Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnetoelastic Coupling in NiMnGa Ferromagnetic Shape Memory Alloy

    Thumbnail
    View/Open
    umi-umd-3921.pdf (1.960Mb)
    No. of downloads: 3885

    Date
    2006-11-21
    Author
    Zhao, Peng
    Advisor
    Wuttig, Manfred
    Metadata
    Show full item record
    Abstract
    NiMnGa alloys have attracted extensive attention because their ferromagnetic characteristic provides an additional degree of freedom to control both the shape memory effect and the multi-stage phase transformations in this Heusler system. Technically, along with the large magnetic-field-induced strains, NiMnGa alloys exhibit giant magnetocaloric effect due to their magnetic entropy changes associated with the coupled magnetostructural transitions. Fundamentally, a sequence of phase transformations, manifesting itself by a rich variety of physical anomalies on cooling to the martensitic transformation (MT) temperature TM, has been established. However, in comparison to the intensive studies of structural transformations, the magnetic properties of NiMnGa premartensite were hardly touched. The purpose of this research is to i) investigate the temperature dependence of the magnetic driving force of martensitic NiMnGa, which is a critical factor to determine the actuation temperature window of this material; and ii) understand the magnetoelastic coupling enhanced precursor effects, especially the unique magnetic behavior of NiMnGa premartensite. The singular point detection technique has been applied to determine the magnetic anisotropy constant K1 of a martensitic Ni49.0Mn23.5Ga27.5 (wt%) crystal. As expected, K1 increases with decreasing temperatures below TM of 276 K, following a magnetization power law K1(T)/K1(0)=(Ms(T)/Ms(0))3. However, the force required to initiate twin boundary motion increases exponentially with decreasing temperature. The combination of both temperature dependences leads to a very restricted temperature window for magnetic actuation using this alloy. The premartensitic transformation has been established by means of neutron powder diffraction and measurements of elastic constants of C44 and C'. The premartensitic phase has been verified by the stiffening of C44 prior to the MT. The slope change of C' at TC positively confirms that the precursor phenomena are enhanced by the magnetoelastic coupling. Magnetic Ni49.0Mn23.5Ga27.5 premartensite is characterized by the coexistence of a finite dc magnetic susceptibility and a vanishing magnetocrystalline anisotropy, distinguishing bcc NiMnGa from the typical magnetic soft materials. This property arises from the competition between the exchange forces of the host lattice and the strong local crystal fields stemming from the tweed.
    URI
    http://hdl.handle.net/1903/4129
    Collections
    • Materials Science & Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility