

In this case we seek N deconvolutors UisUgy ey Uy such that

N
i§1yi*(uiw")*f = ¢ _*f .

The inaredients for a solution {vi*‘!’,r} ware noted by

i=1,2,...,N

Berenstein and Taylor [ ]. let ~ denote the Fourier transform. The Fourier

N
transform of distributions in the equation Z ”i*vi = & results in the Berzout
i=1
N . .
equation iglpi v, = 1 . £ necessary condition on {yi}i=1,...,N for the

N .
existence of a solution is then 3 [yiiz(m) > @ for all @ € R® . For such
i=1
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N .
K, @ solution of iglpi Di =1 1is

=

My

N . 5

L lud

i=1
vhere  denotes complex conjugation. However, the Di are not the solutions
v, if each vy is to be a distribution with compact support, for the Di
are not analytic. On the other hand we have the following. For
® = (@1,02,...,mn) let

fall = mmx “%D.
J=1,2,...,n
The growth of Di as ll@!lm gets large is known once a lower bound is
N

established for j}

IA I2
14

il {#) . For the #; of interest we shall exhibit such

i=1
a bound as well as a choice of ¢, such that D.¥ € L2(®"). In this case

e

there enists h, € L’(R") suwh that h = D¥  and
N

i=1

this last equation easily seen by taking Fourier transforms. (We have assumed
£ eL'(®) sothat wxf € L'(R) and the left hand side is in L2(R*) .)

The {hi} are the desired approximate deconvolutors. However,

i=1,...,N
they do not have conpact support. On the other hand, they can be explicitly
exhibited using only the knowledge of the Fourier transforms of the
convolutors Mo Because of this simplicity and potential utility, in the

following we conduct an error analysis for a digital implementation of this

approximate deconunlution for the special case of convolutors which are
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characteristic functions of cubes in R' . In addition the cases described in
the introduction provide two further restrictions on the problem and these we
adopt.

First, it will suffice to approximately reconstruct f on sowe conpact
set E. For exanple, it suffices toc choose T such that

£, 0= H RE [£ - ‘PT*E] IIp
is sufficiently small.

Second, the measurements consist of a discrete set in ®® on which a set
of convolutions is evaluated. Let {xq}qGQ denote the discrete set of
points, with xq ' and with Q a finite index set. The convolution
values are

{(,ui*f)(xq): q€Q, i=1,2,...,N} .
We seek to use these values to approximate f on E by constructing an

interpolation. In particular we seek functions ‘f"i : B — R s JEJT CQ,

and we seek a mmp G : {x.}

it jea — R such that RE = REJEJ‘I’J amd REf is

approximated in iF by X ZG(){J.)‘PJ . That is, we seek to make the error ¢ ,
JET
=1 [f-YG{x ¥ ]1n_,
e jeg T e
sufficiently small.

For brevity let F denote ‘PT*f . From above we have

N
F = ¢ #f =i§;hi*yi*f .

let ~ denote the inverse Fourier transform, let R)‘ be the characteristic
function of the set {mElR'n : Jlof] ») , and let 3 be a compact set in R

with characteristic function X Then define

P

N - N
G = I (I%, byl Rg)xluet) -
1=
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We shall seek to choose A and ® such that

g4 = W R jg;[F(xJ) - G(xd)] LT

is sufficiently small.
The triangle inequality now indicates the additional two terms needed to

have a boumd for & . Une term is

£y = Il R, [F - jé;F(xj)Tj] up ’

and the second term is

£, = 1 R jé;[G(xJ) - a(x‘j)]w‘j ",

The defining expression for G above suggests the consideration of G(xJ) of

the form

N
Glx;) = ) TH(x; - x) [ugeel(n)

o

wvhere H. : {x } — R . The H. then are the deconvolutors vhich we
i g’ geQ i
shall implement. fn 1P error bound for this approximation is thus
£= 08 [f - JESG(xj)wJ] R AN

In the following we develop bounds for each of the four error terms.
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The lower bound C(e) : 2 e, (@)1 2 C(e) > @

For a choice of n+l positive mwmbers LSRR LN let Ai be the cube

of side length a, in IRn . lLet Rﬁ be the characteristic function of Qi
i

&
a.
and let My o= — ! . For this specific case of convolutor we shall prove

n
(a,)
the following
Thearem. (Ehr‘enstein) let TGy yen ey be a choice of n+l positive

integers such that the collection is pairwise relatively prime and none is a

perfect square. Let ai=\/¢1i , and let M = max {a} . Let #y be
i=0,1,...,n

the characteristic function of the cube in ®® with side length a;

normalized to unit L1 norm as above. Then

n
> 1 @) >
i=0 J )

The proof will follow from several lemms. We begin with

,mEIRn.

mx{(n) o |?

lemm I. Iet p and g both be positive integers. If p and g are
relatively prime then + p/q is rational if and only if both p and q are
perfect squares.

Proof: let p and q be relatively prime.

() If p = plz and q = ql2 , then /' p/q = pllq1 is rational.

() Since J/ p/q is rational it equals r/s for some pair of integers
r and s, which may be chosen to be relatively prime. Hence,

2 2
qr = PSs . (*)

m. m
Ilet q = q, 1---qe e, where each q; is prime. Since p amd g are relatively
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prime and since each q; is prime, from (%) each q; divides s . Hence,

21'11 2!12 2ne 2
5 =4q; 4, q, (s') , Zn, > m, for i=1,2,...,€ .

If g is not a perfect square then, reordering factors, m, is odd,

2n1--m1 > 1, hence, from (%), q, divides r2 as well as 52. This

contradicts r and s being relatively prime. This along with a similar

argurent for p shows that both p and g are perfect squares.

1]

To proceed it will be necessary to define some waps. Let

A ={a,ya ..., }, m= minfa.} . Let x € R . Define the maps
21 n i
a.€ER
i
n n
d:RxXA——2Z, r:RxA— [5-, iﬁg
by
n n n
X = d(x,ai) ;1 + r‘(x,ai) ' Sgn(x) r‘(x,ai) € ["E-i—- ' 'i-;;) =

For fixed u we have the meps defined by restriction

n n
dx..ﬂ——)l, I‘x-ﬁ—)[“'i'_n—{,*i—rﬁ-]
dx(ai) = d(x,ai) rx(ai) = r(x,ai) .

For each fizxed x € R we also define the subset Fx c A4 by

ne={aeas i@l = mn (@)l | -

fi choice from Fx will be denoted Yx . {(The set Fx may consist of nore than
one element. fny elenent L. may be interpreted as an element of A for
vihich some integer multiple of n/*lx is as near x as any element from the set

{ zgf-: z€Z,a; €4 } -
i
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The following sinple observation will be used.

lemm 2. For every Q > @

Ir (¥, )] < Q

or
for every a, € 4 Irx(ai” > Q
Proof: The definition of vx.
1]
Lemma 3. For every a, am‘i €A, a; # aJ y and for every 4 € Z - {@}
2 4
|sin{—dn]l ¥ .
2 A 2
J [4—|d| + I]a.
EW J
J
Proof: There exists a nonnegative integer n and & € [-1/2 , 1/2]
such that
%Id;ln =nn + en . (%)
J
From this and the properties of the sine function
3 i 2
|sm[_5_m]| - lsin[——a—ldln]] - |sin(en)] 2 2|en] . (3x)
J d
From {%*)
a. 2
[_L] & - n?| o2
a, a‘j
|en| = Tld.l - njn = . . (peere )
J — ldl +nin
a.
J
This cannot wvanish, for
a.q2 a.
i 2 i n
[-——a—J-] d2 ) ¢3 =@ ¢:) ?‘; = T—I— [

a.
hence Tl is rational, vhich by Lewm ! contradicts the initial assumptions

J
for A . This nonvanishing along with the fact that ai2 and a‘i2 are both
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integers inplies Iaizd.2 - n‘?a‘jzl > 1 . This with (%) inplies
|ent| 2 a,"
a? —1ld] +n
il =a.
J
However, from (#¥) n ¢ ai]dl + %- , hence
J
2 2 i 1
—-lal + n| ¢ —=la| + —]a] + 5,
) J d
consequent ly
|en| 2 a = ’
2 i 1
a|2——|d] + =
J a.i 2

which, when substituted in {#*), yields the desired inequality.

Recall M = max {a} .
atd

lemm 4. let x €R be fixed. For every Yx € I‘x if
[d (v )] 2 1

and

2 1
'rx(fx” £H '

M 2
{4—;;[:!){(7,{) | + 1]1){

then for every ai # Yx

|sin(aix) | = 2 z 2

a.
i 2 M 2
{Q—i‘—ldx(v}{)l + 1]1x [qildx(vx)l + l]vx

Proof: Since x =d (v )+ r (v.) , by the Mean Value Theorem there
4

exists & € R such that
a; a;
sin(aix) = sin[Txdx(vx)n + airx(vx)l = sin[—y——xdx(vx)n} + airx(va)msg‘ .
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Thus
%
Isin(aix){ z |sin[——7; dx(vx)ull - Iairx(vx)l

(apply Lemma 3}
4

£ 3 . - a; |r‘x(7x)|
[“—rldx“x” * 1]’x
X
(apply the hypothesis)
2a.
> - 4 _ 1 i
i 2 M M 2
_Q—Fjdx“x” LS {4——7—;1%(1")] + 1]1'“
s . 2 , 2
i 1. 2 M 2
4—7;1dx(vx)| + lva {4—7;1dx(1x)| + i]vx

n
The next two lemms will address the case |x| : n/2M . For this case

the condition Id“(vx)l 1 is not vacuous.

Lewsm 5. If |x| 2 oo then there exists v, €T, suwh that
ld (v, )] 21
n
Praocf: Case x = 7
. n_n n
Since x = g - my then dx(M) = 1 and rx(M) = ~ - Moreover, for all
n n

a, #M, x{5—, hence, dx(ai) =@ and r‘x(ai) = 55 » therefore

i
Ir (M) ] < ]rx(ai)l yor MET .

Case x=-—"—2ﬁ-

Use an analogous argument with dx(H) = -1, !‘x(!“l) = g——ﬁ y and for a, # M

n
rela;) = o5 -
24

Case x| 5 -

Consider any ¥ €I . Since x:d(v)r—l- +r (¢ ) while
X X X xlyY XX

Ir
e (v, )l s e (M ] 2 55 € [x], then |a (v )] 2 t.
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Lewma 6. If |x| 2 5 then there exists ¥ € 4 suwh that
for every a. € 4 - {v }
Isin(aix)l , 2
|aix| Slxlzﬂq
Praof: Fix x €R , |x] gﬁ" Lemms 3 above prowvides a v € T; such
that
n :
) s )]z
Since |r {v.)] ¢ == x| 2 {ld_{v.)] - 1% Therefore
LA S ’ - XX 2y ° ’
1lin
1 1 [Idx(vx) I - 5]7_
: X

>
a. = a.
i |x] i
agla ()] 1] [4——,x | a1+ 1)
The right hand expression is increasing in ldx(vx)l for Idx(vx)l 1, sow

may use ldx(vx)l = 1 to get a lower bound:

1 1 x 1 n/2 1 n/2

a. - a.
i [x| [x] amMm + ¥ [x] s M
4 v, |dx(vx)| + 1] X

By the first proposition it suffices to consider two cases.
1

Case 1: |r (v )] ¢

2
X

2N

y!
[4;;|dx(vx)| + 1|y

In this case, if a; # Yx then by Lemma 4
2

|sin{a;x)| 2 3 )

i 2
qTx-Idx(vx)l + 1]vx

hence,
2 1 n/2

2
|sinfa.x)| 2 2 LA ’
1 v 2kl s xmd x|=r
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and
lsin(aix)l X 9 . 2
]aixl x25aiM8 x2SH

1

Case 2: For every a, €4 Irx(ai), y 2

M| M 2
[l + 1y,

n n
Here, x = dx(ai)ak + rx(ai) ' lrx(ai)l < T ! hence

i
. . 2
|sin{a x)| = [sinfar (a.}}] 2 2 Ir (a,)]a,
2a. 2 1 2a. 2 1 n/2 1 2a.
P o— > 1 53—
""%ld(v)hxvz n Mix]5M ¥ Sixn
and
|sin{a.x)| 2
i N .
laixl 5]x|2M4

1]

Remark: In Case 2 ax is never an integer maultiple of n . In Case 1
a. #£Y is used,.
i X
The case |x| 2 2 is addressed next. As uswml Eiﬂéfl. is defined to

be 1 for x =0 .

" Isin(aix)] 2
Lemmm 7. If |[x| z o5 » then ————— > = for every 3, € 4.
la;x]
i

Proof: |x| z gﬁ' = for every a, € 4, x| ¢ 5%;

Isin(aix)l 2

“n

|a;x]
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These last two results can be cowbined:
lemm B. For every x € R , there exists vx € A such that
for every a, € 4 - {vx}

|5in(aix)| . 2 1

ja. x| T n 2
i max{ze » [x]

Procf;: Since M) 1,

4 _ 2 !
. Y
M
n

2,2
n n

L
M

A

With this we consider separately |x| and |x| : and apply the

M
preceding lemmas.

We can now conclude the

Proof of the Theorem: let o = (ml,m peeest ) € R . It is readily

2
checked that
-~ = sin{a.a./2)
1y
yi(m) = “. .
. B /2
J=1 1)
sin(aiw./2)
For simplicity define S{a.,w.) = J .
1"y
a.w. /2
13
let @« € B be fixed. For each coordinate &J of & let VM he an

d

elewvent of A provided by lemma 8. Since there are at most n distinct

fu .and since there are ntl distinct elements in A , there exists an
J

element af{w) € 4 such that a{w) # ¥ y 3=1,2,...,n . To complete the

(LIS

J
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proof let By o= My hence
i

3 I () 1° = 3 I (0117 2 iy (@)1° = ﬁ IS(a(a), ) |?
i-0 i * =1
{apply Lewma 8) ’
N

4
J=1 max {;1—1, ,m‘jl}
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Piecewise Polynomial fipproximate Identities
Owr choice for ¢ in 'PT*f is a piecewise polynomial, for ¢ can have
i. compact support,
ii. nonnegative values everyuhere,
iii. an analytic representation in digital simulations,
iv. a predetermined nunber of continwous derivatives,
v. a tractable Fourier transform.
Let R be the characteristic function of the unit cube in R centered at
the origin. UWe use following notation: for any function g : R — R y for
aEan,for‘ s > ®, and for xER“,

o (x) = —= ol ,

9ray(®) = glx-a) .

Our choice for ¥ is denoted (P(k) s K EN,

— k+l tines —
Py = (REBX o ¥ R) ey

It has the following readily checked properties:

i. The support of ‘P( is the centered umit cube in R ;

k>

the support of ¢ is the centered cube of side length s .

(ks

i ‘P(k)snl =1.

ii. P (x)z0, x €R .

1ii. P(k) is a piecewise polynomial of degree k .
iv. ‘P(k} has k-1 continwous derivatives.
- >l s e+l
v. Posle) = [R[m m} ] y o= (0,60 ) € R,
n .
sin{w ./2) .
-~ t
R{) =ﬁ —2 " {for t=0 f’-iﬁi—')u 1 by definition).
. «./2
J=1 J
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As uswal we have for the first error term ¢ for £ € Lp(m") ’

1!
1<plo,

=URE [ £ =P, ¥ ]I ——0 , lpto

£1
S—-3ID

and for p =ow , for x a point of continuity of £ ,
| £(x) - (e, , *)(x) | —— @ .
{k)s . 2

For any f of interest we can choose a suitable s , but the convergence is

not wnmiform (e.g., f a square wave on D C lFt1 s D= supp(‘P(k)s*RE) , with

wnit anplitude and period L , then for any fixed s , p#oce , £y approaches
[ IIREH i ]Up as L approaches @ ). Consequently, we have no nore to say

about any upper bound for £y -

We note, however, that for a fixed choice of k , the set
{ ‘P(k)s*e : sX0 }

is a one parameter subset of Lp(l'Rn) y and each ¥ is a piecewise

{k>
polynomial with compact support. These properties meke it practical to
evaluate by simulation the appropriate size of s for the vision task at

hand. Swch a choice for s determines &, which in turn suggests an upper

1
bound for £ v Eq oy and Eq For £2+53+54 definec the radius of a
ne ighborhood about (P(k)s*f . The approach will be to make this radius as
small as desired for a fixed s , hence for a fixed £y - fi conservative
guide would be that the radius should be small compared to £y Beyond these

remarks any additional significance for the size of the neighborhood depends
on additional problem structure such as that discussed in the Introduction.
Our interest hereafter is solely how to achieve an error bound radius of a

predetermined size.
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Interpolation in LFP(E)

With the choice of ?(k)s above we turn to the error £y - We shall use
frequently the facts that for g and h functions on K" such that g*h is
defined, for s> @ and for a € R°

(g*h)_ = g *h_ ,
(g*h)[a] = g*h[a] ’
liofl, = flall, for g € L'(®") , ana

"
gle

1 1 1
llgxnll, < lolllInll, for Z=2+2-1, 1sparce, @
{Young’s inequality)
Ue shall also need

lewwm 1. For k 21, for y = (YI'YQ""’Yn) yand for 1 < p £

I (?(k)s)[y] ~ s "p

1
e 1200 foqrer) B 2(k+1) T 1/p
¢ [ Pminf2iet) 3yl [P _levil]
1= 1=

8]

llp}

with the convention :’3= o .

Procf: Define

— k-1 times —
ReER e NR) )

To establish the first term in the minimm use

XL «|(r

I (?(k)s)[y] " s "p = s/{k+1) s/(k+1))[y] - Rs/(k+1) "p

¢ = "1 fl Rs/(k+1)"p I (Rs/(k+1))[y] - Rs/(k+1) “1 '
with the obvious wmodifications if k=1 .,

We have, with ‘%:0,

f2ll, =t and [& [“”

s/{k+1) “

. - k1 ]
1 -
vhile || (Rs/(kﬂ))[y] Es/(kﬂ) I, is [ ] times the lehesque measure
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of
_s/2 5/2 _5/2 5/2
S = vy Yot X Al A
s/2 s/2 s5/2 s/2
ot o) X X I &
where for sets A and B, AAB=(A-B)U (B-A). Let
s/2 5/2 s/2 s/2
I=I4r @l Iyi = Vim0 Yitnd -
Then
n
SClUI x: X1 x (I - I)xI x---xI}U
i=1 71 i-1 Vi i+t ¥n

n
[UIx---xIx(I—I)xIx---xI],
i=1 i

so that, with [|S]] denoting the measure of S ,
n s n-1
CEEDN AR

Hence,

n
ktl
B ey y] ™ Barpperny Iy $ 25 iZﬁ'Yil '
vhich completes the proof of the first term in the minimm.

To estahlish the second and third terms in the minimum use

I P aosdy] ~ Paos I
SHERU R eyl 1R ey py] ~ Berpierny Iy -

For the case p ( © the second term follows from

k1) n 1/
I (Rs/(k-rl))[y] - Rg/(k+1) "p $ [T] isH P ’

n
vhile the third term follows from ||| ¢ 2 kﬁ;r] .

For the case p = «w it suffices for both the second and third terms to note

that ¢ is nonnegative, hence

{k>s

k+1 1"
1 ey a)py] = Peaoralo € Wesirals € IRIIRG vy I IR gl € [55Y]-
1]
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The following lemma indicates that we have wany choices for an
interpolating function.
Lewm 2. let g € LY(®%), g 2@, and supp g ¢ B(Q,r) , the ball of

radius r in B . Llet 7> @, N€EMN, and N = {281)" . Let

|

{EI’EQ""’En} be an orthonormal basis for R , and let {x.i}.iﬂ denote the

set of points in R

n

{“Zpi'rei i h €z, |pi| <N }

i=}

let B, \(x) =R(E %), x € . Define ¥ =g xR, , and ¥ =¥ )
{7} T {7} d 7 xg]

n times

For Ec R such that supp(R; % Rp(o,ry) € [N Nl x[Nr,Ne] = D,

R
¢hen lsll, % = % ¢,
J=
Proof: From the definitions
X N
Rl To,00) = xln) [ alet) ) [Rey] (1) e
J=1 ) j=1 [XJ]

B(x,r

It suffices to check that for x € E then B{x,r) ¢ D, and

N
} [R{T}][x‘i] =t e D

i=1

Since R{’r} = 'rnRT by definition,

Corollary. For supp( KE * RB(Q,JE 87)) <D, for

— & times —
W:-rn(R * .. ® R},
T T

then ) ¥. =1 on E.
i=1 Y
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With this we can now establish an upper bound for ¢, . We choose

2
n — & tines —
¥ =" (R'r* *R'r) . Let {x‘i} and ‘!'J be as in Lemma 2, and let N be
sufficiently large to satisfy the condition in Lemm 2.
. 1 .1 1 q
Thearem. Let P = ¢, , lsq,q'se, o+ o =1 (5=0), £ e LYmYy ,

and let h = €7 . For &, = || X [ #=f -E (ws)(xJ) *; ] |[p y lipges

n/q i/q9° '
ktl - 1 k 1 1/
T L i A E

Proaf: WUWe have
N
IRelx) X F [otat) = #lx 7)) £(6) de ¥
' N
s RE(x).gg 19 1Pl Il #5000

1
1/q
k+1]" ) . Jk+1 i k+1l 1/
“"[ qmn{s ’{s ] q}RE()Z‘F(“;
vhere the last inequality follows from Lemma 1 and from
h
Supp‘f"i C {"x—x‘j"myi—} .
1]

We conclude this section with some remarks. First, we have required that

f € Lm(m“) because only for q = o« does £, depend on s and h according

to h/s . This is the simplest case for applications. fAs we shall see, we
will obtain "RE“p as a factor in the bounds for &, and ¢, as well.
fi further remark is that for h/s sufficiently small the minimum has the
k+l

value of -S—nh .
A final observation is that the smallest bound is obtained for the choice

of ¥ =R that is, € =1 .

{r}’
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fApproximate reconstruction of Y from {Nﬂi*f}igo
In this section we shall determine an explicit wpper bound for the third

error £ We use the notation and definitions of the Construction section

q
and ve use the specific convolutors {”i}ir-lo of the Lower Bound section.

This bound requires more work than any of the others. The first task is to

determine the values of k in ‘P(k)s for which hi = (¥ ) Di is in

L2(an) . To use effectively the lower bound C({w) we shall need the

(k>s

following lemmas.

lepem 1. For a , b, p, q, and x all nonnegative real nurbers,

for p-q>9®, and for b # @

p P -

!mxja,x“q < max{ aq aF q} ]
{max{b,x}) b

Procf: It suffices to show that the left hand side of the inequality is

bounded by some member of the set on the right hand side for each of the
cases: x <a; b ; a<x<bh ; bi<x¢<a ; a,bsx.

o

Iepem 2. For a , b, p, q,; and x all nonmegative real numbers,

for bza, p-q2@, and for x #@ , b £ 0
(max{a x“p max{a,x})F —ql p—q -q
! smin{ ! ,xp < min{b ,xp } -
(max{b,x} )q pd J
Procf: For the first inequality it suffices to show that the left hand

side of the inequality is bounded by each term in the set on the right hand

| Fa

side for each of the cases: x £ a , b ; a<x4<bhb ; b X .
For the second inequality, since b > a , it suffices to check the

cases x * b and x < b .
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We can now prove
Proposition 1 For (k-2)p> 1 , h = (. )" D, & LP(R") , 1speo .

In particular’ k = 3 is sufficient for h, €L 2wy .

Proof: It is straightforward that for o = (@ ,wz,...,mn) e R/
sin
(P o) (@) = ﬂ l ]
I{+l
Since |sin{x}| ¢ min{|x]|,1} ,
n h+l
-~ . 2{kt1
(8 gs) (@] ¢ T minfs , 2]
J=1 J
e 1
e
J=1 nﬂx{l M ﬂm—y}
n
n{k+1) |
2{k+l
= [‘L’E“L] ". 2(k+1) kel
jo1 e L Im‘il
From the definitions, My o= ?(O)a . With this and the theorem from the Lover
i
Bounds section
~ ~ u. (o)
i
B 0)] = |(Pge) (0) —— -
4Egahue(ﬁ*)l
4
n n 1
- 8 5 a. . i+l
j=1 n'ax{-——g—- ' Iml} mx{M . Iml}
a; J s J

Note that a., wmey be replaced by m = min {ai} . With this and Lemma 1
a_ €A
i

A e W ) I
Ib;{e)] < [ B ] {m] [ 5 } JB; nax{giggll , Imjl}k+l
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1
3~
Note that g—(—%ﬂ may be replaced by K = n'ax{ ﬂ&;—ﬂ— ’ g[%] 3 } . Then

by Lemma 2

~ o N n n(k+1) T max{SIZl ]m.I:3 2-k
@l s 5] 5] ® e el O
i 18 m k+{ ML

i=1

1
ql—
(The case g—(-l%_ll > %"[%] 3 s typically the case of interest here.)

Hence, h. € IP(R") , lsp(o , henever (k-2)p > 1 .
1]

The next result is a well knowvn tonl, Owr notation for sone standard
items is: 38U for the boundary of the set U ; < for the imaginary element
in €; @k for the usual scalar product of @ and x in K ; dle] for
the standard volume form for R represented by dmlAdmzA- . 'Ad@n in the
coordinates (ml,...,wn), where A is the wedge product of differential

o

forms; and - -Adui/\- +» for the deletion of the factor dwi in a wedge

product.
lemm 3. let g : R — R s g€ Ck(Rn) {i.e., g has k continuous

derivatives). Let BJg denote the partial derivatiwve % . Let U be an
J
open set in R with compact closure U. Let U have a triangulation
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consisting of differentiable singular n-sinplexes in R . Then

J(B d. B g) 'xdlco[

Jy Jz

irﬂ( -ix )]( 1) il J(a ++9; g) e dua ---AaZ{J A eade_

Ik €

+1 i
Y A ~
+ ( 1) J(B‘i ) 'a‘ikg) e dmlA- ' -AdelA. . .Admn

W ) .
“ (—c.x )]( 1) Jg e““ desyA- e -Ada\‘j Areade
k
ou

nux )]j o]

Proof: Stokes theorem and induction on k.

n
Corollary let 0. 8. -+d.g=@ on 83U for @ < £ 2 k-2 and for any
Jy da e
indices j;y Jyr--+1dy - Then, for lix]] any norm of x €R,
J g ¥ dlaf = o[uxn"‘] as |xl] — o .
U
Proaf: From the lemm
IXALD | ‘jl+1 AT -
(3.8. +-:8. gle dle] - {-1) (8.8. 8. gle dw A cade . Axeade
S 4 929 iy
k LW X
= [ M ex )] [ o e ™ alal -
r=1 Ir U
Consequently, by letting 'jl =1, 2,...,n amnd taking the sum,
n .
LW x QX
)3 (xtata 8, g)e dlw| - J (6 8; e g)e (xdd|w])
o t=1 BU dp I3 k
Z—(,x ] H( ix. )] Jgemlxd]ml '
t=1 r=2

vhere xMd|w| = Z * dis A+ coAds Ar o ads
J n
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Repeat this for the remeining indices ‘i2’ ‘iS"""ik and nornmalize by

n
X.

dividing by lek y |x| the Euclidean norm of x . Let ax/lxl = -———J—BJ .
L x|
i=1

Thus
k LB X k-1 TACYD S k k i X
J(ag/‘xl g) e dl&‘l - J(ax/lxl g) e ——Jdlml = (—(,) lxl Jg e dl“‘l .
u au fx] 3
4

We now begin the conparison of Z('P*f)(x‘j)'l"i with an approximation
J
ZG(xJ)‘l"j . We consider first (Pf)(@) . Some required notation is:
J

n
let ¥ = supp ‘P(k)s y M Dil_}qupp Hi s let R,, and Rm denote the

characteristic functions of ¥ and /M respectively, and define

:f’+m=suppR$*Rm ’
—p times —
:P+pm=5uppkf*(?¢m* --n*Rm) .

We have -f = ¥ and we shall require -fl =M, vhere -{x€M} = {x:—-x€M} . As

uswal, we abbreviate ‘P(k>5 by ¢ . Recall that we hauve the relation
n
Zhi*yi*E‘:‘P*f .
1=0
Lewsm 4.

(p6)(@) = | 3 B, % et )y 0| (0)

()

' [ 3 R N PR COPRTES) )
i=0
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Proof:

n n
Thy * [(u*)Rg ] = )L by % “"i ¥ [mr+2m(Rr”'Rr”}Rr+m]
i=0 i=0
n n
= Lh;» ["‘1 * [m,,]] v Lhyx [[*’1 * [mwzm(l'xf)]]"nm] y
i=0 i=0
The first term in this sum evaluated at @ is

[P 1,1 t0) = (# % £)(0)

The second term evaluated at @ , after adding and subtracting

;Zlohi * [ (@} ,

Hy % [P op(1Re)] ]Rﬁam( 1Re o) ]

is (0)

iréohi ¥ “‘“i * [ onl 1) ]]K;HBHI]

(@

;Z‘th * ““i " [mﬁzm(l“xr)]]Ry+3m“'x:r+m]

and the first term in this sum is

(@) = [«p * [fxﬂm(l—?tr)]](e) -e .

P R e ]
Now we further decowpose this expression for (¥%f)(@) ,
(pee)(e) = |5 (R * i)y 0| (@)
i=0

+

()

E (h,) [ [”1 * [y oml1%)] ]Rf+3fﬂ(1—xf+m)]
i=0
‘ ;zle (R, (1)1 % L)y 1| @)

(@)

' [ z o (1017 % [ [ 4y % R3] Ry gl 1R |
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This same proceedure can be carried out at x‘j :

Corollary.
ree)g) = [ 3 B0 L) ey 1] 05y

n

NECASIEN B RS COTER T ][Rf+3m(1-xf+m)][x.]] ]("J)
d

i=0

+

n

S DEENIERI [(Hi*f)(xy+m)[HJ]]](“J)

: [ 3{ [h (1101 % |fu; » lf(*f+zm(1'“f))[xj]]][“f+3m“‘“f+m’][x ]]]‘“J’
i=0 J

J
(P (5) = (oot 1)(@) and

Proof: fipply (a*b)(xj) = (a*b[_x ])(0) y €.9.

(a*{f[_xj]b})(O) = (a*{fb[xj]})(xj)
4]

The convolutions above can be replaced by the scalar product. Define

for a, b: R — R , {a,h) = [ ab
R

Whenever b(t) = b(-t) , ({(a®*b){x.) = {(a,b Y = {a;__ 1sb) . Therefare
; [x,17 = Crx;)
Corollary.

o)) = 3 C[ERyT] 1 Ry 1

J io [ it ][xJ] i F+M [XJ]

+ E( (Il:l"_R)‘)v ' {"i b4 [f[_x_]k‘r.',zm(l—xr)] ]Rf.,,am(l_xr.,.m) )
i=@ J

+ E( [ﬁi(l'?&)]‘! , (-ui*f[_x‘j])xfﬂ'ﬂ + [F’i*[f[-xd]xwzm(kkr)] R paml 1 Rem) -
i=0
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Let nl(xJ) and r)Q(xJ) be the second and third terms respectively of

the right hand side above. Then

eq = I ‘ig‘](‘f’*f)(x.j)v"j - jg} ig@q(hix}) ][xj] ; (Ry+m)[xj][ﬂ'i*f])‘f"j I,

s g, To ()l + IRg Tay(x vl
EJGJI 3t i'p REJEJ2 37 i'p
¢ wax( Im, () DIRGlL, + maxC I, () [HIRGHL,
We turn then to determining bownds for nl(xj) and nz(xj) . We address
nz(xJ) first, this case being easier.

First, nz(xJ) is the sum of two terms, each of the form

Y { (b, (18)1 5 Rglugx{e[_, 8p)] ), vhich is bounded by
i=0 j
DU )V INglagniey ol

ACI R NE N TR

-n/2

Wi (12 ) T, Nell,

n
s L (2n)
i=@
It is easy to see that this also bounds n2(xJ) . Recall that |le ]}, =1 .
We use the proof of Proposition 1 to bound llﬁi(1—xk)|]p y P4 . If

1
m m]*3
2 M

s <M and k > 3 then 3&?1—)-2 , and this is the case we shall

assume. Let

1
3 ’ b = 2{k+1)

4q
m |n
2 [N] s

so that by the proof of Proposition i, with C a constant,
n 3, 3
max{ a” ! o | ok
Ihi(w)l 2 C ".mdn{ e+l ¥ l“JI }
. b
J=1
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By definition, 1-R, is the characteristic function of the set {"m"m) Ay
where |lof| ) = mx (|e,| , i=1,2,...,n} . Note that the zero set of (w(k)s)A
contains {Jjof] = € ﬂl{;—l—)- y € €N} . Consequently, because of Lemma 3 and
its corollary, we shall later choose A = €n —2—@;—1)— = €nb , and this is

convenient here also. Finally observe that

Ul ) = U Cloll 2y 0 Clo 1Bl )

We cutline the integration.

n

¢ P fs, (1% )IP < E L‘E min{--)® ¢ n LE ming- - -}P
i=1 - -
(o, I=llell (el 2y (o l=loll y0{llell 22}

a b y
3 ,p 3 ,4,p n-1
a2 X p(2°k)
o [ gl e - [
@ a b
(use a ¢<b and the inequality |o - (v + u)?| < nlul{fvhlul]n-l )

n ol -k 1 + (en 1+p{2-k}yn-1 1+p{2-k)
e I e B =0

— foyp(Q—k)
A

With this and with p = 2,

"'3“{ Iny(x ) 1)

1
5[“ 1+(en)

142{2-k) =
2{k-2}-1 ]

n-1 1
Z(F-2)-1

n
4.2n ., n —
by 2 2{k+1 2l n
< el ] [E] PE 7
n
We now turn to nl(x‘j) . UWhereas we used A to control the size of

nz(x‘i) , ve chall deperd on M to control the size of

mylx;) = §< (Kix)«)v Reraml I Rpam) [”i * [f[—xJ]Ry+2m(1“Ry)] ] > .
i=0

How this is done is indicated by lemma 5 below. First some notation. As
previcusly noted, we use R)‘ to denote the characteristic function of

{"m“mﬁl).} and we choose A = enﬂk—:_'l-l- y vhere € is some positive integer.
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For simplicity, let A = (Jlo]l <»} . Then

A=

{I""g)‘}i

€.
= n oo I~

8A ¢

A} .

{ el

J=1
A second item of notation is the multi-index @ = (&,@y,...yd ) € N .

o 1% n
i t =gt teea ! - .
Define |af = Za y at =atatoat, and 3 =9,78," 009

J=1 .
Lemm 5. For |a] ¢k, a® hi(m) =@ for w € A . Consequently,

for all r ¢ k+l , x € R®, with x| the Euclidean norm of x ,

o ' 1
h & X £
251 < g

r Py
I ax/|x| By ’

_1
[x|* 1,A
Proof: The first statewent follows from property v of ‘P(k)s in the
Piecewise Polynomial section , the product formulas for derivatives, and the
definition of hi . The second statement follows from the proof of the

Corcllary to Lewma 3.

Several lemms will be required to bormd J|8. 7 h_({w)]] y vhere
Vol LA

lo] =1 . Since h (w) = (#,,.) () D,(¢) , it suffices to bound
a“[(w(km)h](m) and Beri(m) , to apply Leibnitz's rule, and finally to
integrate. Recall Leibnitz's rule for € valwed functions f and g on
R:, with a« , B, ¥ mlti-indices:
o*(s9) = 3 st (2P0 (2%)

B,
B+1_o:

(In the particular cases examined here all Fourier transforms have values only
on the real axis.)
It will be convenient to have a boumd for 3 { (P(k) ) ] («#}) which depends

only on |a .
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1Lessmm 6.
ja] la] n 1 k+1
(2 -~ s k+ja ¢ . _I_[—_
e R B e A S 7 o
J= 2(k+1)
(min{i , 1/x} is understood to be 1 for x =@ .)
Procf: let ¢, denote ¢ constructed for IRI . From the
(ks (ks
definitions, for @ = (&),0,,...,6 ) € R,
n

(Paos) (@ = T (#5,.) (e) -

Claim: For v €E€ER, for r €EN,
- r ' k+l
e R - R el e e B
kt k+1)
Proof of Claim: The first element in the minimized set is established by

L R BT I oy )

2’5
The secord elenent is established by induction on k . Recall

sinc(v) = —5-9—1-(-\—,-)—

(Pors) () = [S‘“E[“Ti11711k+1 '

By Leibnitz’s rule

1 fiare Jirt < SR e 2 e ][]

hence the result for k = @ . Recall the notation g{ }(v) = g{v/s) for

s > @ . Consequently (6 g{s})(u) = (1/5) (6 g)(v/s} . With this notation
Fiaoe) = [Pl |, o {iors) Jgersy -

From Leibnitz's rule, from the result for k = @ , and from the induction

hypothesis
oo o « Bl i PR 5 Rl

t
and the final sum is chechked by induction to be -(—x—{—;—!;)-— .

O claim
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kY (ke1)'
Observe that ST <1 and that for y > @

min{l , (1+y)"¥*"1) < min{1 , 2V ¢ ming1 , YY) .

With these observatiaons

P ~ ) s IF (k + r)? 2r n . . D ) 5.4 |
127 (Phos) o) < 2[k+1) ] IL“““{ ' vls
= Z(k+1
o EaS n ‘IJ o~
Since a'[(w(k)s) ](w) = JU; a [(w2k>s) ](mj) ;

it only remains to check by induction on n that for a multi-index ao

n (k+a )t (k+|a])?

m— « —.

j=1 Kk k!

We next bound derivatives of Di

-~ n 2 -1
M. [ Z Iy] . From Leibnitz’s
id. 1
1=0

-~ o~

rule and since ﬁi = (?(0>a } , it suffices to consider derivatives of the
i

secordd factor. A formula for higher deriwvatives of conpositions of functions

will be needed. let s(€) denote a multi-index with € coordinates
s{€) = (51'52""’58) .
(s;)

For a function f of one variable let f§ 1 dennte the derivative of

order Si

Lewma 7. For £ , g €C(R), r 21

r
(r) 51+---+se 1 52+---+se 1 58 1
(fog) = s,~-1 5.1 s -1
_ 2 €

y [f(e)og‘[g(sl)g(sz)---g(se)]
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fibstract
Explicit error bowds are exhibited for a case of deconwolution with
eleventary convolutors on R" . The convolutors studied are a set of ntl
characteristic functions of cubes {e.g., with side length i, i=4,2,...,n+1)
. . 1.2 5 . .

vhich operate by conuolution on L71L {m“) . For a suitable choice of
approximate identity, a set of n+l functions {deconualutores) in qum") are
exhibited vhich restore LlﬂLQ{!Rn) , up to convolution with the approximate
identity, from the ntl convolutions. For the case of the conwvolutors

. 1.2 p Py . . .
operating on L AL"ALY{R} , 1 ¢ p { e, explicit bownds for the restoration
error in the norm LP(E) s E compact, are exhibited; that is, error bownds
for restoration restricted to & compact sulset. The wotivation for this study
is the digital implewentation of this deconwoiution for the application to
signal detectors which act by integrating over cubic regions. This notivation
ic discussed along with remerks on the sigrificance of the topology for

signale that ic implied by the notion of restoration or deconvolution.
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Proof: The proof is by induction on r . With the convention @t =1

the case r =1 1is clear. Assume the result for r -1 .
(fog)(r) = [(fog)(l)](r-l) - [[f(l)og].g(l)](r—l)

{apply Leibnitz's rule and the induction hypothesis)
rjglr_l] ri; § sl+---+s£—1 s,+ +5£—1 se—l
L s-1 51—1 -1 se—l

€=1 |s{€)i=r-s
[f(8+1)°g}[g(51)g(52)---g(se)g(5)] . [f(l)

5.1
i

(r)

°g]-g
Observe
r-1 r-s " r-1 r-¢€
N =
s=1 &=1 Is(ﬁ?;ir-s =1 s=1 Is(z)l;r s

r-1
_ r -1
- s -1
£€=1 50+51+52+--
so,sizl
The term [f(l)ng]'g(r) corresponds to an additional € = @ term in the last

formualation of the summmtion. By renaming these r values for the index £

{ add 1 ) the desired form is obtained.

Some miscellanecus results that will be needed are collected in
Ilomm 8. let Bv be the directinal derivative in direction v € Rn .

i. Lemm 7 holds for £ € C(R) , g € C(R") if 8  is replaced hy BZ
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52+---+5 —1]

I
NS
w
——
0
L
i
L
frmre——————
]
[y
oo
- -
ettt m——
e———
~
nood
NOT
b
[
L s
P —————————
]
i
T
oW
&
]
1 .
- .
{
"
T
[y
Sttt

[FAN
e |
!

iii. For ® € C(R") and for r = |a] ¢ k , if M{lal) is a bound for 8%
vhich depends only on lal , then , for |v] the Exlidean normof v ,
w;bls(ﬁﬂﬁvfnk).
Proof: For i, if £ € C(R"), x , v € R®, and if P, R — R,
p,(t) = x + vt , then {avrfl(x) = [ar(fOpv)](O) .
For ii, the first relation uses 51+52+'x-+se =r . The inequality

follows from

3 r (r-1)1 (r—sl—l)? (r—51—52—1)!

e=1 Is(e)l=r r {s,-1)1{r-sJ¥ (5,-1)1{r-5,-5,)! {s5-1)t({r-s5,-s,75,}!

sigl
(r-s -5, =5, ~1)!
X (5, - 1)1 &
=321 |5(2)|=r [r(r—sl)(r—sl—sz)'--(r—;l—---se_l)][(sl—ﬂ!(sz—l)!---(se—l)!]
s.z1

- E 2 _ II‘ISI—I)?][(P—Sl)(sz—l)?j-"[(!‘—51""—58_1)(58"1)?]

s with this last summtion in

I
NN
w
[
"
X
"
g
e
w
S
[FaY
N
=N e
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multi-index notation {a € N'), vhile for m€ N , a, €R, i=1,2,...,r

r m o, a a
m! 1 72 r
) a’] ) at 1 %2 "% ¢

For iii, use

i=1 i=1
hence
r n n n n
[ el =1y v,a, ««+ Y v o Pl ¥y -3 |u v |Mr)
v t =1 6t t =1 t bt t=1  t =1 4

1%

(o)) mir) .

Now we can complete the bound for IB‘JPDi(m)I .

Levwm 9. For vEIRn,Ivlzl,for‘ r 1, and for

@ = (wl,wz,...,mn) €R '

12n{r+1}

%

13,°D, (@} | < (WA(nt1)r)"((r+1)?)

n{2r+1)’

ru]g )

[

el T

J=1
Proof: From Leibnitz's rule and from Lemma 7 with f£{t) = t_1 '

n
~ 2
= 2 el
1=0
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From Lemmm 6 with g = ¢ s m=min{a.} , M = mx{a.} , and from Lemma 8,
i (O)ai i i i i

r < r] TP oy o min 2
o, o1 < ) [o]oAm eyt Tmints s 52

J=1

172 € £ £1

s, +5. %5 —1] 5,1

1 £+1
€=1 |Is{€)I=p

5.21

n
J=@

2

b4
e

Sy Sy n 2
(oM} (s -t _)tt_t ][ min{1 , o m
ltq] a aa deln)

t

.nL\/_er

q=1

Faor the last factor,

“ 2 Sl [ S n(nﬂ)(s +1) 1 {/aM) "m“{l;-l—z%ﬁ;}z

q=1 j=0 t =@

(using ﬂ'(aj+1)! ¢ {lal+1)? as in the proof of Lemm 6)
J=1
2 28
$ (n+1) (JEM "'mln{l ' TEGTﬁﬂ (p+1})!?
Combining,
"'man(l ' —~2—Eg r
2,7, ()] < re(im)" L ) )
Y I (w)]® p-o
i=0

n 2
(re1) T mint + 770 r

' =
1 4 -~ 2
= IRUACTE
i=0@
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~ n 2
Since IFi(u)]:z gjylmin{1 , Imz.lm} ,
In 2p+1
r " min{1 , lm;.’lm}
18,7, (w} ] < ro(m” } (p+1) tpP (ne1)F 9=1 J
. n ~ 2 p""l
p=0@ lz Ipi(w” }
i=0

n 2r+g
.H min{t , TchTﬁ?}
((r+1) )2 (iw )" (ner)" 421 d

1

5 ar”

To complete the proof apply the Lower Bound Theorem, then apply Lemma 1.

4]
Bt last we bound |5 ", ()] .
lenmsma 19, For vem“, lvl = 1, for r 1, and for
© = (ml,m ,...,mn) e R '
n
2r+3
€, le.])
- n(k+1) F mx{ C , J
|8 rh.(m)l < Ar,k,n,q) M] J=1 '
v i s n 2(1“_12 k+i
Jme{ s 7 lm.il }

here © ez@,ﬁ”’.‘“’r{ “%]4(&1){glzeulu(zem) } ' and where

4,2n 4,2n
8(r,k,n,q) = ((r+1)!)2[k:rJ LEB—J [ 5 + JaM{n+1)r %_ }" ,

o e [z -

0’31""’an} of vhich M and w are the max and

with A the set {a

min , respect ively,
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Praoof: Apply leibnitz’s rule, lLemma 9, and Lemma 6, then use the
inequalities

mx{{%]4(8+1)[§]28+1 , Iw-lu+3} . m“{ _—

and

(tes1) ) LT8¢ (oriyrfens) B5E)L ¢ ((reny)?[57]

r

and finally apply the binomial formula.
1]
We return to owr original goal, a bound for l:}l(x'j” . lemma 5§ and

lLemm 1@ narrow the choices for r and k . By Hilder'’s inequality and by

Young’s inequality, along with "“1"1 =1,

Iy (%) R Rypan(1¥e, ) o | 8 % £ Rppon(18)] |
1% lé@ i Rpaaml I Rpum H % Lo 1 peam ]I

[ FaS

SN R
T NER) 0wl el

1=@
We may assunme that M is a centered cube in ®® with side length B8 . Let

B.(r,k,n,\) bound ||8.5, _ h. | wniformly in x € R® - {@} . Then by
i ®/|xl i 1.A
s
lLemm 35,
~ -~ B. {r,k,n,x) —or 172
Iax) (Rl ¢ ——a0— | [ Ix|I”™ dixi
2 (2n) R'-m

Consequently, we choose 2r : n + 1 . Since "x"m < |x| , we integrate over
{"x"m > B} in the manner as that outlined in the discussion preceeding
Lemma 3:

Bi(r,k,n,h)

Y A s
h. 1- < 2 |=
i) gl < = 2 |5

From Lemm 1@ Bi(r,k,n,k) can be determined.

2r-n
] 2
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lewss 11. For v, r , e, &, C, and A as in lemm 10,

1]

2n(r+2) {mm{l,_%;}n “ N+ (em)N*1 ] _1]}

for k-2r -2#1, for )s=€n-2—(§;1)—.¢€m—{9}:l‘={"‘-’“

1

r n
lla, hiﬂl . ¢ f{r,k,n,A) 2" K N1

vhere

@ if X <K
N=2r+2 -k, u={

. Rl=mx{ﬂf‘—;—1-l,c}.
1 if A K

Proof: Note that each occcurrence of l(%)- in the first inequality of

Lemma 1©® may be replaced by K Thus, by ILemma 1 and Lemma 2 cowbined,

G

n
oy ) nik+1 2r+3-k-1
Iaurhi(m)[ ¢ A(r,k,n,4) K, (k+1) I max{ K, |c.c-J| } .
: j=1
Integrate, treating separately "m"cogxl and "m"m)lll . For example, for

n
A * K, and using K = U {]mi|=|[a\"m}
i=1

1
n{k+1) n 51 oN _n-1
e, "h, il 4 = IR3, "h, il ¢ 8(rykyn,4) K n2 ,{ R,y dy
» N Y N
+n2® [ §N ﬂ f R, dy. + IY-dY-]dy}
K iog i
1 1
N+i,n
A ) a0 (3
N+i
N+l N+1
Note that, regardless of the sign of N , { N+(A/K ) l b [ N+ (&n) ] .
N+1 N+1

o
From Lemma 10 Bi(r,k,n,x) can be chosen to be independent of X\ . For if
k1 ) 2r+3+1 then |3 'h.| is in LYy . Explicitly,

Corollary. For k) 2r + 3, ( i.e., N ¢ -1 )

h I n
r™~ r- n nir+?2 -N
"at] 1"1 : "aq 1“1 L !l(r,k,n,g) 2 K.l ( ) _(__(_)__)rl]
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In lemma 5 it was seen that r could be as large as k+l1 . However, r
must be less than half of this value for the Corollary to apply. For exanple,
the Corollary does not apply for k<5 . For k=% , r can be no greater

than 2 . In this case, DZ(HJ) decreases as )\—13/2

vhile rpl(x.j)
decreases as ,8_1 for n=2 . To hawe nl(xj) converge wore rapidly we
must choose between large values for k , and hence for K1 , and a bound for
nl(x‘i) which depends on X .

We can finally state our bound for lnl(x‘i)l . UWe conclude this section
by collecting the results in

Theorem.

For E a cowpact subset of R y for ¥ =¢ as defined above, for

(K>s
1,2 . )
£ € LR, for By o Ry s Rpyps ¥ 0 (85} ey » and g as defined

abouve, and for k > 3,

ey = g | T (exe)np)e; - 3 LALEA) T g v Cpanpa a0 I

JEJ JEJ i=@
¢ max{ In, () [YIRHL, + maxd Iy () IR, -
J J

e o €=Q,q??'l’r{ [%]q(e+1)[g]ze+1]1/(2e+3) } ' and 1ot
120 o312
e R e
) ' 4

with A the set {ae,al,...,an} of which M and m are the mex and

min , respectively. Let K, = mxi20) el oa o g2 Gith e em .
1 s s
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For 2r > n#l , 2r + 2 -k # -1
2r-n

% . ¢ (nt 1 vh  _rin r ken Zn{r+2) (1] 2
el ()1} ¢ o)l L <2 7 ar o) 3, 4]

e P )

N+ 1

@ if );S.Kl
a={

and vhere N=2r +2-%k,
1 if X} K

1
4 ,1/3
Secondly, for the case 2!%1)- > “%] %“] '

m:}“{ 7y (x ) 1}

n-1

, (nu)ufug[%3]%{%]“{2“;*”]?%[ :n]%[“ Lafe) PN Jtem 220

NI} =
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A discrete implementation of approximate reconstroction

We have in this section the payoff for all of the preceding analysis: We
can erxhibit maps defined on discrete spaces which may be used in a digital
implenentation of the approximate reconstruction. For these maps we dewvelop
the final error terwm Eg

To begin, recall the interpolating function ¢ wused in the Construction
section and in the Interpolation section: ¥ : ' — R along with a discrete
set of points ¥ in R® with index set J ' {RJ}JEJ = § , such that, with
5=ty D) #; =Ry, vhere E is a subset of R with conpact

J J&d
closure. To condense the notation of the previous section, let
H, = (R)fii)v : R — R, i=@,1,...,n ,

(recall h, is symmetric) and let the set ¥+0 be denoted by B . fs in the

Construction section, let

n
G = ) (HX)*u ®f .
i 21

In the preceding sections we have developed the memnner in which Z G(x.i)w,j
JE&J
is an approximate reconstruction of £ . The set ¥ wmay be viewed as the
treconstruction set’ in K .
fi second discrete subset of R® is the tdata set’ i , the set on which
the convolutions yi*f y 1=0,1,...,n , are evaluated. fAs in the Construction

section let Q be the index set for 8, 4 = (xq}qéQ . We shall require

8 >9

for every xqﬁ&,xJES,qGQ,JEJ: xq=x_ & gq=g .
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With this notation the objective of this section is to exhibhit a map

Hi:ﬂﬂﬂ——)m

such that the discrete convolution

G: ¥§F—R
~ n ~
Glx.) = ¥ Y (HXg)(x.-x) [u*€](x )
J i=0 qeQ By q i q
approximates G in the sense that
= I8y T lo(x) -6(x )¢ I, —— 0
4 REJEJ J VIR g

where (8] is a suitable measure of the 'mesh’ of 8 . Here the irregular

notation HiKB is used in place of Hi(Rﬂla) . Also G depends on Q , but

this dependence is suppressed in the notation. We have immediately

£, Sjge) r‘;z}{ {l([Hixﬁ]*#i*f)(x‘j) —ng[HiRz](x‘i—xq) [pi*f](xq)l} "RE"p .

We require that the set Q have associated with it a set § C ®>

With the notation Xg (x) = Rg{w-x ) for q€Q, x €8, x€ R, X the
q

characteristic function of S , the sets 8 and S are to satisfy

i) o, ZRS = ¥ * Ry almost everyvhere , and

R, = Y O(R) almost everywhere
® X €ERW 5 [xq]
q
i¢) for xJEY,for xq, x , €EQ
"RSHI if ®x , =x.-x
(xg W () = {

s ,
a 4g @ otherwise

(i) Bg(-x) =R5(x) , x€R
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With these conditions on S§ and @ the difference in the expression for €4
splits:
JERN AL CH ) [BRg] (x o) Lrg*e] () | (%)
- 1 o ‘ * .
= I[[q.ZEQ[HiRsB R [HiR,‘B](xq,)] qu-] "y £]( i)
i ~
+ [lq-zeQ "——"—RS . [Hixﬂ](xq') qu.] * gq{‘ui*f - [yiﬁf](xq)]?{sq”(x‘j)l .

To def ine Hi and to bormd &, we specify certain remining choices.

4
In particular, let the index set Q be a finite subset of Z® and let Q be

a second finite subiset of Zn. Choose &8 > ©® and A > @ and let

n times
s é 5 8
& = {Hq=fl¢5 ’ qEQ} ’ S = ["'2"!5] X «++ X ["i";f ’
n times
Ead ) S A A A A
a\ = {Ut=tA ] tEQ} [ S - [_i,-z—] )( LI )( [—7’5] y
vhere A and Q are chosen such that, with R (e-ta) =X, (@) , @ ER ,
S S
t
{;RA =R .
teg St

We now define

=
2

)
i

Y (k) (ea) R | (x) Rglxo)

N P 5,
- TR ta) e D (0 )7 (a8) wy(a0)
teQ 5

Theorem. Let p.l*f , i=0,1,...,n , be given on the set 8 , where &

anl Q@ are suwh that condition ¢) holds for given sets E and ¥ . let

nr

Ho , 8, Q , and H. be as above. Let § be a subset of & , with J the

corredsponding subset of the index set Q , such that as above X = R )} 'PJ,
J&sJ
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Then

m
L]

JEJ i=0

gl e, 2] x

am I T T | (gt o)) - qgolﬁim(xd-—xq)[ni*ﬂ(xq) |,

A

n{k+1) nlm"{c r 19 1 }A{A, n\§
2

Jd=
n k+1
" mx{__(.l_{_.‘i)_, I(,}J' }

E{A(x,k,n,m [?-Q;:‘il]

s

o [P B e el 0} ]

where A = {llo]l_A} , A(1,k,n,q) and C are as in Lemm 10 of Approximate

reconstruction, and where K is as in the proof of Proposition 1 of

Approximate reconstruction.

Proof: 1In the following let 1 <r, r' <, with =+ 3, =1 and

"] -

8|"'

=@ . A bound for the first term in the splitting (%) is
1 ~
I[L {%% TR, [Hi%](xq.)] qu'] *ﬂ-*f](“-”

1
I 2 it - gy il 55| el

[Fa

t

H.¥

1
1T 1% - e, [Hixﬁuxq.)] xsq,ur el lel
A bound for the first factor of this bounding product is
I [ - gy il %
q'eQ
{15, ,,—,r[neeu o] B M | gl

q
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We now apply the definition of Hi to bound

“[“i"m‘lré“lr;[“ ()] % L,

1 ~ Lo X . L X
cop {0 ¥ [IRB)e - ®b)(t)e Vda |
X€S (2n) teQ §,
£s h., - h.}{ta) {de
s {(2") [1RE; - () (ta)]

teQ S,

-~ ~ G K LB X
+ JI®RR ) - (BB )(ta)] e e Tlde
S
t - -
¢ JImE)E e = 9l | ]

Cal

5

For €S  and [lef] <A
q feal]

L'X G X

e e Y erlex )] € Jelllen) | £ 2
Conbining these bounds
nax{"[HR “_—"—[n o1 (x )] . ||}
L e sup (1) (@) - (5, (28} 1} I, (14252

(2n ) ’cEQ mES

<

t
mhs
I

bl |

We have "RX".I = (2)\)n ¢ and from the proof of Proposition 1 in ARpproximate

reconstruction

IRl < I WA, < (220”5 ]"’“[ " antiet) 250

where, as alwys, k>3 .
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To bound sup {I(R)‘hi)(w) - (R)\hi)(tﬁ\.) |} we observe that with v = w-ta

l.!-ESt

there exists o' € St such that

(R B )(w) - (RB)(ta)] < |8h, ()]

1A

[F

n‘ax{la g(m')l} ju-tal]
w' €A u/lel i

m{|a i}.(@-n}.ﬂé
o' €A v/luli 2

A

By Lenma 1@ in Approxiwete reconstruction

sup {|(RB;)(w) - (}b;)(¢a)])

mESt

5
mx{C , lw.l}
n{k+1) " T fi
{9(1 k,n,4) [M] =1 }
MEA kt1
“ mx{gﬁﬂ’ la‘ _I }
o1 s J
J_
This Donpletes the bound for the first term of the splitting (%) .

<

For the secord term of the spllttuxg (%) we first use

l[lqz T e (g L ue - [pgf](»«q)]wsq]](xj:
suqlgqm [H;emuxq.) e 1T feive - [yi*ruxq)]xsqu,,.
To bound “ng[ﬂi*f - [pi*f](xq)lksqﬂr, note that, with 1 £ v, v' § o,
1,1 .,
(p€) (n) - [a=€](x ) X (x) ]
1zl 1) s,
sy dp ey = )y ol HEN,. Rg ()
q;Q[ H] x o g
mi nd né tre 1/w
{—] ninf 22 Sl S S L LR
vhere g- max {"x - X || } . The last inequality follows from Lemma 1 of the

HES
q
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Interpolation section and from ¢ fis usual, all occurances of a

@»a, = Hi - i
i
in the last expression may be replaced by w .

1 ~
To bound . X,

I ey (el trg.) ®
{ (H %) ()

lixglly

. use

m X
i,q

T}« o 2 (Rxh IO |

"R“ < R,

[ Fa)

il 2

CiEs ]2“[] "

To conplete the proof, conmbine the above bounds and use r' = 1 1in the bounds

1,

for the first term of the splitting (%) , and use r = v’ =1 in the bounds

for the second term of the splitting (%)
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Discussion

A primary wotivation for exhibiting an explicit error bound was to
determine if a ‘pracitical’ support for the deconvolutors (ﬁiRX)V&B could be
established. A ‘practical’ support would be one for which the side length §B8
of B differed from the side length w of the smallest convolutor by a
factor of several tens. Such an support would be useful for applications.

The bounds established here do not satisfy owr ‘practical’ criterion.

Let us examine the error £ for a specific case. Consider

n=2, A= {1, v/2, J/3} , k>3, and s <1 .
Then
m=1, M=/3, 21&211-2 8, and

{see the Theorew in Approximate reconstruction for definitions)

4 ,1/3
L TR

1 s

Since the side length m=1 of the smllest convolutor is owr wmit in ml ’
it is easy to select a function f and a set E swch that
el < t s tspse, and Rl =2°
(e.g., a simple function with support in E ). For such a case the error ¢
should certainly be no nore than 1 .
Consider £q of the Approximate reconstruction section. In the bound
for ¢, given in that section Inl(xj)] and ‘nz(xj)l have the common

factor

4,2n .10
L = (n+t1}/n [fj—rg-—] [%] = 1.70 x 10° .
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This term also appears in Q(r,k,n,ﬂ) so that
e 2 [k+r r an+2nr (1 2r;n
In (x ] ¢ Jell, —=——— ({r+1)1) 1+rM2"L| LK = ,
| 2 1
J (2n)"/2r-n r P
i

n-1 n
Itz g My
1 en

12 2
Inglx) | < lell, [5] 3% L
If k=3 then for ¢ ¢ ||, it is necessary that |n2(xJ)l z |lgfl, which

requires that

For lnl(xd)l to not exceed |n2(xJ)[ it is necessary that

n
e

1
B 2 y (en)1/2 Kln(2r+§)

 d
vhence, for r = 2 ,
B (83)1/2 89 > 221+27 - 248

Clearly, such estimates are not ‘practical’. Similar relations hold for &

and & that appear in the bound for Eq°
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