Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mutational analysis of Human Immunodeficiency Virus type-1 nucleocapsid protein to evaluate its nucleic acid chaperone activity

    Thumbnail
    View/Open
    umi-umd-3840.pdf (2.328Mb)
    No. of downloads: 1617

    Date
    2006-09-15
    Author
    NARAYANAN, NIRUPAMA
    Advisor
    DeStefano, Jeffrey J
    Metadata
    Show full item record
    Abstract
    The highly basic 55 amino acid nucleocapsid protein (NC) that coats the HIV-1 genome has two zinc fingers that differ by five amino acids (strain pNL4-3). Previous work showed that NC's first finger (N-terminal) is primarily responsible for unwinding secondary structures (helix destabilizing activity), while the second (C-terminal) plays an accessory role. The amino acid differences between the fingers are (finger one to finger two): phenylalanine to tryptophan (F to W), asparagine to lysine (N to K), isoleucine to glutamine (I to Q), alanine to methionine (A to M), and asparagine to aspartic acid (N to D) at positions 16, 17, 24, 25, and 27 of finger one, respectively. To determine at an amino acid level the reason for the apparent distinction between the fingers, five point mutants were designed with amino acid residues in finger one incrementally replaced by those at corresponding locations in finger two. Each mutant was analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild type (wt) levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W which had substantially greater helix destabilizing activity than wt NC. All mutants retained wt levels of the condensation/aggregation activity of NC. Unlike I24Q and others, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro recombination assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a "dominant negative" effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity and hence NC's chaperone activity. Preliminary results from in vivo experiments indicated that virus with the N27D mutation is infectious at near wt NC levels. This suggests that aggregation activity may be more important than helix destabilizing for viral viability. Results from two other forms of HIV-1 NC (NCp9 and NCp15) and NC proteins from Simian Immunodeficiency Virus and Murine Leukemia Virus are also reported.
    URI
    http://hdl.handle.net/1903/4078
    Collections
    • Cell Biology & Molecular Genetics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility