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The highly basic 55 amino acid nucleocapsid protein (NC) that coats the HIV-1 genome

has two zinc fingers that differ by five amino acids (strain pNL4-3). Previous work showed

that NC’s first finger (N-terminal) is primarily responsible for unwinding secondary

structures (helix destabilizing activity), while the second (C-terminal) plays an accessory

role. The amino acid differences between the fingers are (finger one to finger two):

phenylalanine to tryptophan (F to W), asparagine to lysine (N to K), isoleucine to glutamine

(I to Q), alanine to methionine (A to M), and asparagine to aspartic acid (N to D) at positions

16, 17, 24, 25, and 27 of finger one, respectively. To determine at an amino acid level the

reason for the apparent distinction between the fingers, five point mutants were designed

with amino acid residues in finger one incrementally replaced by those at corresponding

locations in finger two. Each mutant was analyzed in annealing assays with unstructured and



structured substrates. Three groupings emerged: (1) those similar to wild type (wt) levels

(N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W

which had substantially greater helix destabilizing activity than wt NC. All mutants retained

wt levels of the condensation/aggregation activity of NC. Unlike I24Q and others, N27D was

defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro

recombination assays. Double and triple mutants F16W/I24Q, F16W/N27D, and

F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix

destabilization, suggesting that the I24Q and N27D mutations have a “dominant negative”

effect and abolish the positive influence of F16W. Results show that amino acid differences

at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity and

hence NC’s chaperone activity. Preliminary results from in vivo experiments indicated that

virus with the N27D mutation is infectious at near wt NC levels. This suggests that

aggregation activity may be more important than helix destabilizing for viral viability.

Results from two other forms of HIV-1 NC (NCp9 and NCp15) and NC proteins from Simian

Immunodeficiency Virus and Murine Leukemia Virus are also reported.
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Chapter 1 General Introduction

1.1 Introduction

Acquired Immunodeficiency Syndrome or AIDS is one the leading causes for worldwide

mortality since it was first reported in 1981. AIDS is caused by the Human

Immunodeficiency Virus or HIV which is a member of the retrovirus family (Retroviridae).

Retroviruses contain a highly divergent and large population of enveloped, positive sense

RNA viruses with several common features including viral replication, structure and

composition. They are so named because of a characteristic feature in their replication:

retroviruses make a double stranded DNA copy of their single stranded RNA genome,

contrary to the classical flow of genetic information from DNA to RNA. HIV belongs to the

Lentivirus genus, one of seven genera in the family. Lentiviruses are otherwise called slow

viruses primarily due to their slow growth and long asymptomatic period between initial

infection and appearance of detectable clinical symptoms [1]. A person is said to be suffering

from AIDS when he/she is in the most advanced stages of HIV infection. The Centers for

Disease Control (CDC) defines AIDS as a condition when the T4 lymphocyte count drops

below 200 per cubic millimeter of blood. CDC’s definition also encompasses to some 26

opportunistic infections which are otherwise harmless to healthy individuals [2]. During May

1983 Luc Montagnier and his co-workers at the Pasteur Institute in France reported that they

had isolated a new retrovirus associated with AIDS which they called Lymphadenopathy

Associated Virus (LAV). In April of the following year Dr. Robert Gallo of NCI reported

that his group had determined the causative agent of AIDS and named it Human T-

Lymphotropic Virus Type III (HTLV-III). Subsequently in June of that year, the two groups

announced that LAV and HTLV-III were almost identical. Two years later, the International
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Committee on Taxonomy of Viruses (ICTV) changed the name of the AIDS virus to Human

Immunodeficiency Virus (HIV) [3]. There are two main types of the virus, HIV-1 and HIV-

2. HIV-2 was first isolated in Cameroon in West Africa in 1985. It is less prevalent and

virulent than HIV-1, though still fatal. The genome of HIV-2 is very similar to SIV or Simian

Immunodeficiency Virus [4]. HIV-1 is by far the more predominant form worldwide. There

are three main groups of HIV-1: Group M or “Main” is highly predominant and is

responsible for more than 90% of infections worldwide. It is comprised of nine different

subtypes: A, B, C, D, F, G, H, J, K and various circulating recombinant forms (CRFs) that

were derived from recombination between subtypes. Previously, subtypes E and I were also

categorized under the M Group. The subtypes E and I are no longer designated as two pure

subtypes. They are now being referred to as CRFs. Genetic hybridization between subtypes

A and a “parent subtype E” is thought to have resulted in CRF A/E. A pure isolate of subtype

E has never been reported. Subtype I was initially so named when it was first isolated in

Cyprus. It was then reclassified as a CRF namely CRF A/G/I. It is now believed that this

virus represents an even more complex CRF resulting from recombination between subtypes

A, G, H and K. It has some unclassified genomic regions as well. Group O or “Outlier” is

comprised of strains other than the genotypes found in Group M. It is mainly found in west-

central Africa. Group N or “New” was first reported in 1998 in Cameroon and is extremely

rare [5].

1.2 AIDS prevalence and general epidemiology

Over the past couple of decades the AIDS epidemic has claimed millions of human lives

worldwide. According to the latest statistics released by UNAIDS/WHO in November 2005,

there are nearly 40.3 million people estimated to be living with HIV/AIDS in 2005, out of
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which 2.3 million are children. About five million people are believed to have been newly

infected last year. Further, 2005 saw the death of 3.1 million people due to AIDS. Since

1981, the AIDS pandemic has claimed nearly 25 million human lives worldwide. It is

estimated that around 6000 people worldwide get infected with HIV every day. Nearly 95%

of those living with AIDS reside in developing countries primarily due to poverty, poor

medical and sanitation facilities and a major lack in resources for HIV prevention and

treatment. This number is estimated to increase even further in the future. Some of the worst

struck areas include Sub-Saharan Africa and Latin America and Central Asia. Subtype B is

prevalent in the Americas and Western Europe, whereas A and C are predominant in the

African and Asian continents [6]. The following are the routes through which HIV infection

can spread:

1. Unprotected vaginal/anal/oral sex with an infected person. The infected individual

who harbors the virus in his/her sexual fluids can cause the virus to spread to his/her

partner. Oral sex poses a slightly lesser risk, although it is highly risky if a condom is not

used, and if one partner has an open cut in his/her mouth.

2. Through sharing of infected needles. This mode of transmission is very common

among injection drug users who share needles between themselves.

3. Through infected blood/blood products. This is highly prevalent when unscreened

blood/blood products are transfused from an infected individual to a non-infected one.

4. From mother to child. This could occur between an HIV-positive mother and her

child either during pregnancy/breast-feeding/child-delivery.

5. Exposure to an infected person’s blood. This would happen when sufficient blood

from an infected person enters the body of an uninfected one [7].
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This global pandemic has currently reached epic proportions. Several international

organizations like UNAID, AVERT, WHO, CDC, CIPRA, and NIAID have joined hands in

the battle against AIDS. Despite the advent of several effective therapies, AIDS remains near

the top as a worldwide killer among infectious diseases. Only lower reparatory infections,

which are caused by many different viruses and bacteria, kill more people each year.

Obviously, we need to know as much as we can about the virus and it’s mode of replication

so that potential targets for drug therapy, viral inhibitors and vaccines can be determined.

1.3 Pathogenesis of HIV infection

HIV infects T4 lymphocytes or Helper T cells of the immune system. In a healthy

individual, upon infection and antigen presentation, activated T4 cells produce and secrete a

multitude of interleukins and cytokines in order to activate macrophages, natural killer cells,

CD8+ T cells and other cells of the immune system to fight the infection. There are

approximately 800-1200 T4 cells per mm³ of blood in a healthy person. As HIV invades the

helper T cells, over the course of several years (typically about 10) this number drops to a

staggering 200 or even lower. This leads to a profound immunosuppresion, and the

individual becomes highly susceptible to several opportunistic infections (OIs), cancers etc.

These include a wide range of fungal, bacterial, viral and protozoan infections which are

otherwise harmless in a healthy host [2]. Some of the symptoms seen early during an HIV

infection include: unexplained weight loss, fatigue, headache, recurrent diarrhea, seborrheic

dermatitis etc. During this stage the T4 cells are steadily being depleted. Usually the patient

is put on anti-retroviral therapy at this stage. The T4 cell count is an indicator of the level of

immune depletion in an AIDS patient. Some of the common OIs seen in AIDS patients when

the T4 cell count falls lower than 500 per mm³ of blood are candidiasis, Kaposi’s sarcoma,
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pulmonary tuberculosis, cryptosporidiosis, Herpes Zoster, pneumococcal pneumonia, and

oral hairy leukoplakia. Levels lower than 200 lead to Pnuemocystis carinii pneumonia (PCP,

the number one cause of death in AIDS patients), extra-pulmonary tuberculosis,

Toxoplasmosis and others. Infections caused due to Cytomegalovirus and Mycobacterium

avium are seen when the levels drop further down to 50 [8].

1.4 Anti-retroviral therapy

Unfortunately, to date there is no cure for AIDS or HIV infection. There are anti-

retroviral drugs available that reduce the viral load, slow down and possibly stop disease

progression. Currently, there are five classes of anti-HIV drugs approved by the FDA. They

are:

1. Nucleoside analog RT inhibitors (NRTI): These drugs were introduced in 1987.

They were the first group of anti-HIV drugs available to treat AIDS patients. These are a

class of drugs that interfere with the process of reverse transcription mediated by reverse

transcriptase (RT) enzyme. They are popularly known as “nukes” for nucleoside

analogues. They affect the synthesis of the growing viral DNA strand by competing with

normal nucleotides for binding to RT, then becoming incorporated into the growing

chain. The lack of an extendable 3’ hydroxyl group causes the chain to terminate. Some

examples of this class of drugs include lamivudine, abacavir, stavudine, zidovudine, and

didanosine.

2. Non-nucleoside analog Reverse Transcriptase inhibitors (NNRTI): These are

a class of drugs that are non-nucleoside analogues that also interfere with the reverse

transcription process, although they do so by binding non-competitively to RT.

Commonly known as non-nukes or non-nucleosides, these drugs came to the market
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around 1997. Some examples of NNRTI drugs include delavirdine, nevirapine and

efavirenz.

3. Protease inhibitors: These drugs inhibit the viral protease enzymes that function

later during viral replication. They were approved a couple of years before the NNRTI

drugs in 1995. The protease enzyme functions to cleave precursor proteins into functional

peptides. Defective protease enzymes or lack of protease function results in immature,

non-infectious virions with aberrant core morphologies. Examples of this class of drugs

include ritonavir, saquinavir, nelfinavir and indinavir.

4. Nucleotide Reverse Transcriptase Inhibitors (NtRTI): These function like the

NRTI drugs except that they are nucleotide analogues. They were approved in October of

2001 by the FDA. Tenofovir is one such example of a nucleotide analogue.

5. Fusion/entry inhibitors: This is the fifth and latest class of drugs that have been

recently approved in the US and Europe since 2003. Unlike the above three class of drugs

that interfere with the viral replication steps that occur after viral entry into the host, this

class of drugs acts against HIV prior to its entry into the cell. T-20 is an example of a

fusion inhibitor drug that binds to the membrane-spanning domain of the viral

glycoprotein polypeptide complex namely gp-41, thereby preventing it from fusing with

host cell membrane. Further, entry inhibitors cannot be administered through the oral

route, they need to be injected intravenously to prevent them from getting digested.

More than one anti-retroviral drug needs to be taken at a time for the therapy to be

effective over a long duration. This type of therapy is commonly referred to as combinational

therapy. The low replication fidelity of RT enzyme often causes it to make errors during viral

replication. As a result, several divergent strains of the virus are harbored within the patient.
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During anti-retroviral treatment, occasionally, a strain could emerge which is resistant to a

particular drug. This usually results in failure of the treatment, especially if the patient is not

on any other drug. Highly Active Antiretroviral Therapy or HAART is a highly effective

combination therapy where three or more anti-retroviral drugs, usually with a protease

inhibitor are given to battle drug-resistant mutants [9]. Twenty seven vaccine and fifteen

microbicide candidates were currently undergoing human trials worldwide at the beginning

of the year 2006. Several others are in experimental stages. Only one candidate vaccine,

called ALVAC (a canarypox-based vaccine) in combination with an AIDSVAX (a bivalent,

recombinant gp-120 based vaccine) booster is currently undergoing phase III trials in

Thailand involving nearly 16,000 volunteers. Results from this trial are expected by the year

2010. Four microbicide candidates have also reached phase III trials. These include SAVVY

(a surfactant), PRO2000, Carragaurd and cellulose sulfate (adsorption inhibitors). Vaccines

employing live-attenuated and whole-killed viruses are currently not undergoing human trials

because there is a slight risk that preparations could contain some active virus. Vaccine

designs that involve peptide epitopes of the virus and recombinant viral proteins present

more hope. Vaccines that employ a combination of designs and/or antigens and those that use

bacterial and viral vectors are also promising. The quest for an effective vaccine could go on

for several more decades, and it is highly unlikely that an effective one would be engineered

even by 2015. However, things look brighter in terms of microbicides and researchers

believe that an effective one could be made available by 2012, if sufficient funding and effort

is put in [10].
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1.5 HIV-1 morphology and genome organization

Mature HIV virions are roughly 80-120 nm in size, spherical particles with many spikes

projecting from the outer membrane. A characteristic bullet-shaped core is seen in the center

of the virion which encapsidates the genomic RNAs, other RNAs and many viral proteins.

Early studies revealed that retroviral particles are roughly composed of about 65% protein,

35% lipids and 1-2% RNA respectively. Genomic RNAs account for nearly two-thirds of the

viral RNA, while transfer RNAs, other small RNAs and some host RNAs add up to the

remaining one-third of the RNA content. In pure viral preparations, nearly three-quarters of

the total protein content are composed of Gag structural proteins, followed by the viral

envelope glycoproteins, viral enzyme proteins and some host cellular proteins. The HIV

genome is roughly 9 kb in size. Retroviruses are diploid with a genome comprised of two

positive sense single stranded RNAs that are identical/almost identical to each other. Bender

et al. extracted RNAs from many retroviral particles and examined them under denaturing

conditions. Electron microscopy revealed that they are non-covalently linked at many

regions, the strongest being the 5’ends. This occurs through complementarity between many

base pairs at the 5’ends. This region is called the Dimer Linkage Site (DLS) and has been

demonstrated to be a hot-spot for retroviral recombination in HIV and MuLV (Moloney

murine Leukemia Virus). Hence, the genomic RNA is said to be dimeric in nature. This

dimeric nature of the genome is primarily responsible for the high rate of recombination in

HIV, since sequences from both the RNAs could be copied into proviral DNA during reverse

transcription. Although virions contain two genome copies, only a single dsDNA is

produced. The presence of a second genomic RNA may act as a salvage pathway during

reverse transcription when broken or damaged regions in one of the RNAs are encountered
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reverse transcription can switch to the second. Two genomes also allow for extensive

recombination and therefore greatly contribute to genetic diversity [1].

Figure 1-2 shows the organization of the HIV genomic RNA. It is approximately 9,200

nucleotides in length. The viral RNA shares many similarities to an mRNA. There is a 5’-5’

linkage between the first encoded nucleotide of the genomic RNA and a methylated GDP

residue which serves as a cap at the 5’end. Following the methylated capped 5’end is the R

(Repeat) region. The U5 (Unique sequence at the 5’end) region and the PBS (Primer Binding

Site) sequences are present after this. This is followed by the ORFs (Open Reading Frame) of

the nine genes of HIV. These nine genes code for nine different proteins. Following this are

the PPT (polypurine tract), U3 (Unique sequence at 3’ end) and R regions. The 3’ end of the

genome is polyadenylated. It bears a poly (A) tail composed of nearly 50-200 non-coding A

residues. The virus makes a complete dsDNA copy of the RNA genome. This DNA is

referred to as the proviral DNA after it inserts in the host genome. A schematic of the

proviral DNA is also shown in Fig. 1-2. It can be noted that the proviral DNA contains two

LTR regions at both ends of the genome. These regions are called Long Terminal Repeats

and are found only in the proviral DNA. They are made as a result of duplication of the U5

and U3 regions during reverse transcription. LTRs are very vital for the obligatory second

strand transfer event that occurs during reverse transcription to complete proviral DNA

synthesis. Further, they also contain the promoter sequence which is mandatory for the

transcription event mediated by the host RNA polymerase II enzyme. The 3’ LTRs contain

some polyadenylation sites which are important for transcription as well [1]. Table 1-1 list

the nine genes of HIV and summarizes their function in the viral life cycle.
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Figure 1-1: Schematic of mature HIV-1 virion

Shown above is a schematic diagram of a mature HIV-1 virion. The viral RNA genome
consisting of two single-stranded, positive sense RNA strands coated with the nucleocapsid
proteins are shown. The viral capsid which encloses the genome is shown in blue. The capsid
also encloses the viral enzymes namely reverse transcriptase (RT), integrase (IN) and
accessory proteins namely vpr, nef and vif. The capsid made up of capsid protein (CA) is
surrounded by the matrix (MA). The viral protease enzyme (PR) is found within the matrix.
The matrix is enclosed within the viral envelope. The envelope glycoproteins namely gp120
(SU-surface unit) and gp41 (TM-transmembrane protein) are also shown. Figure obtained
from “AIDS Fact sheets and Brochures – How HIV Causes AIDS” maintained by National
Institute of Allergy and Infectious Diseases
(http://www.niaid.nih.gov/factsheets/howhiv.htm).
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Figure 1-2: HIV-1 RNA genome and proviral DNA

Shown above are the viral RNA genome and proviral DNA. The RNA genome contains a
methylated GDP cap at the 5’end. This is followed by the R (repeat), U5 (unique region at
5’end) and PBS (primer binding site) regions. The t-RNA primer binds to the PBS to initiate
reverse transcription. This is followed by the gag, pol and env coding regions. The PPT, U3
and R regions are found after the coding regions. PPT is the polypurine tract which acts as a
primer for plus sense strong stop DNA (+sssDNA) synthesis. U3 and R regions, respectively,
are unique and repeat regions at the 3’end. The HIV proviral DNA is also shown. The nine
genes of HIV-1 and their respective locations are also depicted. In some cases (Tat and Rev)
the proteins are produced from non-contiguous regions of RNA that are spliced together.
Note the presence of LTR (long terminal repeats) regions on either ends of the genome.
LTRs are very crucial in order to complete second transfer step during reverse transcription.
Figure obtained from “HIV/AIDS Resources on the Internet” maintained by The University
of Zambia, School of Medicine (http://www.medguide.org.zm/aids/HIVgenom.gif).
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Table 1-1
The nine genes of HIV-1

Gene name(s)
(5’ to 3’end)

Proteins encoded
(suffix indicates

molecular mass in kDa)

Function in
viral

life cycle
gag (group specific
antigen)

p17 (matrix)

p24 (capsid)
p7 (NC-nucleocapsid)

nuclear localization of
preintegration complex,
protection, assembly
protection and assembly
protection, assembly,
RNA packaging, integration,
t-RNA binding, nucleic acid
chaperone, enhances RT
processivity, viral recombination

pol (polymerase) p10 (protease)

p31 (integrase)
p66/51
(RT-reverse transcriptase)

cleavage of precursor
polyproteins into functional
peptides
integration of proviral DNA
makes a DNA copy of viral
RNA genome

env (envelope) gp120 (SU)

gp41 (TM)

surface envelope glycoprotein
binds to CD4 antigens on helper
T cells.
transmembrane protein which
mediates fusion with host cell
membrane

tat (trans-activator of
transcription)

p14 activates viral transcription

rev (regulator of
virion protein
expression)

p13/19 splicing of viral RNA,
nuclear export of RNA

vpr (viral protein R) p15 CD4 degradation, enhances
infectivity of virions, interferes
with T cell signal transduction

vpu (viral protein U) p16 release of virions,
CD4 degradation

vif (virion infectivity
factor)

p23 enhances virion infectivity

nef (negative
regulatory factor)

p27 enhances virion infectivity,
interferes with activation of
T-cells, regulates viral replication
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1.6 Viral life cycle

1.6.1 Attachment and entry: The HIV virion interacts with the host cell membrane by

means of the globular surface glycoprotein (SU) gp120. The CD4 antigen present on the

surface of phagocytic cells like macrophages, monocytes, helper-T cells and others serves as

the primary receptor for recognition by gp120. In addition to CD4, the virus needs another

co-receptor for attachment and entry. This co-receptor is of two kinds namely CXCR4 and

CCR5. FUSIN or CXCR4 is an α-chemokine receptor found on T-cells. Hence the syncitia

inducing (SI) strains of HIV-1 which use the FUSIN co-receptor for entry are named T-

tropic. Whereas the non-syncitia inducing (NSI) strains of the virus that use the CCR5 (a β-

chemokine receptor) receptor found on macrophages are named M-tropic. Viral strains that

use only the CCR5 co-receptor for attachment are called R5 while those that use only the

CXCR4 co-receptor are termed X4. This interaction exposes the V3 loop of gp120. The

conformational change in gp120 exposes a fusion peptide in gp41, thereby enabling it to

mediate fusion with the host cell envelope. Once the viral envelope fuses, the capsid

containing the genome and other viral proteins is released into the cytoplasm [11].

1.6.2 Viral replication: Viral replication occurs within the ribonucleoprotein complex

which encloses RNA, RT, NC and other viral proteins. The activity of RT was extensively

studied by Howard Temin and David Baltimore by monitoring replication intermediates in

purified virions. In 1970 their independent discoveries of an RNA-dependant DNA

polymerase or reverse transcriptase was reported and these scientists later shared a Nobel

Prize for the discovery. Reverse transcriptase (RT) is a multi-functional enzyme that

possesses RNA-dependant DNA polymerase activity, DNA-dependant DNA polymerase

activity and RNase H activity. The retroviral nucleocapsid protein (NC) also has a multitude
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of functions during viral replication. The virus generates a complete dsDNA copy of its RNA

genome by reverse transcription. Figure 1-3 [12] shows a schematic diagram of the process

of reverse transcription. The viral genomic RNA is denoted in black; minus-strand and plus-

strand DNAs are denoted in orange and red respectively. The following are the various steps

that occur during reverse transcription:

1. The partially unwound t-RNA primer is annealed to the PBS at the 5’end of the

RNA genome by means of an 18 base complimentary region. RT initiates minus strand

DNA synthesis using the 3’end of this t-RNA primer. Synthesis proceeds till the 5’end of

the RNA is reached generating a short DNA intermediate termed –sss DNA (minus-

strand strong stop DNA).

2. RNase H activity of RT degrades the RNA from the RNA/-sss DNA hybrid. The

complementarity in the R regions between the 3’ends of –sss DNA and viral RNA allows

the first strand transfer/jump of the –sss DNA to the 3’end of the RNA.

3. Extension of the minus strand DNA resumes and continues to the PBS region at

the 5’end of the RNA genome. This is accompanied by RT mediated RNase H

degradation of the template RNA.

4. PPT or polypurine tract remains resistant to the RNase H degradation of RT and

serves as the primer for +sss (plus-strand strong stop) DNA synthesis. Plus-strand DNA

synthesis proceeds till the PBS region on the t-RNA is reached. A modified base at the

19th position from 3’ end of the tRNA results in termination of synthesis after the first 18

bases are copied. Subsequently, RT degrades the t-RNA primer and the PPT region.

5. The complementarity between PBS regions of the minus-strand DNA and the +sss

DNA mediates the second transfer event.
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6. The minus-strand DNA/+sss DNA duplex then circularizes in order to serve as

templates for one another.

7. Synthesis of minus-strand and plus-strand DNA is then completed, thereby

generating a complete blunt-ended DNA copy of the viral RNA genome. Duplication of

the U5 and U3 sequences generates the LTRs (long terminal repeats) on either ends of the

proviral DNA [12].

1.6.3 Integration, assembly and release: The viral DNA then integrates randomly into

the host chromosomal DNA as part of a pre-integration complex. Although integration is

random and non-uniform, highly bent regions such as nucleosomes are preferred target sites.

The integrated DNA is referred to as the provirus. The virus then uses host cell machinery to

generate viral RNA and proteins. Assembly of viral RNA and proteins then begins near the

plasma membrane of the host cell (See Fig. 1-4). HIV packages two RNA genomes along

with viral proteins and host tRNAs into each virion. The viral glycoproteins then associate

with the inner surface of the host cell’s plasma membrane and begin to bud from the cell. The

virion is immature initially. Maturation occurs either in the budding virion or after budding is

completed. Maturation is brought about by viral protease enzymes that cleave precursor

polyproteins into functional peptides and enzymes. This results in the formation of a mature

HIV virion capable of infecting other cells [13], [14], [15].
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Figure 1-3: Schematic of Reverse transcription: Shown is the schematic model of reverse
transcription illustrating the various events described above.



17

Figure 1-4: Viral life cycle

Shown above is a schematic diagram illustrating the various events occurring during the HIV
viral life cycle. The virus first attaches to the host cell by means its surface glycoprotein
gp120. It then fuses with the host cell membrane and releases a nucleoprotein complex into
the cytoplasm. A complete dsDNA copy of the viral genome is made via reverse
transcription. The dsDNA then randomly integrates into the host chromosomal DNA as a
provirus. Synthesis of viral RNA and proteins occurs using the host cell machinery. These
components then assemble near the host cell membrane where packaging occurs. The viral
glycoproteins then fuse with the host cell membrane and immature virions bud off. Viral
proteases complete maturation through proteolytic cleavage. Figure obtained from “AIDS
Fact sheets and Brochures – How HIV Causes AIDS” maintained by National Institute of
Allergy and Infectious Diseases (http://www.niaid.nih.gov/factsheets/howhiv.htm).
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1.7 Reverse transcriptase

The characteristic feature that distinguishes retroviruses from other viruses is the

conversion of their RNA genome into a DNA intermediate which integrates into the host

genome. The enzyme that brings about this “retro” or reverse flow of genetic information

contrary to the central dogma of genetics is reverse transcriptase (RT). HIV RT was

independently discovered by Howard Temin and David Baltimore in the year 1970 and was

heralded as one of the most significant contributions to the field of retrovirology. RT

possesses three independent activities namely: RNA-dependant DNA polymerase, DNA-

dependant DNA polymerase and RNase H activity. HIV-RT is active as a heterodimeric

protein consisting of two subunits with similar amino termini. The larger subunit is called

p66 and the smaller one is called p51. The suffix denotes their molecular weight in kDa. The

p66 subunit is 560 amino acids in length. The p51 subunit is produced as a result of

proteolytic cleavage from the carboxyl terminus of p66. Hence, it consists of the first 440

amino acids of p66. The p66 subunit folds into two domains, the polymerase and RNase H

domain. Since the p51 subunit corresponds to the first 440 amino acids of p66, it contains

only the polymerase domain and lacks the RNase H domain (from the carboxyl terminus)

[16]. The exact role of p51 is still not completely clear. Experiments carried out with HIV-1

specific inhibitors and certain thymidine triphosphate templates suggest that the polymerase

activity lies exclusively within the p66 subunit. Hostomsky et al. have shown that mutations

disrupting the polymerase active site in the p66/p51 heterodimer of RT can be tolerated by

p51 but not by p66. Le Grice et al. have conducted mutational studies in which the p51

subunit was inactivated by mutations and found that all the activities of RT were carried out

by the p66 subunit. This suggests that p51 is not directly involved in the polymerase and
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RNase H activities of RT [17]. Figure 1-5 shows a color-coded schematic ribbon diagram of

RT. RT folds into the characteristic open right handed conformation similar to many other

prokaryotic and eukaryotic DNA polymerases. The three domains namely fingers, palm and

thumb that give it the shape of an open right hand are shown in blue, red and green

respectively. The connection domain between the two subunits is shown in yellow. The

active site of the enzyme is found in the palm domain. The template is held in the groove of

the hand. The thumb touches the minor groove of the template. The fingers enclose the

primer portion of the primer-template hybrid. Larder et al. have shown through site-directed

mutagenesis that the polymerase domain active site contains three aspartic acid residues:

Asp110, Asp185 and Asp186 [18]. This lies in the N-terminal domain as shown in the linear

schematic diagram in Fig 1-6. The RNase H domain lies in the C-terminus and is shown in

gold. The four active site residues of this domain are Asp443, Glu478, Asp498 and Asp549

[19], [20]. Studies have shown that the distance between these two active sites is around

18/19 nucleotides. This is represented linearly as well (See Fig 1-6) [21]. The highly

negatively charged catalytic core formed due to the active site amino acids enables RT to

coordinate Mg2+. Processivity of an enzyme refers to the average number of nucleotides that

it incorporates into the growing nascent strand in a single binding event. HIV-1 RT’s

processivity is approximately 100 which is low for a replicative polymerase. It does not

possess a 3’ to 5’ proofreading/exonuclease activity. Further, it also has low fidelity with an

estimated error rate of 10-4 to 10-5 per base incorporated. The low fidelity coupled with a high

recombination rate is a major driving force for generating genetic diversity that is prevalent

with HIV [22], [23].



20

Figure 1-5: HIV-1 RT

Shown is a schematic ribbon diagram of HIV-1 reverse transcriptase (RT) enzyme. It is a
heterodimeric enzyme that contains p51 and p66 subunits. The p66 subunit contains
polymerase and RNase H domains, while the p51 lacks the RNase H domain. The
polymerase domain bears the characteristic open right hand conformation with the fingers
(blue), palm (red) and thumb (green) domains. The connection domain linking the two
subunits is shown in yellow, while the RNase H domain is shown in gold. Figure obtained
from “Overview of RT Structure” maintained by HIV Drug Resistance Program, National
Cancer Institute (http://www.retrovirus.info/rt/overview_f1.html).
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Figure 1-6: Linear diagram of HIV-1 RT

Shown is a linear diagram representing the two RT subunits, p66 and p51. The p66 subunit
contains both polymerase and RNase H domains and is 560 amino acids in length. The
polymerase active site catalytic residues (Asp110, Asp185 and Asp186) are indicated. The
RNase H active site catalytic residues (Asp443, Glu478, Asp498 and Asp549) are also
shown. The p51 subunit which is produced as a result of proteolytic cleavage from the C-
terminal of p66 is shorter and lacks the RNase H domain. Hence it contains 440 amino acids.
The color coordination between the ribbon diagram shown previously (See Fig. 1-5) and the
linear representation is the same. Figure obtained from “Overview of RT Structure”
maintained by HIV Drug Resistance Program, National Cancer Institute
(http://www.retrovirus.info/rt/overview_f1.html).
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1.8 Recombination and genetic diversity in HIV

HIV and retroviruses in general possesses one of the highest recombinogenic potentials

among viruses. This is well documented by the huge number of recombinant genetic variants

that are found within HIV. As was noted earlier in section 1.1, there are several established

subtypes within the HIV-1 species. These most likely represent divergent evolution from a

common progenitor. In recent years co-infection of individual hosts with different subtypes

has resulted in new circulating recombinant forms (CRFs) that have become established in

various regions of the world. The CRFs contain genome regions derived from two or more

subtypes. The well established CRFs originate diverse recombinant virus forms that are also

found in many regions. The term intersubtype recombinant or ISR is used to refer to these

genetically diverse recombinants. For example, any recombinant containing genome regions

from an A and E virus is an A/E ISR while a specific A/E CRF such as CRF01_A/E is the

most prevalent virus infecting people in Thailand. The huge genetic diversity of HIV-1 has

caused the HIV population to be referred to as a quasispecies which is defined as a “dynamic

distribution of nonidentical but related viral replicons” [24].

HIV continually mutates and generates genetic variants. It circumvents drug therapy by

producing drug-resistant mutants. Several factors have been found to be responsible for the

huge genetic diversity of HIV. They are:

1. Low fidelity of RT enzyme and lack of 3’-5’ proofreading/exonuclease activity.

2. Recombination (This will be discussed in detail shortly).

3. Presence of diploid genome provides a greater chance for recombination during

reverse transcription.
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4. Possible low fidelity of host RNA Pol II enzyme that is involved in the virus life

cycle.

5. High rate of viral replication: As many as 1010 new virions are produced per day

in an infected individual. This increases the potential for a large number of new mutant

strains.

Further, HIV also evades the immune response generated by the host by employing

several pathways. Some of them include:

1. Continual depletion of immune cells leading to progressive immune deficiency.

2. Cell to cell adhesion and syncytia formation causing infection to spread without a

virion being exposed to the blood stream and immune system.

3. Lack of viral proteins in the plasma membrane during macrophage infection

curtails immune stimulation and recognition.

4. Long term latency in some infected immune cells serving as a reservoir for future

infections.

Recombination is one of the main factors responsible for generating genetic diversity

within HIV. The diploid nature of the retroviral genome suggests that recombination may be

a crucial function necessary for the virus to replicate and evolve. HIV packages two RNAs

within each virion. The RNA genomes could be identical or almost identical. This would

likely be the case in cells infected by a single virus as the genomes would be derived from

one provirus. In these cases the fidelity of host RNA pol II would be the major source of

diversity. Although the exact fidelity of this enzyme is unknown, results suggest it has

considerably higher fidelity than RT [25]. Recombination between identical genomes would

not produce genetic diversity. In some cases cells may be infected by more than one virus
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and in these cases multiple proviruses can be made. Different genomes can become packaged

in the same virion in these cells and the impact of recombination is greater. For simple

retroviruses such as spleen necrosis virus (SNV) and MuLV, homologous recombination was

shown to occur in nearly 4% (the rate is much greater in HIV as noted below) of DNAs in

progeny virions during one replication cycle when genetic markers spanning 1 kb were used.

This corresponds to about a 40% chance of recombination per replication round for a 10,000

base genome. The rate of non-homologous recombination is significantly lower; only 1/100

to 1/1000 [26]. Recombination in HIV occurs through a process called strand transfer or

template switching (also called strand jumping). Strand transfer refers to the process by

which nascent DNA being synthesized on one RNA strand (referred as donor) falls off and

jumps onto homologous regions on either the same RNA or on another RNA strand (referred

as acceptor) where synthesis is completed. If the transfer occurs to the acceptor template, the

resultant DNA would be a chimera between the parent and acceptor RNA templates. As

described earlier in section 1.6.2, the process of viral replication requires two mandatory

strand transfer reactions (also called strong stop DNA transfers) in order to complete reverse

transcription. The first strand transfer occurs when the nascent –sss DNA (minus-strand

strong-stop DNA) jumps and anneals to the 3’end of genomic RNA. This is mediated

through complementarity between the R or repeat regions. The second strand jump occurs

when the nascent +sssDNA anneals to the complementary PBS region found in the minus-

strand DNA resulting in circularizing of the genome and completion of plus-strand DNA

synthesis. These strand transfer events occur at the end/termini of the genome. Hence, they

are termed as end/terminal strand transfers. Besides end strand transfer, the virus can also

undergo numerous internal strand transfers which occur randomly anywhere throughout the



25

genome [27], [28]. These events can occur anytime during the minus/plus strand DNA

synthesis. Zhuang et al. have shown that the average rate of recombination in HIV is about

2.8 crossovers per cycle of viral replication [29]. Cell infection experiments conducted by

Levy et al. in T-lymphocytes showed a higher recombination rate of about 10 cross-overs per

replication cycle. Nearly thirty crossover events were reported to have occurred during

infection of macrophages. The latter figure represents approximately one recombination

event for every 350 nucleotides synthesized [30]. In one report it was demonstrated that HIV-

1 recombines ten to twenty times more frequently than MuLV. The reason for the difference

is unclear, although HIV is considered a “complex” retrovirus meaning it produces several

regulatory proteins (Tat and Rev) for example, while MuLV is a “simple” retrovirus. Virion

morphology is also quite different for these viruses [28].

Currently, there are two models that explain the mechanism of retroviral recombination:

copy choice and strand-displacement assimilation. The copy choice model explains strand

transfers that occur during minus-strand DNA synthesis. According to this model, the nascent

DNA switches from one RNA template to another during minus-strand synthesis. This model

is a modified version of the original “forced copy-choice” model which postulates that breaks

in the RNA genome force the nascent DNA to switch templates in order to complete

synthesis [31]. Subsequently it was shown that breaks were not required for strand transfer to

occur. Experimental evidence provided by Hu and Temin showed that while γ-radiation,

which induced genome breaks, reduced the recovery of viral RNA, it did not increase the

frequency of viral recombination [32]. Efficient recombination was reported in experiments

where unbroken RNA templates were used [33]. DeStefano et al. have shown that efficient

template switching occurs between internal regions of RNA templates [34]. In regions of
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unbroken RNA, other factors such as the presence of secondary structures could cause

stalling of RT, thereby inducing strand transfer. The strand-displacement assimilation model

explains strand transfers that occur during plus-strand DNA synthesis. This model was

proposed based on observations made on H-branched structures that are classified as

intermediates during recombination [35]. Though plus-strand synthesis is initiated

predominantly at the polypurine tract, several reports have demonstrated that in some

retroviruses, it could be initiated discontinuously throughout the genome at many points [36].

According to this model, at any given time, there are many nascent plus-strand DNA

fragments bound to the minus-strand DNA template. The 5’ends of these nascent plus-strand

DNAs tend to get displaced by the 3’ends of the preceding plus-strand DNAs. This results in

the displacement of such nascent plus-strand DNAs. These displaced fragments could either

base pair with the other minus-strand DNA template or randomly integrate themselves

between the remaining plus-strand DNA fragments bound to the parent minus-strand DNA

template. Either pathway would result in genetic recombination. It should be noted that this

model requires the presence of two minus-strand DNA copies of the homologous region

where recombination could potentially occur. Results indicate that majority of recombination

in retroviruses occurs during minus strand DNA synthesis, probably by copy choice.

1.9 Nucleocapsid protein

The nucleocapsid protein (NC) of HIV-1 is a small (55 amino acid) protein that coats the

genomic RNA in the mature virion. The presence of fifteen arginine and lysine residues

makes it highly basic. It has a net positive charge of +13 and a pI between 10.0 and 11.0.

Nearly 2000 molecules of NC are found within the virion core [37]. The gag gene of

retroviruses encodes the Gag precursor polyprotein. Retroviral internal structural proteins are
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derived from Gag. It is involved in copackaging of two unspliced RNA genomes and hence

plays an important role in viral assembly. After assembly, the immature virion buds off.

Maturation could occur either at the time of budding or after budding. It involves cleavage of

precursor polyproteins by the viral enzyme protease to yield smaller functional proteins. NC

is produced as a result of this proteolytic cleavage [38], [39]. All known orthoretroviruses

(except spumaviruses) contain one or two -Cys-X2-Cys-X4-His-X4-Cys- (CCHC) zinc finger

motifs as part of NC. Figure 1-7 shows a schematic diagram of HIV-1 NC. In solution, HIV

NC contains two rigid fourteen residue CX2CX4HX4C (where X can be any amino acid)

motifs, where three cysteines and one histidine coordinate one zinc ion. The strong

coordination between the zinc ions and the fingers exists in virions and under in vitro

conditions as well. The presence of a cluster of arginine or lysine residues near CCHC motifs

is typical, and this is seen in NC as well. The two zinc fingers of NC are connected by a

highly basic seven amino acid linker (RAPRKKG) [37], [40], [41]. The proline residue found

in the linker has been shown to slightly bend the linker such that proximity between the two

fingers is increased [42]. Changes that affect zinc binding or deletion of zinc fingers are not

tolerated resulting in defective RNA packaging or absence of genomic RNA in virions. Thus,

zinc fingers are potential targets for anti-viral agents that eject zinc. The two zinc fingers of

NC are flanked by the N and C terminal tails. The tails have been shown to be highly flexible

and possess no predicted structure by NMR [42]. However circular-dichroism studies have

predicted that N and C terminal regions could form helices and that there is clustering of the

N-terminal basic amino acid residues on one side of the predicted helix [43]. The 120 nt

(nucleotide) long viral packaging signal called the ψ site is found at the 5’end of unspliced

RNAs. NMR studies have revealed interactions between NC and four RNA stem loops (SL1-
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SL4) that constitute the ψ packaging signal. These interactions are crucial for viral assembly

and packaging. More specifically, the following interactions were found between NC and

SL3. The lysine (Lys3) and arginine (Arg10) residues at the N-terminal zinc finger form a 310

helix. This helix binds with the major groove of SL3. There is a hydrophobic pocket within

finger one which is formed of Val13, Phe16, Ile24 and Ala25. Hydrogen bonding occurs

between the guanosine residues of the RNA and amide atoms of Phe16 and Ala25. Another

hydrophobic cleft consisting of Trp37, Gln45 and Met46 is found in finger two. This is

formed due to hydrophobic interactions between the side chains of these residues.

Electrostatic interactions are found between Arg32 and negatively charged phosphodiester

backbone of the RNA. There are few differences between NC interactions with SL2 and SL3.

The 310 helix binds to the minor groove of SL2 and predominantly, electrostatic interactions

occur between NC and SL2 [44].
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Figure 1-7: Schematic of HIV-1 pNL4-3 nucleocapsid protein

Shown is a schematic diagram of HIV-1 nucleocapsid protein (NC). It is 55 amino acids in
length and contains 15 arginine and lysine residues. NC contains two CCHC zinc fingers
motifs. The fingers are numbered from the NH2 terminus and are termed as F1 and F2. The
three cysteines and one histidine residue in each finger serve to coordinate one zinc ion. The
amino acid differences between the two fingers are indicated in red.
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NC is a multifunctional protein and contributes significantly to several important steps in

the viral replication cycle [37], [45], [46], [47], [48]. Thus, NC is a potential target for NC-

inhibitor drugs [49], [50], [51] and vaccine development [52]. NC coats the viral RNA,

though not completely at saturating levels, thereby protecting it from nucleases [53].

Although NC binds to both RNA and DNA, it exhibits preferential binding to single-stranded

nucleic acids. NC has been shown to bind to RNA in the following order of preference:

retroviral RNA > mRNA > rRNA > poly r(A) [37], [54]. NC is involved in several steps

during viral replication. Reverse transcription is initiated by the host t-RNALys,3 primer that

remains bound to the PBS region of the viral genome. NC enhances the unwinding of the t-

RNA primer [47], [55] and stimulates its annealing to the PBS [56], [57], [58]. Similar

properties were also observed in in-vitro experiments conducted with MuLV NC mutants,

where basic residues of this NC were shown to enhance t-RNA annealing [59], [60]. NC has

been shown to modestly enhance the processivity of RT during reverse transcription [61],

[62], [63]. In vitro studies have revealed that NC stimulates and modulates the RNase H

activity of RT [64], [65]. NC has been shown to stimulate both minus and plus-strand strong-

stop DNA transfers and viral recombination in general [66], [67], [68], [69], [70], [71], [72].

More specifically, the levels of transfer efficiency in the first strand transfer event increase

by nearly 60% upon addition of NC [41]. Wu et al. have monitored plus-strand strong-stop

DNA transfer in detail both in endogenous and reconstituted systems. They have

demonstrated that NC facilitates removal of the t-RNA primer to complete annealing of PBS

sequences during the second strand transfer reaction [73]. In particular, Guo et al. have

shown that the invariant zinc fingers of NC are important for complete t-RNA removal [46].

Results
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Figure 1-8: HIV-1 NC-SL3 ψ RNA complex

Shown is the ribbon diagram of HIV-1 NC SL3 ψ complex. The color coding is as follows:
RNA-gray; first zinc finger-turquoise; linker-yellow; second zinc finger-green; zinc atoms-
white spheres; 310 helix-blue; Colored nucleobases in RNA: A8-blue, G9-dark orange, G7-
violet, G6-light green. Figure obtained from De Guzman et al [44].
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from many reports indicate that NC also reduces RT pausing and promotes internal strand

transfers throughout the genome [45], [63], [67], [71]. Studies show that NC is possibly

involved in the integration and protection of the newly synthesized viral genome [74], [75],

[53], [76]. As described previously, specific interactions between the NC part of the Gag

precursor polyprotein and the ψ packaging signal have been observed [77]. Thus, NC is also

involved in recognition and packaging of the genome [78], [79], [80], [81]. Upon budding

from the host cell, the virion is immature. The two almost identical RNA genomes are held

together loosely by weak interactions at the 5’ends. During maturation, the RNA dimer

undergoes conformational changes which enable it to become more compact and

thermodynamically stable. NC has been shown to enhance the formation of a dimer which

has the maximum number of base pairs. This enables the genome to overcome the

unfavorable loop-loop dimer conformation and assume a more compact and stable form [82].

NC has been shown to play a role in genomic maturation by promoting dimerization between

the two RNAs [83], [84], [85]. Thus, it can be clearly seen that NC is involved in several

steps of the viral replication cycle.

NC is a classic example of a nucleic acid chaperone protein [37], [41]. Chaperones are

proteins that help nucleic acids to attain the optimal thermodynamically stable conformation.

These proteins transiently break base pairs in nucleic acids thereby unfolding them.

Subsequently they catalyze the re-pairing or annealing of free bases into an optimal

conformation that has the maximum number of base pairs. This enables nucleic acids to

overcome suboptimal conformations and unfavorable kinetic traps [86].

One report has demonstrated that NC inhibits annealing of very short, unstructured,

complementary sequences [87]. NC presumably accelerates annealing of non-structured
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complements provided that they are long enough to form a stable hybrid capable of

overcoming NC's helix-destabilizing activity. The observed inhibition could be due to short

regions of complementarity. This is further supported by results showing that NC can also

inhibit binding of longer complementary regions when non-complementary bases that

weaken the hybrid are inserted along the region [88]. Several reports demonstrate that NC

enhances annealing even on non-retroviral nucleic acid templates [89], [63], [90]. Thus, the

chaperone activity of NC has been well documented by several studies conducted on

different types of nucleic acids.

The biochemical activity of NC is critical for all of its functions. Several studies have

been conducted to gain knowledge in this area. Work done in this thesis sheds light onto two

very important aspects of NC’s nucleic acid chaperone activity; namely helix-

destabilization/unwinding and aggregation/annealing. The former is essentially due to NC’s

ability to weaken Watson-Crick base-pairing in helical structures while the latter effectively

concentrates nucleic acids by causing them to aggregate. Previous work in this lab and others

demonstrated that the N-terminal zinc finger (finger 1) of NC is pivotal for helix-

destabilizing while the second finger seems to play a lesser role in this activity [91]. The

basic approach used in this thesis was to make mutations in finger 1 in an attempt to

understand which of the amino acid difference between the two fingers is responsible for

their functional differences. A detailed understanding of how NC functions at an amino acid

level could potentially help us to uncover ways to target this protein. This could aid in

designing molecules that bind tightly to NC and prevent it from interacting with nucleic

acids.
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Chapter 2 Evaluation of the chaperone activity of HIV-1 nucleocapsid
protein at an amino acid level

2.1 Introduction

HIV-1 NC acts as a nucleic acid chaperone. As discussed earlier in Section 1.9, NC’s

chaperone activity participates in a multitude of functions that it executes throughout viral

replication. Upon binding to nucleic acids, it can transiently break base pairs. This enables

kinetically trapped nucleic acids to overcome suboptimal conformations. The free bases are

now available for re-pairing. NC then catalyzes their rearrangement into optimal

conformations with the higher thermodynamic stability. However, the exact mechanism by

which this activity is initiated is still not well understood. Such nucleic acid chaperone

proteins are also found in prokaryotes and eukaryotes. For e.g., E.coli SSB (single-stranded

binding protein) has been shown to unwind secondary structures and neutralize negative

charges on the phosphate backbone of nucleic acids, thereby catalyzing annealing of

complementary DNA strands [92]. Pontius et al. have shown that the human A1 hnRNP

protein enhances strand exchange and annealing between nucleic acid complements [93].

Williams et al. have conducted in depth studies in gp32 (gene 32 protein) found in T4

bacteriophages. Destabilization of duplexes by gp32 and specific binding to single-stranded

DNA is vital for phage replication, recombination and repair. However, unlike E.coli SSB

and T4 gp32 which can bring about complete helix destabilization, HIV-1 NC is relatively a

much weaker duplex destabilizer [94]. Thus far, approximately 50 different proteins from

virus, eukaryotes, and prokaryotes have been identified as potential nucleic acid chaperone

proteins (For a list see: http://mendel.imp.ac.at/home/Birgit.Eisenhaber/RNA-

chaperones/list.html).
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Many attempts have been made to further investigate the role of specific regions in NC

responsible for its chaperone activity. Both the flexible backbone and rigid finger regions of

NC are of prime importance. However, experiments conducted with finger deletion mutants

demonstrate that zinc finger architecture does not appear to be significant for enhancing

tRNA annealing and genomic RNA dimerization. In vitro tRNA annealing experiments were

conducted using NC mutants where the three cysteines residues were replaced by serines

(SSHS NC). Results showed that SSHS NC was comparable to wt NC [47]. However, recent

studies indicate that this may result from the mutual cancellation of two factors: SSHS NC is

less effective than wt NC as a duplex destabilizer, but more effective as a duplex nucleating

agent due to increased flexibility [95]. In vitro assays conducted by Heath et al. have shown

that NC finger mutants with little apparent unwinding activity can also stimulate the

hybridization of non-structured nucleic acid complements, presumably because wt NC’s

aggregation effect is not lost [91]. In contrast, results also indicate that the fingers are

important for viral packaging [96], [97], minus-strand strong-stop transfer and recombination

in general [46], [98]. Cellular infections with NC mutants demonstrated the pivotal role of

both fingers in dimer formation and general viability [99]. The unwinding ability of NC also

requires zinc fingers, in particular finger one [91]. Studies conducted with mutant NC

proteins indicate that 1.1 NC (a mutant NC that has two copies of finger one) and SSHS NC

(with an inactivated finger two) retain unwinding activity. In contrast, 2.2 NC (a mutant NC

that has two copies of finger two) and SSHS NC (with an inactivated finger one) have little

unwinding activity [91]. A finger switch mutant termed 2.1 (where positions of the two

fingers are interchanged) also retained partial unwinding activity suggesting that both context

and amino acid composition play important roles [91]. Further, truncated NC proteins lacking
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the first 12 N-terminal non-finger amino acids (NC 12-55) showed no reduction in helix-

destabilizing activity. Single molecule stretching experiments conducted with NC mutants

have shown that finger one is crucial for helix destabilization and enhancement of helix to

coil DNA transitions [100]. Experiments that measured binding of complementary DNA to

the highly structured HIV-1 TAR region (an assay that mimics the first strand transfer event

with –sssDNA transferring to the 3’ R region) revealed that finger one is vital for optimum

annealing. Mutations in finger two did not affect NC’s annealing ability to a great extent.

Guo et al. have demonstrated using NC finger mutants that both context and amino acid

content of fingers are critical for both minus and plus-strand transfer reactions. Thus, NC’s

chaperone activity has been extensively studied and well documented [98].

A clearer understanding of NC’s chaperone activity in viral replication would require in

depth knowledge of NC’s nucleic acid binding properties. Within the mature virion, NC is

tightly associated with the genomic RNA. Although it binds to both RNA and DNA, it

exhibits preferential binding towards single ss RNA over ss DNA. However, binding affinity

of NC to both ss and ds DNA has shown to be similar by fluorescence experiments [101].

Further, it exhibits both general and sequence specific nucleic acid binding properties

which are complex and ionic-strength dependant. Surface plasmon resonance experiments

have shown that NC binds preferentially to TG repeats in DNA. This was observed with UG

regions as well when tested with RNA [102], [103], [104]. Further, NC demonstrates

preferential binding towards GNG sequences in single-stranded loop regions [77], [44].

Results indicate that NC exhibits non-specific binding towards t-RNA primers. This is in

consensus with the fact that NC does not play a role in t-RNA primer selection [105]. The

intrinsic fluorescence of NC’s Trp-37 residue and CD-spectral studies has given useful
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insights into its binding site sizes [90]. Early studies that monitored NC71 binding to poly(A)

have shown the apparent binding site size (napp) to be different under varying protein:nt

ratios. The n value was found to be 14 and 8 under low and high ratios respectively.

However, upon deletion of 14 residues from the COOH terminus to produce the mature

NC55, this variant behavior was resolved and a consistent napp value in the range of 6-7 was

obtained. The general consensus is that mature NC’s binding site is between 5-8 nucleotides

[38], [102], [90], [105], [106], [54], [107], [108].

The ability of NC to bind stochiometrically to varied nucleic acid structures stems from

the high flexibility of its backbone. This has been demonstrated through biophysical

experiments by several groups [109], [110], [111], [112], [113], [114]. The large number of

polyelectrolyte interactions between NC and the phosphate backbone of nucleic acids

supports the hypothesis that the binding event mediated by NC is significantly driven by a

large efflux of cations (For e.g.: Na+ ions). This is clearly demonstrated by NC’s salt-

dependant duplex stabilizing effect [102], [115], [105], [108], [116]. NC bears close

resemblance to several cationic ligands like polyamines, polyLysine, cobalt hexamine3+ and

Mg2+/ Ca2+ in these aspects. These ligands are highly mobile in nature, bind nucleic acids

non-specifically and bring about nucleic acid aggregation similar to NC [117], [118], [119].

A wealth of information about nucleic acid binding properties of NC has been obtained

by studying binding interactions between NC and the ψ packaging signal located at 5’end of

the viral genome. The ψ site is 120 nucleotides long and contains sequences essential for

viral packaging during assembly. Four stem loops namely SL1, SL2, SL3 and SL4 have been

proposed to be formed by these nucleotides. Several groups have extensively studied the

binding of NC to these stem loops. However, there were significant differences in Kd values
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determined. This seemed to depend on the type of NC used, buffer conditions and techniques

used for analysis. Kd values of 100-320 nM were observed with SL1 and SL4 indicating

weaker binding. The highest binding affinity was reported with SL2 and SL3 with Kd values

ranging between 20-30 nM [116]. Assays done with DNA analogues of RNA stem loops

revealed that NC binds less tightly to the former [115], [120], [121], [122]. Computational

studies have also shown that the maximum contribution towards binding energy in both

complexes is from electrostatic interactions between NC-stem loop complexes. Further,

while Lys26 residue of NC seems to be very significant for electrostatic binding to SL2,

basic residues in the N-terminal helix and finger one seem to be important for electrostatic

interactions with SL3 [123]. As mentioned earlier in Sec 1-9, in the NC-SL3 complex, the

lysine (Lys3) and arginine (Arg10) residues at the N-terminal zinc finger form a 310 helix.

This helix is well packed against the first zinc finger and hence is able to penetrate into the

major groove of SL3. However, interactions between SL2 and the 310 helix occur at an A-U-

A base triple region in SL2’s minor groove [77], [44], [124]. There are lots of similarities

between NC interactions with SL2 and SL3. In both cases, intramolecular salt bridges are

formed by basic residues which minimize electrostatic repulsions. Further, NC’s zinc fingers

show preferential binding towards ss loop regions, while the highly positively charged N-

terminus binds to the ds stem of the RNA hairpin [77], [44]. Steady-state and time resolved

fluorescence studies have also shown that the interaction between Trp37 and guanosine

residues depends on its location in the C-terminal zinc finger and correct folding of the

finger. While Phe16 contributed vastly to the binding energy, Trp61’s (in NC71) contribution

was minimal. Further, electrostatic interactions between the N and C terminii of NC and SL3

were stabilized by the stem loop structure of SL3 (See Fig. 1-8). Also, Vuilleumier et al.
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point out that strong binding affinities are not observed during selective binding by NC since

it probably recognizes nucleic acids via a small number of sites [115]. Lastly, while

nitrocellulose filter binding assays show that NC binds tightly to SL4, gel assays and NMR

studies demonstrate otherwise [125], [126].

As described earlier in Sec 1-8, minus-strand transfer generates a minus DNA copy of

the RNA genome. Earlier, minus strand transfer was thought to be an intermolecular reaction

(occurs on the other genomic RNA) [127]. However, subsequently it was also shown to be

intramolecular (transfer occurs on the same genomic RNA template) [128], [129]. As

described earlier in Sec 1-9, several groups have demonstrated using in vitro assays that

HIV-1 NC enhances the rate of minus-strand several fold. HIV-1 NC has been shown to

enhance minus strand transfer by facilitating annealing of the R regions and accelerates this

step by nearly 3000 fold [72]. The R region contains the highly structured TAR element.

Hence, this reaction is most likely brought about by the helix-destabilizing activity of NC

[46], [98], [72], [87], [100], [130], [91]. NC mediated unwinding of secondary structures in

the R region is thought to be the rate limiting step in this reaction [72]. NC also plays another

important role during minus-strand transfer. It inhibits self-priming at the 3’end of –sssDNA.

This is a dead-end, non-specific reaction resulting in the formation of TAR-induced fold-

back structures that competes with the minus-strand transfer step. Several investigators have

conducted in-depth studies in this area. There are conflicting reports on the effect of NC on

inhibition of self-priming in the absence of acceptor RNA. However, there is a general

consensus that self-priming is greatly reduced when both acceptor RNA and NC are present,

resulting in increased rate of strand transfer [131], [68], [46], [98], [132]. This demonstrates a

typical case of NC’s chaperone activity. Here, the hybrid between –sssDNA and the acceptor
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RNA is more stable than self-primed products or either reactant [133]. Biophysical

experiments have given useful insights into NC mediated inhibition of self-priming. FRET

assays showed that in the presence of acceptor RNA, most TAR DNA hairpins were

unfolded. While, in the absence of complementary RNA, although NC enhanced fraying of

TAR DNA ends is observed, it was unable to fully unwind the hairpins. This clearly explains

why NC is unable to inhibit self-priming under such conditions [134].

Annealing of complementary PBS segments at the 3’ends of minus DNA and +sssDNA

constitutes the second strand transfer step. NC plays two important roles during plus-strand

transfer. It facilitates removal of the t-RNA primer from minus DNA and stimulates

annealing between minus DNA and +sssDNA. NC enhanced plus-strand transfer is another

clear manifestation of its nucleic acid chaperone activity. A parallel situation is seen during

NC catalyzed minus-strand transfer when it mediates removal of 5’donor RNA fragments

from –sssDNA, thereby favoring formation of a more stable RNA-DNA hybrid [82].

However, in addition to these two terminal/end strand transfer events, the viral genome

also undergoes transfers internally along the entire genome. They have been shown to occur

at a greater frequency during minus DNA synthesis. Internal strand transfers during minus

strand synthesis are believed to occur due to several reasons include a break/damage in the

genome and secondary structures/specific sequences that hamper the progress of RT along

the genome. Such regions are termed pause sites. Refer to Section 1.8 of this thesis for a

detailed discussion on internal strand transfer.

Previous results from our lab and others (as discussed above) have shown that the first

zinc finger of NC is primarily responsible for its helix destabilizing activity whereas the

second finger plays an accessory role by enhancing annealing further [91]. It is not clear what
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causes this discrepancy between the activities of the two fingers. There are five amino acid

differences between the two zinc fingers of NC in HIV-1 clone pNL4-3. These include

(finger one to finger two): phenylalanine to tryptophan (F to W), asparagine to lysine (N to

K), isoleucine to glutamine (I to Q), alanine to methionine (A to M), and asparagine to

aspartic acid (N to D) at positions 16, 17, 24, 25, and 27 of finger one, respectively (See Fig.

1-7). We wished to determine at an amino acid level the reason for the apparent distinction

between the two fingers. Work presented in this thesis evaluates the helix destabilizing

activity of NC by analyzing NC mutants in unwinding and annealing assays with structured

and unstructured substrates. Nitrocellulose filter binding assays were performed to see if the

mutations affect binding to nucleic acids as this may play a role in unwinding activity.

Further, this would also give us additional insight into binding affinities of amino acid

residues vital for NC’s helix-destabilization function. We have also developed in vitro

systems using purified proteins and virus-derived nucleic acids substrates to model and test

internal strand transfer events. Previous results have shown that NC activity is more

important for allowing transfer on structured substrates such as the gag-pol frameshift region

whereas a smaller effect was seen with sequences from relatively unstructured regions. NC

finger mutant 1.1 was able to greatly enhance transfer and 2.2 had a lesser effect on gag-pol,

while both had a similar effect on an unstructured region from the env gene [135]. All of the

NC mutants were assayed to determine if and to what extent (relative to wt NC) they can

stimulate strand transfer. This would further allow us to assess the importance of specific NC

amino acids. In this case their direct role in the recombination process, rather than just

unwinding will be tested. We hypothesized that there will be a correlation between NC’s

unwinding activity and stimulation of strand transfer on the gag-pol region. Results show that
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isoleucine at position 24 and asparagine at position 27 contribute most significantly to the

difference between the two fingers with respect to chaperone activity.
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2.2 Materials

DNA oligonucleotides for the fluorescence resonance energy-transfer (FRET) assays and

hybrid gel-shift annealing assays were purchased from Integrated DNA Technologies

(Coralville, IA). T4 polynucleotide kinase, Klenow polymerase and RNase-free DNase I

were from New England Biolabs (Ipswich, MA). SP6 polymerase, dNTPs, DNase-free

RNase and calf intestinal alkaline phosphatase (CIP) were from Roche Applied Science

(Indianapolis, IN). RNase inhibitor (RNasin) was from Promega Corp. (Madison WI).

Radiolabeled [γ-32P] ATP was obtained from Amersham Biosciences (Piscataway, NJ).

Sephadex G-25 spin columns were from Harvard Apparatus (Holliston, MA). DE-81 filters

and cellulose nitrate membrane filters were from Whatman Inc. (Florham Park, NJ). PCR

primers for the strand transfer assay were purchased from Integrated DNA Technologies

(Coralville, IA). Plasmid pNL4-3 which is a complete HIV-1 proviral clone derived from

NY5 and LAV strains was purchased from NIH AIDS Research and Reference Reagent

Program. All other chemicals were from Sigma Aldrich (St. Louis, MO) or Fisher Scientific

(Pittsburgh, PA). Recombinant HIV-RT was purchased from Worthington Biochemical Corp.

(Lakewood, NJ). Aliquots of HIV-RT were stored at 80°C, and a fresh aliquot was used for

each experiment. All other chemicals were from Sigma Aldrich (St. Louis, MO) or Fisher

Scientific (Pittsburgh, PA).

Preparation of wt and mutant HIV-1 NC proteins: Wild-type HIV-1 NC from either the

MN strain (GenBank accession number: M17449), the ARV strain or pNL4-3 was used in

this study. Wild-type MN NC was expressed and purified as described [136]. The construct

that expresses wt ARV NC (GenBank accession number: K02007) was graciously provided

by Dr. Charles McHenry (University of Colorado) and this protein was prepared as described
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previously [107]. Wild type and mutant NC proteins from the pNL4-3 sequence (GenBank

accession number AF324493) were prepared essentially as described [75]. For the mutant

NC proteins, the following sequence changes were made in the gene coding for NC (at the

nucleotide level of the pNL4-3 sequence): F16W (t1967g/c1968g), N17K (t1971a), I24Q

(a1990c/t1991a), I24E (a1990g/t1991a), A25M (g1993a/c1994t/c1995g), N27D

(a1999g/t2001c), and mutants with multiple changes were made with combinations of the

above listed changes. The three wt NC proteins differ by no more than five amino acids,

which are all functionally conserved. NC aliquots were stored at -80°C in 50 mM Tris-HCl

(pH 7.5), 10% glycerol, and 5 mM 2-mercaptoethanol.
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2.3 Methods

FRET assay to detect DNA/DNA annealing: The 5’ends of DNA oligonucleotides

were tagged with a fluorescein-6-carboxamidohexyl (FAM) label. The complementary

DNAs were obtained with a 4-[[(4-dimethylamino) phenyl]-azo] benzenesulfonicamino

(DABCYL) moiety at the 3’ends. Annealing experiments were carried out using a Cary

Eclipse fluorescence spectrophotometer (Varian, Inc., Palo Alto, CA). The final

concentrations of the FAM and DABCYL DNAs were 5 and 10 nM respectively. FAM

and DABCYL complements in the presence or absence of 2 µM wt NC/mutant NC

protein, were separately preincubated in 35 µl of buffer containing 50 mM Tris-HCl (pH

8.0), 1 mM dithiothreitol (DTT), 6 mM MgCl2, 80 mM KCl, and 25 µM ZnCl2 for 5 min

at 30°C. The solutions were then mixed in a quartz cuvette to start the time course

reaction. The time course was monitored over 4 min for the unstructured (0.0dna) and the

5.8dna substrates. With the 9.0dna significant annealing could be observed only by

16min. The FAM molecule was excited at 494 nm and fluorescence emissions were

observed at 520 nm. Recordings were made every 10s for the 4 min and every minute for

the 16 min time course. The intensity ratio (Ir) was obtained by dividing the peak

intensity at every time point (It) by the peak intensity observed at time zero (Io). Plots of

Ir vs. time were then constructed. Annealing assays with each wt NC and NC mutants

were performed at least three times and an average of the results was used for

constructing the plots.

Oligonucleotides used for hybrid gel-shift annealing assay: Some of the NC

mutants were also tested in a 7.5rna/dna hybrid system. The RNA for this assay was

transcribed from its DNA oligonucleotide pair. One of the DNAs contained an SP6
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promoter at its 5’end, followed by the DNA sequence of the 7.5rna. This was named

61mer DNA. The shorter DNA complement of the above without any promoter sequence

was called 42mer DNA.

Preparation of 7.5rna/dna hybrid: A hybrid was made between 20 pmoles of the

61mer and 40 pmoles of the 42mer 7.5dna substrates in 50mM Tris-HCl (pH 8.0), 80 mM

KCl and 1 mM DTT. The donor/primer reaction was heated to 65-70˚C for 5 min and

then slow cooled to room temperature. Klenow polymerase was used to fill in the

5’overhang (due to the promoter sequence in the 61mer) in the hybrid. The hybrid made

from above was incubated with 200 µM dNTPs and 10 units of Klenow polymerase. It

was then extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated

with ethanol.

Preparation of 7.5rna substrate: Double-stranded hybrid DNA obtained as above

was used to generate 7.5rna transcripts with SP6 RNA polymerase using the

manufacturer’s protocol. The following reagents were used at the indicated final

concentrations: 40 mM Tris-HCl pH 8.0, 10 mM DTT, 2 mM spermidine, 6 mM MgCl2,

2 units/µL RNasin (RNase inhibitor) and 1 mM dNTPs. The transcription reaction was

carried out at 37ºC for two hours. The transcription products were digested with 20 units

of RNase-free DNase I for 15 min to remove any remaining template DNA. Equal

volume of 2X formamide dye (90% formamide, 10 mM EDTA (pH 8.0), 0.1% xylene

cyanol and 0.1% bromophenol blue) was then added. The sample was then denatured by

heating between 95-100ºC for 3-5 min and electrophoresed on an RNase-free 10%

denaturing polyacrylamide gel. Excised gel slices containing the RNA were eluted

overnight in 550 µl of RNA elution buffer (80% formamide, 400 mM NaCl, 1 mM
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EDTA, 40 mM Tris-HCl (pH 7.0)). The eluate was then filtered through a 0.45 µm

cellulose acetate syringe filter and precipitated with two volumes of chilled absolute

ethanol.

Dephosphorylation of 7.5rna: 50 pmoles of RNA was dephosphorylated with CIP

for one hour at 37ºC and processed according to the manufacturer’s protocol. It was then

extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with

ethanol. The 7.5rna was then quantified by measuring absorbance at 260 nm in a

Pharmacia Biotech Gene Quant II RNA/DNA spectrophotometer (Piscataway, NJ).

5’end-labeling of 7.5rna: Fifty pmoles of the dephosphorylated 7.5rna was

labeled at the 5'-end with [γ-32P] ATP using T4 polynucleotide kinase according to the

manufacturer’s protocol. The RNA was then gel-purified on a 10% RNase-free

denaturing polyacrylamide gel, excised, eluted and precipitated as described previously.

It was then resuspended in 70µl of 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0) (TE

buffer). The RNA was then quantified spectrophotometrically as described earlier.

RNA/DNA hybrid gel shift annealing assay: The end-labeled 42mer 7.5rna and its

DNA complement were separately subjected to a heat snap reaction. This involved

heating them to 90ºC for 3 min and placing them on ice immediately. The substrates were

allowed to incubate on ice for at least 5 min. The final concentrations of RNA and DNA

were 5nM and 10nM respectively. The 7.5rna and DNA complements were separately

preincubated in the presence or absence of 2µM wt/mutant NC proteins in 50 mM Tris-

HCl (pH 8.0), 1 mM DTT, 0.1 mM EDTA (pH 8.0), 6 mM MgCl2, 80 mM KCl, and 100

µM ZnCl2 for 2 min at 37°C. 17µl of DNA/NC solution was added to 90µl of RNA/NC

solution to start the time course reaction. Fifteen µl aliquots were taken out at 0, 0.25,
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0.5, 1, 2 and 4 min and stopped by the addition of 7.5µl of stop solution (20% glycerol,

0.25% bromophenol blue, 0.2% SDS, 20 mM EDTA (pH 8.0) and 0.4mg/ml yeast

tRNA). They were then incubated for an additional one min at 37˚C before being

transferred to ice.

Gel electrophoresis: The samples were then resolved on 15% native,

polyacrylamide gels. Dried gels were imaged and quantified using a Bio Rad GS-525

phosphorimager.

Annealing assay with 9.0dna: Gel-shift annealing assays were also carried out

with the 9.0dnas which were used in FRET assays. Only some mutants were analyzed in

order to confirm the findings got from FRET assays. In this case, the 9.0dna containing

the DABCYL group at the 3’end was 5’end-labeled with [γ-32P] ATP as described earlier.

The final concentrations of the labeled DABCYL DNA and its complement were 5nM

and 10nM respectively. The annealing assay was performed as before except that in this

case the annealing reaction was carried out over 16min. Fifteen µl aliquots were taken out

at 0, 1, 2, 4, 8 and 16 min and stopped as before. Samples were then electrophoresed,

dried and imaged.

0.0dna end labeling for filter binding assay: Fifty pmoles of the 0.0dna was

labeled at the 5'-end with [γ-32P] ATP using T4 polynucleotide kinase according to the

manufacturer’s protocol. The labeled DNA was then passed over a hydrated Sephadex G-

25 spin column to remove any random dNTPs, and processed according to the

manufacturer’s protocol, then stored at -20ºC.

End labeling of 16.3dna for filter binding assay: The 16.3dna (9.0dna without the

DABCYL group) without the promoter sequence (42 mer) was used in these experiments.
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Fifty pmoles of the DNA was end-labeled with [γ-32P] ATP as described above and used

in filter binding assays.

Nitrocellulose filter binding assay to monitor binding of wt and mutant NC

proteins to nucleic acids: Figure 2-17 shows a schematic diagram illustrating the

nitrocellulose filter binding assay. Whatman nitrocellulose membrane filters with a pore

size of 0.2 µm were presoaked for 15 min in nitrocellulose binding buffer (NB buffer: 50

mM Tris-HCl (pH 8.0), 1 mM DTT, 6 mM MgCl2, 80 mM KCl, and 25 µM ZnCl2). NC

(0.047-2 µM) was mixed with 0.0dna (1 nM) in 10 µl of NB buffer plus 0.1 µg/µl BSA

and incubated for 5 min at room temperature. The entire reaction was spotted onto the

center of a freshly-presoaked nitrocellulose membrane filter. The filter was then

subjected to vacuum and washed 3× with 1 ml of wash buffer consisting of 10 mM Tris-

HCl (pH 8.0) and 10 mM KCl. The filters were then air dried. The dried filters were

counted using a LKB Wallac 1209 Rackbeta liquid scintillation counter. The fraction of

the total substrate that bound to the nitrocellulose filter was then calculated as follows:

The counts obtained for each concentration of NC used was initially subtracted from

background (determined using a reaction without NC). This value was then divided by

the total counts added to the reaction (calculated by counting a reaction applied to a

DE81 filter that was not presoaked or washed) to obtain the fraction of the total substrate

bound. A plot of fraction substrate bound vs. NC concentration in the reaction was then

constructed for each NC protein.

PCR amplification of DNA substrates for strand transfer assays: Two sets of

primers were designed to generate the donor and acceptor RNAs derived from the pNL4-

3 plasmid. An SP6 promoter sequence (shown in bold) was added to the forward primer
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along with 5 additional non homologous nucleotides (shown in italics) to prevent transfer

of DNA products from the end of the donor to the acceptor (See Table 2-5). One hundred

pmoles of each primer was used in the PCR reactions in a volume of 100 µl including 0.1

µg plasmid DNA, 5 units Taq polymerase, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5

mM MgOAc. The cycling parameters used were as follows: 35 cycles of successive

denaturation, annealing and extension reactions were carried out for 1 min each at 94, 50

and 72˚C, respectively. This was followed by one 5 min extension cycle at 72˚C. The

PCR products were then resolved on an 8% native polyacrylamide gel. Excised gel slices

containing DNA were eluted overnight in 550 µl of 10 mM Tris-Cl (pH 7.5), 1 mM

EDTA. The eluate was filtered through a 0.45 µm cellulose acetate syringe filter and

DNA was precipitated with two volumes of ethanol and 1/10th volume 3 M NaOAc (pH

7.0) and resuspended in water.

Preparation of RNA substrates: DNA products obtained by the PCR method

described above were used to generate donor and acceptor RNA transcripts with SP6

RNA polymerase using the manufacturer’s protocol. Approximately two µg of the

purified PCR DNAs were used. The transcription products were digested with 20 units of

RNase free DNase I for 15 min to remove any remaining template DNA. Reactions were

then extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with

ethanol. The pellet was resuspended in 70 µl of water and centrifuged through two

successive hydrated G-25 spin columns and processed according to the manufacturer’s

protocol. The RNA was then quantified by measuring absorbance at 260 nm in a

Pharmacia Biotech Gene Quant II RNA/DNA spectrophotometer (Piscataway, NJ). The

integrity of the RNAs was analyzed to ensure it was comprised of predominately fully
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extended RNAs by running approximately 40 pmoles on an 8% denaturing

polyacrylamide gel and staining with ethidium bromide.

End labeling of PCR primer for strand transfer assay: Fifty pmoles of the DNA

primer that bound specifically to the donor RNA was labeled at the 5'-end with [γ-32P]

ATP using T4 polynucleotide kinase according to the manufacturer’s protocol. The

labeled primer was then passed over a hydrated Sephadex G-25 spin column to remove

any random dNTPs and stored at -20ºC.

Preparation of RNA/DNA hybrid: The donor RNA and the labeled primer DNA

were mixed in 10 µl of 50 mM Tris-HCl (pH 8.0), 1 mM DTT and 80 mM KCl. The

donor:primer ratio used was 1:5. The donor/primer reaction was heated to 65-70˚C for 5

min and then slow cooled to room temperature.

Strand transfer assay and NC time course reaction: Hybrids from above were

preincubated with acceptor RNA in the presence/absence of wild-type or mutant NC

proteins for 1 min in 42 µl of reaction buffer (described below). HIV-1 RT (8 µl at 0.5

pm/µl) was added to start the time course. Final concentrations of reagents in the

reactions were: 80 nM RT, 2 nM donor-10 nM primer, 10 nM acceptor, 2 µM NC, 50

mM Tris-HCl (pH 8.0), 80 mM KCl, 6 mM MgCl2, 5 mM AMP (adenosine

monophosphate) (pH 7.0), 1 mM DTT, 25 µM ZnCl2, 100 µM dNTPs, and 0.4 units/µl

RNasin. Six µl aliquots were taken out at 2, 4, 8, 16, 32 and 64 min and stopped by the

addition of 4 µl of 25 mM EDTA (pH 8.0) and 5 ng of DNase-free RNase and incubated

for additional 15 min at 37˚C. Two µl of proteinase-K solution (2mg/ml proteinase-K, 10

mM Tris-HCl (pH 8.0), 15 mM EDTA (pH 8.0), 1.25% SDS) was then added to all of the

samples, which were incubated at 65˚C for 45 min to digest protein. Twelve µl of 2X
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formamide dye (90% formamide, 10 mM EDTA (pH 8.0), 0.1% xylene cyanol and 0.1%

bromophenol blue) was then added to each sample. The samples were electrophoresed on

8% denaturing polyacrylamide gels. Dried gels were imaged and quantified using a Bio

Rad FX Pro Plus molecular imager with Quantity One software (Hercules, CA).

Gel electrophoresis: Native 8% polyacrylamide gels (for purification of PCR

products) and denaturing 8% polyacrylamide gels containing 7M urea (for resolving

strand transfer products) were prepared as described in the manufacturer’s protocol and

subjected to electrophoresis.
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2.4 Results of Fluorescence resonance energy transfer (FRET) and gel
shift assays with wt NC and NC mutants

FRET assay to detect nucleic acid annealing: Fluorescence resonance energy

transfer (FRET) was used to detect annealing between non-structured and structured

nucleic acid complements. FRET is defined as “the non-radiative transfer of photon

energy from an excited fluorophore (the donor) to another fluorophore (the acceptor)

when both are located within close proximity”. However, FRET can be carried out only

under certain conditions:

1. The two fluorophores must be within 10-100Aº.

2. The emission spectrum of the donor must overlap with the excitation spectrum of

the acceptor.

3. Both donor and acceptor molecules should be in their excited energy states.

4. The transition dipole orientations of the two fluorophores must be nearly parallel.

The efficiency of FRET is inversely proportional to the sixth power of intermolecular

separation thereby making it a very useful tool to detect changes in proximity over

distances comparable to macromolecular dimensions. When donor/acceptor pairs are

different, FRET can be monitored either by the sensitized appearance of fluorescence of

the acceptor or by the quenching of donor fluorescence. When they are the same, FRET

can be detected by the depolarization of the resulting fluorescence. FAM (fluorescein-6-

carboxamidohexyl) and DABCYL (4-[[(4-dimethylamino) phenyl]-azo] benzenesulfonicamino)

were the fluorophore and quencher molecules that we used in our FRET assays. The

FAM molecule was excited at 494 nm and fluorescence emissions were observed at 520

nm. The emission spectrum of FAM overlaps with the excitation spectrum of DABCYL

(See Fig 2-1). The 5’end of the donor is tagged with FAM and the 3’end of the acceptor
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is tagged with DABCYL (See Fig. 2-2). The donor and acceptor were each 42

nucleotides and were completely complementary. As annealing progresses, the

fluorescence emitted by FAM would be quenched by DABCYL. Thus, a decrease in

fluorescence intensity would correlate to hybridization between the two oligonucleotides.
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Figure 2-1: Schematic diagram of FRET

Shown is a schematic diagram of FRET. J(λ) indicates the spectral overlap integral
function. J(λ) is plotted as a function over wavelength (λ) in nm. FRET can occur only
when the donor emission wavelength spectrum overlaps with the acceptor excitation
spectrum. The blue region represents the spectral overlap between the donor fluorescence
(emission) and acceptor absorbance (excitation). Figure obtained from “Technical Focus:
Fluorescence Resonance Energy Transfer (FRET)” maintained by Invitrogen
(http://probes.invitrogen.com/handbook/boxes/0422.html).
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Figure 2-2: Schematic model of FRET assay

Shown is a schematic model of the FRET assay used. The 5’end of the donor
oligonucleotide was tagged with a FAM molecule (green square), while the 3’end of the
acceptor was tagged with a DABCYL molecule (orange circle). During annealing, the
two oligonucleotides come into close proximity with each other. Hence, fluorescence
emitted by FAM would be quenched by DABCYL.
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Structure of DNA substrates used for annealing assay: All of the DNA substrates

were 42 nucleotides in length but differed in sequence composition. These structures

were determined using mfold. RNA versions of these substrates had been used in earlier

experiments [91]. The predicted folded structures are shown in Fig. 2-3. Note that only

one of the two complementary strands is shown for each substrate. The Gibbs free energy

of unfolding is indicated next to the corresponding structure and each structure is referred

to throughout the text by the energy value followed by “dna” (for example, 9.0dna). All

of the substrates formed a stem-loop except 0.0dna which had no predicted structure. The

binding strength of the stem in the substrates was increased from one substrate to the

next. Successive GT repeats were avoided, since NC has been shown previously to have a

preference for GT repeats. Because of the stem-loop structure of the substrate, the

complementary strands must be unwound before they can completely hybridize. The

assay essentially tests NC’s ability to facilitate annealing by aiding in the unwinding

process. Substrate 0.0dna tests the ability of NC to accelerate annealing in the absence of

structure. In this case the aggregation/condensation activity of NC is presumably

responsible for the observed rate increase.

Annealing assays performed with wt and NC finger mutants: Work previously

done in this and other laboratories has shown that the first zinc finger of NC is primarily

responsible for unwinding nucleic acid secondary structures (helix-destabilizing activity),

while the second finger plays an accessory role [91]. Finger mutants in which the CCHC

zinc coordinating amino acids in the fingers were replaced by SSHS were tested for their

unwinding activities. Three SSHS mutants were used; SSHS1 had the three cysteines in

finger one replaced by three serine residues, SSHS2 had the three cysteines in its second
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Figure 2-3: 42mer DNA substrates used for annealing assays

Shown are the DNA substrates used in the FRET annealing assays. Only one of the
oligonucleotide pairs is shown. All of them are 42 nucleotides in length but differ in their
sequence composition. The binding strength of the stem in the substrates was increased
from one substrate to the next. All of the substrates formed a stem-loop except 0.0dna
which had no predicted structure. 5.8dna had 14A-T and no G-C base pairs. 9.0dna had
11A-T and 4G-C base pairs. The strongest stem-loop structure, namely 15.8dna contained
8A-U and 7G-C base pairs. The Gibbs free energy of unfolding is indicated next to each
structure. Each structure is referred to throughout the text by the energy value followed
by “dna” (for example, 9.0dna). The ∆G values for the complementary sequences were -
0.3, -1.2, and -6.6 for 0.0dna, 5.8dna and 9.0dna, respectively. In cases where more than
one structure was predicted, the ∆G for the most stable structure is reported. Concentric
circles indicate the 5’ends. Successive GT repeats were avoided since NC is known to
bind preferentially to GT sequences.
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zinc finger replaced with serine residues, and SSHSd had the cysteines in both fingers

replaced with serines. These SSHS finger mutants allowed us to confirm previous

findings about roles of the fingers with respect to annealing and helix destabilization. In

addition, NC finger mutants 1.1 and 2.2 were also tested (See Sec 2-1). Annealing was

detected by FRET as described under Sec 2-3. Assays were performed with mutant and

wild-type NC proteins using the various substrates.

The role of the two zinc fingers of NC was previously investigated in our

laboratory on an rna/dna hybrid gel shift annealing assay. However we decided to test

them using the dna/dna FRET-based system because it is faster and easier to manipulate.

The FRET system also allows “real-time” analysis of annealing because the sample is

monitored on a scale of seconds rather than minutes in the gel assay. Figure 2-4 and

Table 2-1 show the effect of NC finger mutants on 0.0dna. For each NC protein and DNA

substrate, a rate constant for complement annealing was calculated by fitting the intensity

profile data to a semi-logarithmic plot [72]. This is illustrated for one of the point mutants

and wt NC in Fig. 2-11. With the unstructured substrate, the complementary nucleotides

annealed very rapidly even in the absence of NC, and NC clearly enhanced annealing

even further resulting in about a 2-fold increase in the rate constant (See Table 2-1 and

Fig 2-4 also). This demonstrates NC’s ability to enhance annealing even in the absence of

secondary structure, presumably by aggregation/condensation. All of the mutants also

stimulated annealing with this substrate in comparison to reactions without NC. There

were some differences with SSHSd and 2.2 showing the least stimulation; however, all

mutants appeared to retain aggregation/condensation activity based on this assay. This is

consistent with the idea that this activity results mostly from the highly positively
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charged NC backbone amino acids that act to neutralize negative charges on the

phosphate backbone of nucleic acids.

Shown in Tables 2-2 and 2-4 are the rate constants for NC proteins on structured

DNA substrates (5.8dna and 9.0dna). Very little annealing was observed in reactions

without NC and no rate values were obtained. All the finger mutants showed some

stimulation. In general the annealing rates were about 4-7 fold slower on 9.0dna than

5.8dna reflecting the greater stability of the former. Consistent with previous results, NC

mutants without an active finger one (2.2, SSHS1, and SSHSd) were clearly more

defective in helix destabilization. These mutants showed an annealing rate about 20-30%

of the wt NC level. These results support earlier findings indicating that the first zinc

finger of NC is required for efficient unwinding of strong secondary structures. Further,

the various SSHS mutants behave very similarly to the corresponding finger mutants that

contain only one of the two zinc finger sequences (1.1 and 2.2).
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Figure 2-4: FRET assay with NC finger mutants on 0.0dna

FRET assays were carried out at 30ºC in the absence or presence of wt or finger mutant
NC proteins (1.1, 2.2, SSHS1, SSHS2, and SSHSd) as described in “Methods”. The 5’-
FAM derivatized DNA (5 nM final) substrates and 3’- DABCYL derivatized (10 nM
final) complements were separately preincubated in the presence of wt or finger mutant
NC proteins (2 µM final concentration). These were mixed to start the annealing reaction.
Fluorescence was monitored over time using a fluorescence spectrophotometer. The
Intensity ratio (Ir) (fluorescence intensity at each time point (It) divided by fluorescence
intensity at time zero (Io)) is plotted versus time (See “Methods”). Recordings were made
every 10s throughout the 4 min time course. A control reaction in which no
complementary DABCYL DNA was present was also performed. The line shown
represents an average from at least three experiments.
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Figure 2-5: FRET assay with NC finger mutants on 9.0dna

Shown above is the FRET assay performed with NC finger mutants on 9.0dna. The assay
was carried out as described above (Fig 2-4), except that recordings were made every
1min during the 16min time course.
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Table 2-1. Rate constant (k) calculation for NC proteins on 0.0dna
substrate
1Name 2t1/2(min) 2k*10-3(min-1)
wt NC 0.598 1.16 ± 0.0492
-NC 1.27 0.549 ± 0.0458
SSHS2 0.592 1.18 ± 0.106
SSHS1 0.654 1.06 ± 0.0454
SSHSd 0.813 0.863 ± 0.111
1.1 0.625 1.11 ± 0.0466
2.2 0.634 1.11 ± 0.133
F16W 0.678 1.02 ± 0.0493
N17K 0.586 1.18 ± 0.0193
I24Q 0.602 1.15 ± 0.0321
A25M 0.736 0.957 ± 0.149
N27D 0.760 0.928 ± 0.135
F16WI24Q 0.875 0.792 ± 0.0101
F16WN27D 0.845 0.838 ± 0.171
F16WI24QN27D 0.734 0.949 ± 0.101
1-HIV strain pNL4-3 NC was used as backbone for making NC mutants. The
SSHS mutants replace the CCHC zinc binding motif with SSHS in finger 2
(SSHS2), finger 1 (SSHS1), or both (SSHSd). 1.1 and 2.2 are mutants with two
copies of finger 1 or 2.
2-k (rate constant) values were calculated from the t1/2 values by dividing 0.693
by t1/2 as described above in Fig. 2-11. Results are an average of 3-4 experiments
± standard deviations (shown for k only). Although experiments were performed
over 4 min, only values from the first min were used in calculations due to the
rapid kinetics resulting in saturation.
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Table 2-2. Rate constant (k) calculation for NC proteins on
5.8dna substrate

1Name 25.8dna 25.8dna (1 mM
Mg2+)

-NC ND ND
wt NC 0.161 ± 0.0049 0.733 ± 0.019
SSHS2 0.149 ± 0.0231 ND
SSHS1 0.048 ± 0.0009 ND
SSHSd 0.026 ± 0.0024 ND
1.1 0.097 ± 0.0200 ND 
2.2 0.038 ± 0.0017 ND
F16W 0.191 ± 0.0287 ND
N17K 0.162 ± 0.0212 0.566 ± 0.049
I24Q 0.069 ± 0.0076 0.281 ± 0.010
A25M 0.109 ± 0.0347 ND
N27D 0.049 ± 0.0017 0.170 ± 0.022
F16WI24Q 0.057 ± 0.0122 ND
F16WN27D 0.058 ± 0.0218 ND
F16WI24QN27D 0.058 ± 0.0355 ND
1-HIV strain pNL4-3 NC was used as backbone for making NC mutants.
The SSHS mutants replace the CCHC zinc binding motif with SSHS in
finger 2 (SSHS2), finger 1 (SSHS1), or both (SSHSd). 1.1 and 2.2 are
mutants with two copies of finger 1 or finger 2, respectively.
2-k (rate constant) values were calculated from the t1/2 values by dividing
0.693 by t1/2 as described earlier. Results are an average of 3-4 experiments
± standard deviations. Experiments were performed with 2 µM NC, 6 mM
MgCl2 and 80 mM KCl in standard buffer except for the 5.8dna (1 mM
Mg2+) column. –NC values were only determined for 0.0dna since no
significant hybridization was observed for the other substrates in the
absence of NC. ND-Not determined.
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Table 2-3. Rate constant (k) calculation using varied [NC] on 5.8dna
substrate1

NC(µM) Wild type N17K I24Q N27D
8 0.383 ± 0.206 0.268 ± 0.012 0.178 ± 0.028 0.184 ± 0.097
4 0.335 ± 0.055 0.356 ± 0.025 0.091 ± 0.003 0.078 ± 0.041
2 0.161 ± 0.005 0.162 ± 0.021 0.069 ± 0.008 0.049 ± 0.002
1 0.082 ± 0.027 0.069 ± 0.016 0.032 ± 0.008 0.034 ± 0.007

0.5 0.043 ± 0.001 0.053 ± 0.005 0.034 ± 0.001 0.019 ± 0.011
1- Refer to Table 2-2 for details.
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Table 2-4. Rate constant calculation for NC proteins
on 9.0dna substrate
1Name 2t1/2(min) 2k*10-3(min-1)
-NC ND ND
wt NC 29.2 0.024 ± 0.001
SSHS2 41.4 0.017 ± 0.001
SSHS1 57.6 0.012 ± 0.001
SSHSd 154 0.005 ± 0.001
1.1 37.8 0.018 ± 0.002
2.2 113 0.006 ± 0.001
F16W 6.83 0.102 ± 0.001
N17K 27.5 0.025 ± 0.002
I24Q 56.1 0.012 ± 0.001
A25M 36.0 0.019 ± 0.001
N27D 56.6 0.012 ± 0.001
F16WI24Q 122 0.006 ± 0.001
F16WN27D 122 0.006 ± 0.001
F16WI24QN27D 160 0.005 ± 0.001
1-HIV strain pNL4-3 NC was used as backbone for making
NC mutants. The SSHS mutants replace the CCHC zinc
binding motif with SSHS in finger 2 (SSHS2), finger 1
SSHS1), or both (SSHSd). 1.1 and 2.2 are mutants with two
copies of finger 1 or finger 2.
2-k (rate constant) values were calculated from the t1/2 values
by dividing 0.693 by t1/2 as described earlier. Results are an
average of 3-4 experiments ± standard deviations (shown for
k only). Experiments were performed with 2 µM NC, 6 mM
MgCl2 and 80 mM KCl in standard buffer. –NC values were
only determined for 0.0dna since no significant hybridization
was observed for the other substrates in the absence of NC.
ND-Not determined.
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Effect of NC point mutants on annealing of structured and unstructured DNAs:

The above experiments confirmed the important role of finger one in helix destabilization

(See Sec 2-1). We next wanted to determine what residues in finger one were responsible

for its unwinding advantage over finger two. Figure 1-7 shows a schematic diagram of

HIV-1 pNL4-3 NC protein. There are five amino acids which differ between the two

finger sequences. These include (finger one to finger two): F to W, N to K, I to Q, A to

M, and N to D at positions 16, 17, 24, 25, and 27 of finger one, respectively. NC point

mutants were constructed where the amino acid residues in finger one were incrementally

replaced by those at the corresponding locations in finger two. Figure 2-6 and Table 2-1

show the effects of various NC point mutants on annealing of the unstructured 0.0dna

detected by FRET. As with the finger mutants a clear distinction was observed between

reactions with and without NC; NC clearly enhances annealing. There was no obvious

difference between the point mutants. This was expected given that the more highly

mutated finger mutants showed no strong differences with this substrate.

Figure 2-7 and Table 2-2 show the effect observed with the point mutants on

5.8dna. On this more strongly folded substrate clear groupings emerged. Mutants N17K

and F16W were able to stimulate annealing as well as wt NC. Mutant A25M showed

some reduction in annealing in comparison to N17K and F16W, but was clearly better

than N27D and I24Q. The latter two showed about a 60-70% rate reduction in

comparison to wt NC.

The same general pattern was observed with the strongest structure, 9.0dna (Fig.

2-8 and Table 2-4). In this case annealing was much slower than with 5.8dna

(approximately 7-fold), and the assay was performed over 16 min rather than 4 min as
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with 0.0dna and 5.8dna. Once again N17K was similar to wt NC and A25M showed a

small reduction in activity. Mutants N27D and I24Q showed reduced stimulation with

about 50% the rate of wt NC. Interestingly, the F16W mutant annealed much better than

even wt NC showing about a 4-fold increase in annealing rate (Fig. 2-9). This was also

the case for an even stronger 42 nucleotide DNA substrate (15.8dna) that folded with a

∆G value of -15.8 kcal/mole (Fig 2-3). On this substrate wt NC stimulated annealing less

than half as well as F16W (Fig 2-10).

Optimal magnesium concentrations (6 mM) for reverse transcriptase assays were

used in the above described experiments. However, the concentration of non-complexed

magnesium in cells may be much lower and results have shown that NC is more active

with lower ionic strength. Wild type, N17K, I24Q, and N27D NC proteins were also

tested using 1 mM magnesium on 5.8dna (Table 2-2). As expected the annealing rates

increased about 3-4 fold with the lower magnesium concentration. Differences between

the wt and mutant NC proteins remained consistent at both concentrations, indicating that

the magnesium concentration was not a factor in this observation.

An NC titration was also performed using 5.8dna and each of the above mutants

(Table 2-3). For wt NC, the rate of annealing was proportional to the [NC] up to 4 µM

NC. Increasing to 8 µM had little effect. This was also observed with N17K. The more

defective mutants (I24Q and N27D) also showed proportional increases but did not

saturate at 4 µM NC. For both mutants rate values at a given NC concentration were

always significantly lower than wt NC.

Effect of double and triple mutants on annealing of structured and unstructured

DNAs: Results from the single point mutants in annealing assays showed that two of the
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mutants, N17K and A25M, were comparable to wt NC with the latter being slightly less

stimulatory. In contrast, I24Q and N27D mutants were strongly inhibitory while F16W

showed enhanced activity on highly structured substrates. Therefore, of the five different

amino acids between fingers one and two, only two (I24 and N27) seemed to be

important to finger one’s advantage in helix-destabilization. One change (F16W) actually

indicated that finger two has a more effective amino acid for helix-destabilization at that

position. It is important to note that single point mutations ignore the possibility of

“context effects” in contributing to the activities of the fingers. A particular amino acid

could function differently in the context of one group of amino acids vs. another. Testing

all combinations of mutations in which amino acids in finger one are replaced by

corresponding ones from finger two, would require 30 separate mutants, many of which

would yield little information. We took a directed approach based on the results from the

single mutants. Our working hypothesis was that the changes at positions 24 and 27 cause

finger one to lose helix-destabilizing activity and these would have “dominant negative”

effects with respect to the apparent gain in activity from the F16W change. This would

explain why finger two (as judged from mutants 2.2 and SSHS1) shows little

destabilizing activity. To test this, two double mutants (F16W/I24Q and F16W/N27D)

containing the positive change along with each negative change, and a triple mutant

(F16W/I24Q/N27D) which combined the positive mutant with both negatives were

constructed.

On the non-structured 0.0dna substrate (Table 2-1) the double and the triple

mutants displayed a very similar annealing pattern with a slightly slower rate than wt NC

but a clear increase over reactions without NC. Again, the results suggest that the mutants
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retain most of the aggregation/condensation activity of NC. In contrast, the double and

triple mutants were all highly defective on the structured substrates (Tables 2-2 and 2-4).

These mutants were comparable to 2.2 and SSHSd on the structured substrates. Overall

the results support the dominant negative hypothesis and suggest that I24 and N27 are

pivotal to the helix-destabilizing function of finger one. Changes in either position to the

corresponding amino acid in finger two lead to significant decreases in helix

destabilization while changing both essentially mimics replacing finger one with finger

two (2.2) or deactivating finger one (SSHS1). These changes also completely mask the

strong destabilizing activity of the phenylalanine to tryptophan mutation at position 16 of

finger one (F16W).
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Figure 2-6: Effect of NC point mutants on annealing of 0.0dna

Shown is the FRET assay done with NC point mutants on 0.0dna. Experiments were
performed as described earlier (See Fig. 2-4).
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Figure 2-7: Effect of NC point mutants on annealing of 5.8dna

Shown above is the FRET assay done with NC point mutants on 5.8dna. Experiments
were carried out as before (See Fig 2-4). Assays with wt NC or without NC are also
shown.
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Figure 2-8: FRET assay with NC point mutants on 9.0dna

Shown above is the effect of NC point mutants on annealing of 9.0dna detected by FRET.
Recordings were made every min during the entire 16min time course. The assay was
performed as described earlier (See Fig 2-4).
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Figure 2-9: Binding of F16W to 9.0dna detected by FRET

Shown above is the effect of the F16W mutant on annealing of 9.0dna detected by FRET.
Recordings were made every min during the entire 16min time course. The assay was
performed as described earlier (See Fig 2-4).
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Figure 2-10: Effect of NC point mutants on annealing of 15.8dna

Shown is the effect of NC point mutants on annealing of 15.8dna. The assay was
performed as described previously except that recordings were made every min
throughout the 32min time course (See Fig 2-4).
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Figure 2-11: Semi-log plot of the intensity profile of N27D mutant

Shown above is a semi-log plot of the reaction with wt and N27D NC constructed from
the trace shown in Fig. 2-8. The Ir value from the graph was plotted on a log scale vs.
time and the data points were fit to a straight line using linear regression analysis (Sigma
Plot). The slope of the line was used to determine the t1/2 value of the reaction and the
equation k=0.693/t1/2 was used to calculate the rate constant k [72]. At least three
independent k values were obtained for each mutant on each substrate. Rate constant
values for this particular experiment are shown next to each line. The average values +/-
standard deviations are shown in Tables 2-1 through 2-4.
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Figure 2-12: Effect of NC double and triple mutants on annealing of 0.0dna

Shown is the FRET assay done with NC double and triple mutants on 0.0dna.
Experiments were performed as described earlier (See Fig. 2-4).
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Figure 2-13: Effect of NC double and triple mutants on annealing of 5.8dna

Shown is the FRET assay done with NC double and triple mutants on 5.8dna.
Experiments were performed as described earlier (See Fig. 2-4).
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Figure 2-14: Effect of NC double and triple mutants on annealing of 9.0dna

Shown is the FRET assay done with NC double and triple mutants on 9.0dna.
Experiments were performed as described earlier (See Fig. 2-4).
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Gel-shift annealing assays performed with 7.5rna/dna system: Annealing assays

were also completed with some of the NC mutants on the 7.5rna/dna hybrid system as

described under “Methods” (See Fig 2-15). This substrate is the RNA form of the 5.8dna

substrate prepared as described before. Annealing was monitored between the 7.5rna and

its DNA complement over 4 min. Note that this substrate is named 7.5rna due to higher

∆G value of unfolding which reflects more stable folding of RNA vs. DNA. Besides wt

NC, the following NC mutants were also tested using the gel-shift assay: SSHS1, SSHS2,

N17K, I24E and A25M. N17K, A25M and SSHS2 mutants were able to promote

RNA/DNA hybridization close to wt NC levels, while SSHS1 and I24E showed highly

reduced stimulation. These observations clearly support our findings from the FRET

assays.

Gel-shift annealing assays performed with 9.0dna/dna system: Shown in Fig 2-16

are autoradiograms of annealing assays performed with N17K, A25M, F16WI24QN27D,

F16WN27D and F16WI24Q NC mutants on the 9.0dna/dna system. These experiments

were carried out as described under the “Methods” section. While N17K and A25M

clearly enhanced annealing close to wt NC levels, both double and triple mutants were

less stimulatory. Once again, these results correlated with our findings from the FRET

assays. The appearance of another band above the DNA/DNA hybrid species can be seen

in Fig 2-16. This most likely represents a DNA/DNA dimer since it is more prominent in

reactions with one of the oligonucleotide pairs. The moderate stability of dimers, though

lesser than hybrids enables them to form quite easily.
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Figure 2-15: Autoradiograms of annealing assays on 7.5rna with NC mutants

Shown in the panel above are autoradiograms obtained from annealing assays performed
with NC mutants on the 7.5rna/dna hybrid system. Annealing assays were performed
over 4min as described in “Methods”. The time course was monitored at 0, 0.25, 0.5, 1, 2
and 4 min. The positions of ssRNA and RNA/DNA hybrids are also indicated. C denotes
control reactions that were carried out in the absence of complementary 7.5dna over the
4min time course.
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Figure 2-16: Autoradiograms of annealing assays done with 9.0dna

Shown in the panel above are autoradiograms obtained from the 9.0dna/dna hybrid
annealing assays. These assays were performed as described before. The positions of
single-stranded DNA (ssDNA), DNA/DNA dimers (dimer), and DNA/DNA hybrids
(D:D) are also indicated. C is the control sample containing the labeled DABCYL 9.0dna
and NC/NC mutant, but no complementary DNA.
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2.5 Results of binding affinity analysis for binding of NC and NC
mutants to nucleic acid substrates

Binding of NC mutants to 0.0dna detected by nitrocellulose filter binding assay:

One possible reason for the observed defects in some of the mutants could be reduced

binding affinity for the substrate nucleic acid. To determine if any of the mutations

affected the affinity of NC for DNA, filter binding assays were performed. Graphs

obtained by plotting the fraction of total amount of substrate in the assay that bound to

nitrocellulose filters at various NC concentrations are shown in Figs. 2-18 through 2-20.

The FAM-derivatized complement of 0.0dna made without the FAM group and 5’ end

labeled with P-32 was used for these assays. SSHSd NC mutant showed the lowest

binding affinity (See Fig 2-18). This NC mutant had the cysteine residues in both fingers

replaced with serines. This assay allowed us to confirm previous findings about roles of

the fingers with respect to DNA binding. Our result clearly supports earlier findings that

the presence of zinc fingers is an absolute requirement for nucleic acid binding. The three

mutants that are comparable to wt NC in the annealing assays (F16W, N17K and A25M)

also show similar levels of DNA binding. In contrast, of the mutants that showed reduced

activity in the annealing assays (I24Q, N27D, F16W/I24Q, F16W/N27D, and

F16W/I24Q/N27D), only I24Q (Fig. 2-19) was comparable to wt NC in binding. The

other four showed significantly lower affinity than wt NC (Fig. 2-20). Consistent with

these results, finger mutant 2.2 but not 1.1 showed reduced binding in the assay (data not

shown). It was interesting that the double mutant F16W/I24Q showed reduced binding

despite neither of the single mutants showing reductions. Overall the results indicate that

mutations that reduce NC binding lead to an apparent reduction in helix-destabilizing



84

activity as expected. However, this activity is not solely determined by binding as I24Q

binds similar to wt but is defective in helix-destabilization.

Binding of NC mutants to 16.3dna detected by nitrocellulose filter binding assay:

Mutants N27D and I24Q were also compared to wt NC for binding to 16.3dna in filter

binding assays (Figs. 2-21 and 2-22). The apparent binding affinity to this structured

substrate was lower for all the NC proteins as more NC was required to retain a

comparable amount of substrate on the filters. Consistent with binding to 0.0dna, only

N27D showed reduced binding in comparison to wt NC (Fig. 2-21).
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Figure 2-17: Schematic diagram of nitrocellulose filter binding assay

Shown is a schematic diagram of the nitrocellulose filter binding assay. Nitrocellulose
membrane filters are first presoaked in NB buffer (50 mM Tris-HCl (pH 8.0), 1 mM
DTT, 6 mM MgCl2, 80 mM KCl, and 25 µM ZnCl2) for 15min. NC (0.047-2 µM) is
mixed with DNA (1 nM) in 10 µl of NB buffer plus 0.1 µg/µl BSA and preincubated for
5min. The entire reaction is then spotted onto the center of the disc. The filter is then
subjected to vacuum and washed 3× with 1 ml of wash buffer consisting of 10 mM Tris-
HCl (pH 8.0) and 10 mM KCl. The filters are then air dried and counted using a LKB
Wallac 1209 Rackbeta liquid scintillation counter.
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Figure 2-18: Binding of SSHSd to 0.0dna detected by filter binding assay

Shown above is the binding of SSHSd NC mutant to 5’end labeled 0.0dna detected by
nitrocellulose filter binding assay. The assay is performed as described previously. The
counts obtained for each concentration of NC used was initially subtracted from
background (determined using a reaction without NC). This value was then divided by
the total counts added to the reaction (calculated by counting a reaction applied to a
DE81 filter that was not presoaked or washed) to obtain the fraction of the total substrate
bound. A plot of fraction substrate bound vs. NC concentration in the reaction was then
constructed for each NC protein. A representative experiment is shown and each assay
was repeated at least once.
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Figure 2-19: Binding of F16W, N17K, I24Q, and A25M NC mutants to 0.0dna

Shown above is the binding of F16W, N17K, I24Q and A25M NC mutants to 0.0dna.
The assay is carried out as before and plots are obtained. A representative experiment is
shown and each assay was repeated at least once.
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Figure 2-20: Binding of N27D, F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D NC
mutants to 0.0dna

Shown above is the binding of N27D, F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D
mutants to 0.0dna. The assay is carried out as described previously. A representative
experiment is shown and each assay was repeated at least once.
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Figure 2-21: Binding of N27D to 16.3dna

Shown is the binding of N27D NC mutant to 16.3dna detected by filter binding assay.
The assay is performed as before. The apparent binding affinity to this structured
substrate was lower as more NC was required to retain a comparable amount of substrate
on the filters. Consistent with binding to 0.0dna, N27D showed reduced binding in
comparison to wt NC.
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Figure 2-22: Binding of I24Q to 16.3dna

Shown is the binding of I24Q NC mutant to 16.3dna. The assay was performed as
described earlier. As with 0.0dna, the binding of I24Q is comparable to wt NC.



91

2.6 Results of internal strand transfer assays with wt NC and NC
mutants

Strand transfer assay: An in vitro strand transfer assay has previously been used

in our laboratory to investigate recombination in different regions of the genome [135].

Figure 2-23 shows a schematic model of the system. Figure 2-24 depicts a schematic

overview of the experimental approaches used. This assay mimics internal strand transfer

events that occur during minus DNA synthesis in the viral genome. The donor refers to

the template RNA on which DNA synthesis is initiated, while the template on which

donor directed DNA products can potentially transfer to is referred to as acceptor RNA.

Thus, the donor and acceptor RNA templates represent the two RNA strands of the viral

genome. For these experiments, the templates were derived from a highly structured

region of the HIV genome that included the gag-pol frameshift sequence. DNA synthesis

is primed at the 3’end of the donor by a 5’end labeled DNA primer. The donor and

acceptor RNA strands are designed to have a 150 base pair region of homology where

strand transfer can potentially occur. The transfer zone is indicated by a dotted box. Full

length DNA products from DNA synthesis directed by the donor would be 175 nt in

length. Products made after transfer and extension on the acceptor would be 197 nt in

length. The difference in lengths of the DNA products allowed us to locate their relative

positions on denaturing gels. This assay tests for internal strand transfers; hence transfers

from the end of the donor were prevented by adding a 5 nucleotide non-homologous

region to the 5’ end of the donor template. Transfer could also occur between two donor

templates. However, this would be negligible since the amount of acceptor RNA used

was five times in excess over the donor RNA. Further, fewer donor RNA templates

would be available as DNA synthesis proceeds.
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The percent of transfer efficiency was calculated by: {transfer DNA products (T)

/(transfer DNA products (T) + full length donor-directed DNA (F))} x 100. It reflects the

amount of DNA primers that get extended to the end of the acceptor versus those that

undergo donor extension. This number gives us an actual indication of transfer in terms

of total DNA extended, rather than simply giving transfer levels.

Secondary structure prediction using RNAdraw and mfold programs: Secondary

structures of RNA substrates were predicted using RNAdraw and mfold programs [135],

[137]. Figure 2-25 shows the secondary structure prediction of the donor RNA obtained

from the gag-pol frameshift region. The acceptor RNA was predicted to have a similar

structure as the donor (See Fig 2-26). High ∆G and Tm values indicate presence of strong

secondary structures. The gag-pol donor RNA was predicted to have a ∆G value of -45.3

kcal/mole and its predicted stem-loops persisted even at temperatures above 55ºC. The

gag-pol acceptor RNA was predicted to have a ∆G value -37.22 kcal/mole. The A residue

which was determined to be a major pause-site for RT enzyme is also indicated on both

folding diagrams.

Effect of NC mutants on strand transfer: Figures 2-27 through 2-30 show

autoradiograms obtained from strand transfer assays performed with the gag-pol substrate

using the different NC mutants. The positions of transfer (T) and donor-directed products

(D) are indicated as is the primer position (P). In Fig 2-27, the four sets of assays show

reactions (from left to right) without NC, those with wt NC, and those with N17K and

A25M NC mutants. The six lanes for each set were reactions stopped after 2, 4, 8, 16, 32,

and 64 min from left to right. Graphs of efficiency of strand transfer versus time for

different NC mutants are shown in Figs. 2-31 through 2-33. Graphs were made from
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quantification of experiments as described under “Methods”. All the mutants enhanced

transfer considerably compared to reactions without NC. However there was clearly less

enhancement, especially at early time points, in comparison to wt NC. Mutants

F16W/I24Q, F16W/I24Q/N27D and F16W/N27D showed lesser stimulation than wt NC

(Figs. 2-29, 2-30 and 2-31). Mutants N17K, A25M and F16W were comparable to wt NC

with N17K showing slightly more stimulation (Figs. 2-27 and 2-32). Mutants I24Q and

N27D were less stimulatory than wt NC with N27D showing the lowest stimulation

(Figs. 2-28 and 2-33). Again, the differences were more evident at the early time points.

The results indicated that even the mutants which show low helix-destabilizing activity

enhance strand transfer considerably on this highly structured substrate. However, those

with near wt NC levels of unwinding activity showed more stimulation.
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Figure 2-23: Schematic model of strand transfer assay

Shown is a schematic diagram of the strand transfer system. The donor and acceptor
RNAs were derived by PCR amplification of the gag-pol frameshift region. The 5’end of
the 20 nucleotide primer (complementary to the donor) was radio-labeled with P-32 and
is indicated with an asterisk symbol. The donor and acceptor RNAs were 175 and 177
nucleotides (nt) in length, respectively. They are homologous only in the boxed region
which spans 150 nt. Full length DNA synthesized on the donor RNA template is
indicated by dotted lines. Transfer DNA synthesized on the acceptor RNA template is
indicated by broken lines. Note that the donor-directed DNA product is shorter in length
in comparison to the transfer DNA product (Figure obtained from Derebail et al. [135] ).
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Figure 2-24: Schematic of experimental approaches used

Shown is a schematic diagram illustrating experimental approaches used in the strand
transfer assay. The donor and acceptor DNAs (dark green) were derived by PCR
amplification using forward and reverse primers (black) from the gag-pol frameshift
region of the pNL4-3 plasmid (pink). In vitro RNA transcription was then conducted
using SP6 RNA polymerase to get donor and acceptor RNA templates (only donor RNA
is shown in light green). A 5’ P-32 end-labeled DNA primer (pink line with asterix
symbol) synthesized DNA on the donor RNA (primer was complementary to the donor
only). The primer/donor hybrid was used in several time course reactions in the presence
of acceptor RNA. –NC represents a reaction in which no NC was present. wt NC
represents a reaction carried out with wt NC. NC mutant [1….n] represents reactions
carried out with all the NC mutants.
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Figure 2-25: Predicted secondary structure of gag-pol donor RNA template

RNAdraw and mfold programs were used to predict the secondary structure of gag-pol
donor RNA template at 37ºC and default conditions. Concentric circles indicate the
5’end. The substrate is 155 nt in length (excluding the first 20 nt that bind to the DNA
primer). Base-pairs having a greater probability of formation are denoted by thicker lines.
The ∆G value of unfolding is also indicated. 77 besides a boxed A residue denotes the
major RT pause site. SS within a box denotes the “slippery site” heptamer sequence
(Figure obtained from Derebail et al. [135]).
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Figure 2-26: Predicted secondary structure of gag-pol acceptor RNA template

RNAdraw was used to predict secondary structure of the gag-pol acceptor at 37ºC and
default conditions. As before, concentric circles indicate the 5’end. The ∆G value of
unfolding is also indicated. Boxed G residues denote T1 RNase cleavage sites. Diamond
A/U residues denote RNase A cleavage sites. The major pause site for RT (A residue) is
also denoted (Figure obtained from Derebail et al. [137]).
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Figure 2-27: Autoradiogram of strand transfer assay with N17K and A25M

An autoradiogram of a strand transfer assay carried out with the N17K and A25M
mutants is shown. The assay was performed as described under “Methods”. The four sets
of assays shown from left to right were reactions carried out without NC, with wt NC,
and those with N17K and A25M mutants. Aliquots from each reaction were stopped at 2,
4, 8, 16, 32, and 64 min and analyzed on an 8% denaturing polyacrylamide gel. Positions
of the donor-directed and transfer products and the primer are indicated by D, T, and P
respectively. C represents a control reaction in which no acceptor/RT/NC is present.
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Figure 2-28: Autoradiogram of strand transfer assay with N27D and I24Q

Shown is an autoradiogram obtained from a strand transfer assay performed with N27D
and I24Q NC mutants. The assay was carried out as described above.
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Figure 2-29: Autoradiogram of strand transfer assay with F16W/I24Q

Shown is the autoradiogram obtained from a strand transfer assay carried out with the
F16W/I24Q NC mutant. The experiment was performed as described earlier.
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Figure 2-30: Autoradiogram of strand transfer assay with F16W/I24Q/N27D and
F16W/N27D

Shown is the autoradiogram obtained from a strand transfer assay with
F16W/I24Q/N27D and F16W/N27D NC mutants. The assay was carried out as described
earlier.
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Figure 2-31: Graph showing efficiency of strand transfer versus time for
F16W/I24Q, F16W/I24Q/N27D and F16W/N27D

Graph of efficiency of strand transfer versus time for F16W/I24Q, F16W/N27D and
F16W/I24Q/N27D NC mutants is shown. The graph was made from quantification of the
experiments shown earlier. The % efficiency of strand transfer was obtained using the
following formula: Transfer DNA products (T)/ {Transfer DNA products (T) + Full
length donor-directed DNA products (D)}* 100, or ([T/ (T+D)]*100). It was then plotted
against time in min.
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Figure 2-32: Graph showing efficiency of strand transfer versus time for N17K,
A25M and F16W

Graph of efficiency of strand transfer versus time for N17K, A25M and F16W NC
mutants is shown. The graph was plotted as described earlier.
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Figure 2-33: Graph showing efficiency of strand transfer versus time for N27D and
I24Q

Graph of efficiency of strand transfer versus time for N27D and I24Q NC mutants is
shown. The graph was plotted as described earlier.
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Table 2-5
Sequence of forward and reverse primers used for PCR amplification of the gag-pol

region

Region Primer sequences

a. 5' gatttaggtgacactatagatatagaaatgtggaaagga 3'
GagPol donor b. 5' ttgttgtctctaccccagac 3'

a. 5' gatttaggtgacactatagtatatcccctaggaaaaagggctgt 3'
GagPol acceptor b. 5' ctgaagctctcttctggtgg 3'
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2.7 Discussion

In this report we attempt to understand at an amino acid level why zinc finger one

is more important than finger two to the helix destabilizing activity of HIV-1 NC (See

Sec 2-1). The approach used was to make mutations in finger one using the

corresponding amino acids in finger two (See Fig. 1-7). Five of the 14 total amino acids

in each finger are different. Of the 5 changes, three of them represent a significant

chemical alteration including two neutral to charge changes: (finger one to two) N17 to

K38 and N27 to D48, and a hydrophobic to polar change: I24 to Q45. The other two are

amino acids of similar hydrophobicity with those in finger 2 being more bulky: F16 to

W37 and A24 to M46. Overall the five changes result in finger one being considerably

more hydrophobic than two. Results showed that only I24Q and N27D mutations

significantly decreased NC’s helix destabilizing activity while A25M caused a small

reduction. The N17K mutation had no measurable effect while F16W imparted greater

helix destabilizing activity on NC. Double and triple mutant combinations with F16W

combined with I24Q and N27D showed that the latter two were “dominant negatives” in

that all the combination mutants were highly defective in both binding DNA and helix

destabilization.

The simple approach of drawing conclusions from altering just these 5 amino

acids partly ignores potentially important context effects. For example, NMR studies

have shown that several interactions occur between finger one amino acids and other

parts of the NC protein during binding to specific HIV stem-loop structures [77], [124],

[44]. These include for example, F16 and N17 interacting with W37, I24 with valine and

phenylalanine residues at positions 13 and 6, respectively, and N17 interacting with
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proline and lysine at positions 31 and 33. Also, recent results implicate finger two in

helix destabilizing as a W37 to leucine mutation in finger two greatly decreased NC

binding to nucleic acids and helix destabilizing activity on the HIV TAR region [138].

Clearly, several interactions between finger one and two, and finger one and non-finger

amino acids in NC are important to its biological functions, however, results suggest they

may be less important to chaperone and helix destabilizing activity. Experiments show

that finger mutants without an active finger two (1.1 or SSHS2) are still potent chaperone

proteins in vitro and retain nearly wt NC helix-destabilizing activity (See Sec 2-1). In

addition, truncated NC proteins missing the first 12 N-terminal non-finger amino acids

(NC 12-55) showed strong helix-destabilizing activity. A double switch mutant in which

F16 is replaced by tryptophan and W37 by phenylalanine retained most of its binding and

helix destabilizing activity on TAR implying that the aromatic nature of the amino acids

rather than a specific residue at a specific position is important to activity [138]. This is

further supported by the high activity of NC 1.1 which has phenylalanine at positions 16

and 37.

The genetic flexibility of NC is further illustrated by cell culture experiments

using mutated viruses. In one report, replacement of finger one with 7 different zinc

fingers from a family of human cellular nucleic acid binding proteins (CNBPs) resulted

in infectious viruses in 6 of the 7 cases [139]. In another report, alanine scanning

mutagenesis was performed on finger one [140]; excluding F16 and the four amino acids

that are part of the zinc binding motif (C15, C18, H23, and C28), alanine mutagenesis of

the other 9 amino acids (in one case alanine 25 was changed to glycine) produced viruses

with essentially wt NC infectivity that in some cases showed mild to moderate RNA
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packaging defects. Although F16A was defective, an F16W mutant was comparable to wt

virus, a result that correlated with our finding that F16W is as good as or better than wt in

helix destabilization and strand transfer. In the F16W mutant, phenylalanine gets replaced

with a more bulky amino acid namely tryptophan. Perhaps this enables it to intercalate

between nucleic acid bases even better, thereby resulting in enhanced chaperone activity.

This could also explain why A25M exhibits similar or slightly diminished unwinding

activity with structured substrates in comparison to wt NC, since methionine is also a

more bulky group than alanine. Also interesting with respect to our results was the

finding that N27 could be changed to alanine with little effect on infectivity. Although

this position is fairly highly conserved, HIV isolated with serine, histidine, isoleucine,

and tyrosine at this position have been reported (HIV genome sequence information was

obtained from the HIV sequence database provided by Los Alamos National Laboratory

(http://hiv-web.lanl.gov/content/hiv-db/mainpage.html)). The N27D mutant in our studies

was quite defective in DNA binding and helix destabilization, but this is a much more

drastic change than those changes noted above. The NC protein of the virus used in the

above study had a threonine at position 24 rather than isoleucine as is present in the strain

we used, but the fact that it could be changed to alanine without loss of infectivity

suggests some flexibility at this position. This position is not as strongly conserved as the

other 4 examined in our assays. Many HIV isolates have leucine at this position and

some have threonine and valine. The I24Q and an I24E (glutamic acid) mutant that we

also tested (Data not shown) were quite defective in helix destabilization and the latter

bound DNA poorly. Perhaps there is a limit to how polar the amino acid at this position

can be. Isoleucine 24 along with V13, F16, and A25 have been implicated as part of an
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important hydrophobic cleft in finger one that is required for binding and destabilizing

nucleic acids [107]. The fact that some virus strains have threonine at position 24 and that

alanine can be substituted without loss of viability suggests that the amino acid at this

position need not be highly hydrophobic. It is also possible that NC proteins with reduced

helix destabilizing activity may be functional during infection. The NC protein of

Moloney murine leukemia virus (MuLV) has very little helix destabilizing activity in in

vitro assays [130] and it seems unlikely that the 6 functional fingers from the human

CNBP proteins (See above) would all have high destabilizing activity. Therefore it is

possible that HIV-1 NC could get by with less, as long as other important NC functions

were not compromised. We are in the process of testing the mutants made in these

experiments in the context of cellular infections. Preliminary experiments suggest that

there is no defect in replication with N27D mutant viruses in H9 cells (Data not shown);

supporting the hypothesis that reduced helix destabilizing activity is not detrimental to

virus fitness. It would also be interesting to test the helix destabilizing activity of viable

mutations at position 24 as well.

The N17K mutation tested here has also been examined in cell culture infections

[141]. Interestingly, viruses with this mutation show no replication defects and actually

have a 7-9 fold increased transduction frequency compared to wt NC. In addition to

packaging viral RNA better than wt NC, there was also an increased packaging of non-

viral RNA. Several other mutations in the finger amino acids that increased net positive

charge of the fingers also lead to viable viruses with transduction levels as good as or

better than wt NC. The N17K mutation was essentially equivalent to the wt NC in all the

assays we tested it in so it is not surprising that it would function well. Despite this,
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BLAST searches recovered no isolated viruses with N17K mutations, suggesting that this

change is selected against in vivo [141].

The strand transfer assays were reasonably consistent with helix-destabilization

assays in that those mutants defective in the latter generally showed some decrease in

strand transfer. Mutant N27D and the double and triple mutants (F16W/N27D and

F16W/I24Q/N27D) containing this mutation appeared to be the most defective while

I24Q and F16W/I24Q were moderately less stimulatory than wt NC (See Sec 2-6). The

other point mutants were essentially the same as wt NC with N17K showing a small

enhancement. The gag-pol genome region used in the assays is highly structured [135]

and it seems surprising that all the mutants, even the double and triple mutants and N27D

which were highly defective in helix-destabilization and DNA binding, showed a clear

enhancement. However, previous assays with finger mutant 2.2, which is highly defective

in helix destabilization assays (Tables 2-2, 2-4 and [91]), showed stimulation of strand

transfer on the gag-pol substrate, albeit at a reduced level compared to wt NC. In

addition, 2.2 was essentially identical to wt for stimulation on a low-structured substrate

[135]. These results suggest that the aggregation/condensation activity of NC, which all

the mutants appeared to retain (See Sec 2-4), is a major driving force for strand transfer

while helix destabilization may be less important, especially in low structured genome

regions.

From our results, the most important amino acid differences between finger one

and two with respect to chaperone activity are I24Q and N27D. Both are extreme

chemical changes that strongly decrease the hydrophobic nature of finger one. The

overall more hydrophobic nature of finger one could be important to its apparent
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advantage for helix destabilization. On a mechanistic level, mutant N27D caused a large

defect in nucleic acid binding and this alone could have been responsible for its low

activity. Low binding may have occurred from repulsion of nucleic acids by the

additional negative charge of the aspartic acid side chain or a dramatic change in protein

folding. The latter is unlikely since viral clones with this mutation showed no defect in

replication in H9 cells (See above). Mutant I24Q did not significantly alter nucleic acid

binding. This could be due to the neutral nature of glutamine which probably did not alter

the charge density at that position. This suggests that no deleterious change in overall

structure had occurred. However, perhaps by decreasing the hydrophobicity of finger one,

substitution of glutamine for isoleucine reduces NC’s ability to interfere with

hydrophobic base stacking. This would be consistent with the previously proposed role of

the hydrophobic pocket of finger one (See above, [138])
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Chapter 3 Analysis of the nucleic acid chaperone activity of other
retroviral NC proteins

3.1 Introduction

Retroviral nucleocapsid (NC) proteins are very small, basic proteins that coat the

genomic RNA. They act as molecular chaperones during several steps in the viral

replication cycle. They catalyze transitional unfolding and re-pairing of nucleic acids

such that the optimal conformation with maximum number of base pairs is attained.

Previous chapters dealt with in-depth analysis of nucleic acid chaperone activity of HIV-

1 NC. Work done in this chapter sheds light onto helix-destabilizing activity of other

retroviral NC proteins. These include those from Moloney murine leukemia virus (MuLV

NC), the Mne strain of Simian immunodeficiency virus (SIV NCp8), HIV-1 NCp15 and

HIV-1 NCp9. HIV-1 NCp15 is first produced as a result of proteolytic cleavage from the

Gag precursor polyprotein. NCp9 results due to further cleavage from NCp15. This is

further cleaved to just under 7 kDa to yield the functional NC protein used in previous

chapters [1].

Table 3-1 lists amino acid sequences of the various NC proteins used in this

study. SIV belongs to the Lentivirus genus of retroviruses. The nucleocapsid protein of

SIV (SIV NCp8) is 52 amino acids in length and has two zinc fingers. Each zinc finger is

14 amino acids in length and coordinates one Zn2+ ion. Each finger has a Trp residue. A

wealth of information about several properties of SIV NCp8 has been obtained through

mutational studies and in vitro assays. Finger mutations in SIV NCp8 have revealed that

lack of zinc coordination affects its stability and interferes with processing of the Gag
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precursor polyprotein [142]. In another vaccine study, a group of Macaca nemestrina

primates were first infected with a pathogenic wt strain of SIV NCp8. This was then

followed by immunization with DNA that produces replication defective yet structurally

complete virions. These virions were obtained from NC deletion mutant clones and

contained a full set of processed viral proteins capable of completing nearly all the steps

during one viral replication cycle. This appears to offer protection or at least delay

progression onto AIDS [143]. In one other study, four amino acids were deleted in the

carboxyl terminal zinc finger of SIV NCp8, producing non-infectious viruses (though

capable of completing most of the steps in viral replication). Immunization with DNA

expressing this NC mutant provided substantial humoral immunity [144]. In one

experimental study with macaques, no antibody production/disease progression was

observed. Gorelick et al. have demonstrated that mutations in both zinc fingers of SIV

Mne NC produce replication defective virions both in vitro and in vivo. The basic

residues found in SIV NC have been shown to be very crucial for incorporating genomic

RNA. However, RNA encapsidation in SIV was found to depend more on finger two

rather than finger one as is the case in HIV-1 [145]. Optically detected magnetic

resonance (ODMR) studies have revealed that both the zinc fingers of SIV NCp8 bind

simultaneously to oligonucleotides, and were found to contribute to its binding free

energy, though not additively. Significant quenching of fluorescence from both Trp

residues suggests that hydrophobic stacking occurs between the indole ring and

nucleobases. The binding order of preference was similar to that of HIV-1 NC namely:

G ~ I (Inosine) > T > U > C > A. SIV NCp8 bound to alternating bases in a sequence-

specific manner similar to HIV-1 NC [146]. NMR studies conducted with the zinc finger
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domains (amino acids 13-51) of SIV NCp8 have revealed that the main structural

differences between SIV NCp8 and HIV-1 NC occur at the flexible linker and not the

zinc fingers. However, orientation in which the two proteins interact with

oligonucleotides was found to be quite similar [147].

Murine leukemia virus belongs to the gammaretrovirus family. MuLV NC is 60

amino acids in length and is located at the C-terminus of Gag. It is produced as a result of

proteolytic cleavage from Gag upon maturation. It contains only one zinc finger motif.

Mutational studies with MuLV NC have revealed that it stimulates DNA synthesis by RT

at pause sites [148]. Experiments done with MuLV NC zinc finger mutants CCCC or

CCHH have shown that these mutations do not affect RNA recognition, t-RNA primer

placement, RNA packaging and dimer RNA structure. However, they do seem to greatly

affect cDNA synthesis and hence produces non-infectious virions defective in replication

[149], [150]. Further, NC native zinc finger architecture was found to be critical for

replication events preceding integration and possibly viral integration itself. In one study,

when all the cysteine residues were replaced with serines, RNA packaging was greatly

reduced. Gorelick et al. also point out that this sequence is fairly conserved across

retroviral NC proteins and could be related evolutionarily to the zinc fingers that are

involved in specific sequence recognition in double stranded DNA [79]. Further, Rein et

al. have also shown through mutational studies that a central region of MuLV NC

consisting of residues 16 through 23 is critical for RNA packaging. This region is

followed by the zinc finger’s cysteine array and flanked by basic residues. Further, the

basic region and zinc finger have also been demonstrated to be critical for assembly and

release of virus particles [151]. D’Souza et al. have shown that unlike HIV-1 NC, the
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binding affinity of MuLV NC to the stem loops found in its genomic RNA is quite low

[152]. Allain et al. have shown that the basic residues and not the zinc finger in MuLV

NC is critical for enhancing the minus strand transfer step during reverse transcription

[153]. Single molecule stretching experiments and mutational studies have been carried

out to evaluate the chaperone activity of HIV-1 and MuLV NC. Results have shown that

HIV-1 NC but not MuLV NC lowers the cooperativity of DNA helix-coil transitions.

Since this is a measure of helix-destabilizing activity it suggests that HIV-1 NC has more

potent destabilizing activity. Also consistent with this finding, Williams et al. point out

that a specific two finger architecture is most likely required for unwinding and hence

optimal chaperone activity during viral reverse transcription. Overall the findings suggest

that MuLV can efficiently replicate with an NC protein possessing little helix-

destabilizing activity in comparison to HIV-1 [130].

Finally, compounds that oxidize sulfur atoms by inducing disulfide cross linking

in cell-free MuLV virions have been identified [154]. This effect has also been observed

in HIV-1 but not in HFV virions (Human Foamy Virus) [155]. It should be noted that

HFV belongs to the Spumaretrovirus genus of retroviruses which lack zinc fingers. Thus,

the zinc finger of MuLV NC forms the primary target for these anti-retroviral

compounds. Other zinc ejecting compounds that potently inhibit HIV-1 through NC

deactivation are also being tested [155]. Further studies on NC proteins could potentially

lead to more and better inhibitors for use as potential therapeutics.
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3.2 Materials

DNA oligonucleotides for the fluorescence resonance energy-transfer (FRET)

assays were purchased from Integrated DNA Technologies (Coralville, IA). See Chapter

2 for a list of other materials used. All of the chemicals were purchased from Sigma

Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA).
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3.3 Methods

FRET assay to detect DNA/DNA annealing: Refer to Chapter 2 for details.

Preparation of HIV-1 wt NC: Wild-type HIV-1 NC from either the MN strain

(GenBank accession number: M17449), the ARV strain or pNL4-3 was used in this

study. Wild-type MN NC was expressed and purified as described [136]. The construct

that expresses wild-type ARV NC (GenBank accession number: K02007) was graciously

provided by Dr. Charles McHenry (University of Colorado) and this protein was prepared

as described previously [107]. Wild type NC protein from the pNL4-3 sequence

(GenBank accession number AF324493) was prepared essentially as described [75]. The

three wt NC proteins differ by no more than five amino acids, which are all functionally

conserved (See Table 3-1). SIV NCp8, MuLV NC, NCp9 and NCp15 proteins were

kindly provided by Dr. Robert J. Gorelick, SAIC, Frederick, MD. NC aliquots were

stored at -80°C in 50 mM Tris-HCl (pH 7.5), 10% glycerol, and 5 mM 2-

mercaptoethanol.
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3.4 Results

Annealing assays performed with wt NC and other retroviral NC proteins: FRET

annealing assays were performed as described in Chapter 2 with the 0.0, 5.8 and 9.0dna

substrates. However, while the assay was carried out for 4 min as before with the 5.8dna,

the annealing was monitored for only 1 min with the 0.0dna. This was done due to rapid

annealing kinetics of the non-structured substrate as most of the annealing was completed

within the first min of the time course reaction. Five retroviral NC proteins were tested

for their annealing activity. These include MuLV NC, SIV NCp8, HIV NCp9, HIV

NCp15 and wt HIV-1 NC (NCp7). Figure 3-1 and Table 3-2 summarize the results

obtained from annealing assays carried out with 0.0dna. Rate constants for complement

annealing were calculated as described earlier. With the unstructured substrate,

complementary nucleotides annealed very rapidly even in the absence of NC, and NC

clearly enhanced annealing even further resulting in about a 2-fold increase in the rate

constant. This demonstrates NC’s ability to enhance annealing even in the absence of

secondary structure, presumably by aggregation/condensation. While MuLV NC and

NCp9 showed no stimulation on 0.0dna, SIV NCp8 appeared to retain some

aggregation/condensation activity based on this assay. NCp15 stimulated annealing close

to wt NC levels. This is consistent with the idea that this activity results mostly from the

highly positively charged NC backbone amino acids that act to neutralize negative

charges on the phosphate backbone of nucleic acids.

Figure 3-2 and Table 3-3 show the effect observed with various NC proteins on

5.8dna. On this more strongly folded substrate clear groupings emerged. NCp15 was able
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to stimulate annealing as well as wt NC. SIV NCp8 showed reduced annealing in

comparison to NCp15, but was clearly better than MuLV NC. MuLV NC showed about a

60-70% rate reduction in comparison to wt HIV-1 NC. Interestingly, NCp9 facilitated

annealing was nearly 2-fold greater than wt HIV-1 NC (Fig. 3-2 and Table 3-3). The

same general pattern was observed with the strongest structure, 9.0dna (Fig. 3-3 and

Table 3-4). In this case annealing was much slower than with 5.8dna (approximately 4-7

fold) reflecting greater stability of the substrate; and the assay was performed over 16

min rather than 4 min as with 5.8dna. Very little annealing was observed in reactions

without NC and no rate values were obtained. Once again NCp15 was similar to wt HIV-

1 NC. SIV NCp8 showed some reduction in annealing. No detectable stimulation was

observed with MuLV NC. Again, NCp9 stimulated annealing better than wt HIV-1 NC

showing about a 2-fold increase (Fig. 3-3). Shown in Tables 3-3 and 3-4 are the rate

constants for NC proteins on structured DNA substrates (5.8dna and 9.0dna). Annealing

assays with SIV NCp8 and MuLV NC on 9.0dna were also carried out using reduced salt

conditions. As expected, the rate of annealing increased by nearly 2-fold at 40 mM KCl

and even higher; by nearly 4-fold at 20 mM with SIV NCp8. The effect of low salt buffer

was even more pronounced in case of MuLV NC. The observed rate constant increased

by nearly 4-fold and 7-fold at 40 mM and 20 mM KCl, respectively (Table 3-4).
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Figure 3-1: FRET assay with retroviral NC proteins on 0.0dna

Shown above is the FRET assay performed with the five retroviral NC proteins on
0.0dna. C denotes a control reaction in which no complementary DABCYL DNA was
present. –NC denotes a reaction in which no NC was present. The assay was carried out
as described previously except that the annealing reaction was monitored for only 1 min
(See Chapter 2).
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Figure 3-2: FRET assay with retroviral NC proteins on 5.8dna

Shown above is the FRET assay performed with the five retroviral NC proteins on
5.8dna. C denotes a control reaction in which no complementary DABCYL DNA was
present. –NC denotes a reaction in which no NC was present. The assay was carried out
as described previously (See Chapter 2).
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Figure 3-3: FRET assay with retroviral NC proteins on 9.0dna

Shown above is the FRET assay performed with the five retroviral NC proteins on
9.0dna. C denotes a control reaction in which no complementary DABCYL DNA was
present. –NC denotes a reaction in which no NC was present. The assay was carried out
as described previously (See Chapter 2).
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Table 3-1
Amino acid sequences of various NC proteins used in this study

1VIRUS
SOURCE

AMINO ACID SEQUENCE

HIV-1
MN

MQRGNFRNQRKIIKCFNCGKEGHIAKNCRAPRKRGCWKCGKEGHQMKDC
TERQAN

HIV-1 
ARV

MQRGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCWRCGREGHQMKDC
TERQAN

HIV-1
NL4-3 
(NCp7)

IQKGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCWKCGKEGHQMKDC
TERQAN

HIV-1
NL4-3
(NCp9)

IQKGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCWKCGKEGHQMKDC
TERQANFLGKIWPSHKGRPGNFL

HIV-1
NL4-3
(NCp15)

IQKGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCWKCGKEGHQMKDC
TERQANFLGKIWPSHKGRPGNFLQSRPEPTAPPEESFRFGEETTTPSQK
QEPIDKELYPLASLRSLFGSDPSSQ

MuLV NC ATVVSGQKQDRQGGERRRSQLDRDQCAYCKEKGHWAKDCKKPRGPRGPR
PQTSLL

SIV
NCp8

AQQKGPRKPIKCWNCGKEGHSARQCRTPRRQGCWKCGQMGHVMAKCPDR
QAG

1- The three wt HIV-1 NCp7 proteins used in this assay differ by no more than five
amino acids (highlighted in yellow), which are all functionally conserved. Amino acid
sequences of other retroviral proteins namely SIV NCp8, MuLV NC, NCp9 and
NCp15 proteins are also shown. Finger domains of all NC sequences are highlighted in
pink.
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Table 3-2. Rate constant calculation for NC
proteins on 0.0dna substrate
1Name 2t1/2(min) 2k*10-3(min-1)
-NC 1.27 0.549 ± 0.046
wt NC 0.598 1.16 ± 0.049
MuLV NC 1.53 0.469 ± 0.119
SIV NCp8 0.956 0.732 ± 0.102
NCp9 1.47 0.478 ± 0.077
NCp15 0.797 0.870 ± 0.024
1-HIV strain MN NC was used in these assays and
was prepared essentially as described (See Methods).
All of the other retroviral proteins were a kind gift of
Dr. Robert J. Gorelick, SAIC, Frederick, MD.
2-k (rate constant) values were calculated from the t1/2

values by dividing 0.693 by t1/2 as described. Results are
an average of 2-3 experiments ± standard deviations
(shown for k only).
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Table 3-3. Rate constant calculation for NC
proteins on 5.8dna substrate
1Name 2t1/2(min) 2k*10-3(min-1)
wt NC 4.31 0.161 ± 0.005
MuLV NC 23.3 0.030 ± 0.005
SIV NCp8 8.67 0.080 ± 0.009
NCp9 1.90 0.364 ± 0.006
NCp15 3.06 0.229 ± 0.029
1-HIV strain MN NC was used in these assays and was
prepared essentially as described (See Methods). All of
the other retroviral proteins were a kind gift of
Dr. Robert J. Gorelick, SAIC, Frederick, MD.
2-k (rate constant) values were calculated from the t1/2

values by dividing 0.693 by t1/2 as described. Results are
an average of 2-3 experiments ± standard deviations
(shown for k only).
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Table 3-4. Rate constant calculation for NC proteins on 9.0dna
substrate
1Name 2t1/2(min) 2k (min-1)
wt NC 29.2 0.024 ± 0.001
MuLV NC 834 0.001 ± 0.001
SIV NCp8 42.7 0.016 ± 0.002
NCp9 13.6 0.052 ± 0.010
NCp15 19.4 0.037 ± 0.009
MuLV NC (20 mM KCl) 151 0.005
MuLV NC (40 mM KCl) 197 0.004
SIV NCp8 (20 mM KCl) 9.80 0.071
SIV NCp8 (40 mM KCl) 17.9 0.039
1-HIV strain MN NC was used in these assays and was prepared
essentially as described (See Methods). All of the other retroviral
proteins were a kind gift of Dr. Robert J. Gorelick, SAIC, Frederick, MD.
2-k (rate constant) values were calculated from the t1/2 values by dividing
0.693 by t1/2 as described. Results are an average of 2-3 experiments
± standard deviations (shown for k only for 80 mM KCl assays).
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3.5 Discussion

In this work, we wished to analyze the helix-destabilizing activity of other

retroviral NC proteins namely SIV NCp8 and MuLV NC, and two precursor forms of wt

HIV-1 NC; NCp9 and NCp15. MuLV NC has only one zinc finger motif. Moreover, it

does not bind tightly to RNA stem loops under in vitro conditions [152]. Single molecule

stretching experiments have shown that it does not lower the cooperativity of DNA helix-

coil transitions, even at saturating levels, whereas HIV-1 NC exhibits optimal chaperone

activity at a much lower concentration. Also Williams et al. point out that the differences

between the two proteins could be due to differential binding affinities with HIV-1 NC

binding much more tightly. Further, it is also possible that MuLV NC does not require

unwinding activity for stimulating minus-strand transfer under in vivo conditions, while

HIV-1 NC does. In vitro strand transfer assays conducted using MuLV NC in the HIV-1

R region and DNA stretching studies conducted by Williams et al. augment this

hypothesis. However, it should be noted that the secondary structure element that has to

be unwound in order to facilitate MuLV minus strand transfer is much less stable than the

highly structured HIV-1 TAR region. Therefore MuLV may not need as much

destabilizing activity to carry out this process [130].

MuLV NC was found to be highly defective in helix-destabilization in

comparison to wt NC in our assays (Figs. 3-2, 3-3 and Tables 3-3, 3-4). This correlates

with the findings of Williams et al. described above [130]. It is worthwhile to note that

the single finger of MuLV NC more closely resembles finger two of HIV-1 NC in that it

has an aspartic acid residue in the same location as finger two of HIV-1 NC (See Fig. 3-

1). Earlier helix-destabilization studies conducted with HIV-1 NC showed that replacing
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asparagine with this residue was severely detrimental to its helix-destabilizing activity. It

should also be noted that the N27D mutant was defective in nucleic acid binding and in in

vitro strand transfer assays (See Chapter 2). It is reasonable to hypothesize that this

amino acid residue could be partly responsible for MuLV NC’s diminished nucleic acid

binding and hence unwinding properties. Annealing assays conducted with non-

structured and structured substrates show that MuLV NC is highly defective in both

aggregation and unwinding.

SIV NCp8 exhibits reduced annealing as well; however it is clearly better than

MuLV NC. The difference in annealing rates between SIV NCp8 and wt HIV-1 NC was

nearly two fold (See Tables 3-3 and 3-4). It can be seen that SIV NC p8 shares high

homology with HIV-1 NC especially in the zinc finger residues (See Table 3-1). Once

again, it did not exhibit any defects in nucleic acid aggregation (See Table 3-2).

Further, while NCp15 enhances annealing close to wt HIV-1 NC levels, NCp9

was found to be better than wt HIV-1 NC (See Tables 3-3 and 3-4). The observed

differences between NCp15 and NCp9 could be due to the presence of additional

glutamine and glutamic acid residues in NCp15 (See Table 3-1). The isoelectric point (pI)

values for wt HIV-1 NC, NCp9 and NCp15 were found out to be 10.08, 10.19 and 9.59

respectively (All pI values were obtained from ExPASy Proteomics Server of the Swiss

Institute of Bioinformatics (SIB)). Upon comparing the pI values, it can be seen that

NCp9 adds higher net positive charge. This could have minimized electrostatic repulsion

between the phosphate groups of nucleic acids during annealing. Also, it should be noted
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that NCp9 was defective in the aggregation assay with 0.0dna. It is not clear what causes

this apparent reduced aggregation activity of NCp9. Clearly, further studies are needed to

fully understand the various structure-function relationships of these proteins.

Finally, low salt (20 mM and 40 mM KCl) conditions were used to gain insight

into the duplex-stabilizing properties of SIV NCp8 and MuLV NC (See Tables 3-2 and 3-

4). Optimal Mg2+ concentrations (6 mM) for reverse transcriptase assays were used in the

above described experiments. As expected, under high salt conditions, higher screening

of duplexes is brought about by high salt/multivalent cations. Thus, more effective

annealing in the absence of a catalyst under high salt conditions most likely accounts for

the weaker effect of NC enhanced annealing under low ionic strength conditions. The

observed rate enhancement facilitated by NC is hence more pronounced under low ionic

strength conditions, since there are less competing cations to displace NC [82]. A similar

effect was observed in the annealing rates which increased by a huge factor, about 3-4

fold with lower Mg2+ (1 mM) concentration in the annealing assays performed earlier

with HIV-1 NC mutants (See Chapter 2). However, the concentration of non-complexed

Mg2+ in cells may be much lower [156] and results have shown that NC is more active

with lower ionic strength [55]. This may also occur with MuLV NC and should be tested

in the future.
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Chapter 4 General Discussion

AIDS continues to be the one of the biggest threats facing mankind today. It has

claimed more than 25 million human lives since its discovery in 1981 [6]. The ultimate

goal of researchers worldwide is to develop efficient vaccines and drugs such that this

virus can be eradicated. A thorough understanding of the virus and various steps in its

replication cycle could help achieve this goal. HIV is one of the most recombinogenic of

all retroviruses and has a high mutation rate. This has contributed to the rapid emergence

of several subtypes and now intersubtype recombinant forms of the virus [5]. HIV-1 NC

is a small, basic protein that coats the viral genome. The multitude of functions

performed by this protein has caused it to gain equal importance on par with the three

other classic retroviral proteins namely, reverse transcriptase (RT), integrase (IN) and

protease. Thus, NC has emerged as a prime target for vaccine research and drug therapy.

Obviously, it is of utmost importance to gain an extensive, in depth knowledge about NC;

its structure, various properties and structure-function relationships. The approach used in

this thesis of studying mutated proteins will also help define the genetic flexibility of NC.

If NC is highly tolerant of mutations, as seems to be the case with RT, drug resistant

mutants are likely to emerge during NC targeted therapy.

Work done in this thesis sheds light onto the chaperone activity of HIV-1 NC.

Chaperones are proteins that can catalyze the rearrangement of nucleic acid molecules

such that the most thermodynamically stable conformation is achieved [41]. Chaperone

proteins are found in other organisms as well. These include gene 32 protein found in T4

bacteriophages (T4 gp32), single-strand binding protein in E.coli (E.coli SSB) and

ribonucleoprotein A1 found in humans (hnRNP A1) (For a more compete list see
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http://mendel.imp.ac.at/home/Birgit.Eisenhaber/RNA-chaperones/list.html). However,

HIV-1 NC continues to be the most widely studied chaperone protein.

My thesis attempts to understand at an amino acid level why zinc finger one of

HIV-1 NC is more important than finger two to its helix destabilizing activity (See Sec 2-

1). Five of the 14 total amino acids in each finger are different. The approach used was to

incrementally replace each differing residue in finger one by the one at the corresponding

location in finger two (See Fig. 1-7). The most important amino acid differences between

finger one and two with respect to chaperone activity are I24Q and N27D (See Chapter

2). Overall, NC is quite tolerant of single amino acid changes as even the most defective

single point mutants (I24Q and N27D) retained about 50% helix destabilizing activity

(See Sec 2-4) and nearly full aggregation activity (As judged by assays with the non-

structured substrate). Double and triple mutants were more defective than wt NC but still

retained measurable activity (See Sec 2-4). The high genetic flexibility of NC which is

further illustrated by previous noted experiments showing that replacing the entire finger

of NC with human protein zinc fingers in most cases did not abolish infectivity [139].

The unfortunate likelihood is that viable mutants would arise easily upon drug NC

directed drug treatments. Still such drugs could be very useful in combination therapy

with drugs targeting other proteins.

Also as discussed previously in Chapter 2, interesting with respect to our results

was the finding that N27 could be changed to alanine with little effect on infectivity

[140]. Although this position is highly conserved, HIV isolated with serine, histidine,

isoleucine, and tyrosine at this position have been reported (HIV genome sequence

information was obtained from the HIV sequence database provided by Los Alamos
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National Laboratory (http://hiv-web.lanl.gov/content/hiv-db/mainpage.html)). The N27D

mutant in our studies was quite defective in DNA binding and helix destabilization, but

this is a much more drastic change than those changes noted above. Further, as mentioned

earlier, the N27D mutant was not found to be defective in replication in vivo in H9 cells.

Based on the very low helix destabilizing activity of N27D in vitro, it seems reasonable

to hypothesize that the aggregation activity of HIV-1 NC is more critical than helix-

destabilizing activity for viral viability. Preliminary results suggest that this may be the

case for retroviruses in general as NC proteins from SIV show reduced destabilizing

activity and MuLV NC shows very little (See Chapter 3). It is important to note here that

the apparent ability of viruses containing the N27D mutation to replicate in cells does not

mean that defects would not become apparent after several rounds of replication, or that

the mutant is as fit as wt virus. Competition growth assays between the mutant and wt

NC would have to be performed to assess relative fitness of the mutant.

Since NC is involved in several steps of the viral life cycle, a comprehensive

analysis of how it works could enable us to potentially figure out new ways to target this

protein. Designing molecules/compounds like nucleic acid analogues which would bind

tightly to NC and prevent it from interacting with nucleic acids does seem like a

promising avenue of research. A number of NC inhibitors have been proposed and some

are undergoing initial phases of clinical trials. It is very probable that drug-resistant

mutants would appear which are able to circumvent these drugs. Identifying amino acid

residues that are invariant, would give us an idea of which ones are indispensable for

viral viability. Among the two residues that were found to contribute significantly to

HIV-1 NC’s destabilizing activity, the asparagine residue at position 27 was found to be
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fairly highly conserved and hence could be considered as generally invariant. If NC

inhibitors could be designed that can specifically bind/disrupt this residue, perhaps the

destabilizing activity of NC can be disturbed. In one report, threonine at position 24 of

HIV-1 NC was changed to alanine; resulting in no loss in infectivity [140]. It should be

noted that this NC protein had a threonine at position 24 rather than isoleucine as is

present in the strain we used, but the fact that it could be changed to alanine without loss

of infectivity suggests some flexibility at this position. This position is not as strongly

conserved as the other four examined in our assays. Many HIV isolates have leucine at

this position and some have threonine and valine. If these NC isolates could be examined

in vitro and tested for their destabilizing and aggregation activities, we can possibly gain

further insight into the apparent flexibility at this position. One possibility that is

suggested by the viability in cells with the N27D mutation is that NC needs relatively

little helix destabilizing activity to complete replication. Since many of the naturally

occurring HIV isolates that have been sequenced have residues other than isoleucine at

position 24, it would be interesting to test these isolates for helix destabilizing activity. If

lower (or higher) activity is found this would suggest that the virus can survive with a

variable level of helix destabilizing activity and this activity may not be a major

determinant of viral fitness. With regard to position 24, we also test a glutamic acid

mutant at this position (I24E, data not shown). This mutant was highly defective, even

more so than the F16WI24QN27D triple mutant. The severe change of a hydrophobic to

a negatively charged polar amino acid essentially produced a dead protein illustrating that

this position is not completely flexible.
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Despite over twenty years of intensive laboratory and clinical research, AIDS

continues to be one of the world’s deadliest scourges. In the US alone, AIDS has claimed

more than 400, 000 human lives and continues to be the third leading cause for mortality

between the ages of 25-44, resulting in nearly 10,000 deaths every year. Since 1981,

more than 25 million people worldwide have died of AIDS. Statistics reveal that at the

end of 2005, a staggering 39 million people worldwide were living with HIV/AIDS.

Globally, AIDS is the leading cause of deaths among infectious diseases and is the fourth

leading cause of worldwide mortality. Every year nearly 2.6 million people worldwide

die of AIDS [6]. Intensive research has had a great deal of benefits and has caused US

AIDS related deaths to drop by nearly 80% since its peak at 1991, but of late; results

from recent drug-therapy/vaccine trails are not so promising [157]. Recently, mutant

strains resistant to triple drug therapy have been reported. The main challenges towards

designing effective vaccines/drugs are the high recombinogenic potential and mutation

rates of the virus. With no effective cure in sight, an exhaustive understanding of specific

interactions occurring during viral replication could provide worthwhile information

which can be used in the design of new means of fighting HIV. Work done in my thesis

has given new insight towards understanding intricate mechanisms behind HIV

replication and recombination. Molecular mechanisms behind interaction of HIV-1 NC

with nucleic acids are also investigated in great detail. It also enhances one’s perspective

of how HIV-1 NC facilitates replication and recombination at an amino acid level. As

described earlier, some significant gaps have been covered and future directions are

clearer.
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