Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A STOWAGE PLANNING MODEL FOR MULTIPORT CONTAINER TRANSPORTATION

    Thumbnail
    View/Open
    umi-umd-3828.pdf (872.2Kb)
    No. of downloads: 4383

    Date
    2006-08-30
    Author
    Kaisar, Evangelos
    Advisor
    Haghani, Ali
    Metadata
    Show full item record
    Abstract
    The ship turnaround time at container terminals is an important measure of a port's efficiency and attractiveness. The speed and quality of load planning affect the length of turnaround time considerably. Container operations are extremely important from an economic standpoint, making them a prime target for productivity improvements. In addition, load planning is a very complex problem, since the planners have to account for the stability of the ship and rely on a variety of other stochastic processes. Unfortunately, the load-planning problem is NP-hard making it difficult to obtain an optimal solution in polynomial time. Heuristics that trade quality for tractability are therefore promising tools when coping with this problem. Efficient load planning is accomplished by formulating the stowage-planning model to minimize extra shifting as a mixed integer-programming problem. The key contributions of this dissertation are as follows. A mathematical model is developed which considers real life constraints and considering loading/unloading along the entire voyage. A second mathematical model is formulated to obtain a lower bound on the value of the objective function of the exact solution. A heuristic procedure is developed that is guide by practical considerations that account for the structure of the stowage-planning problem. All proposed mathematical models and heuristic are validated with experimental results. In all cases, these results demonstrate the stability, flexibility and efficiency of the model, and establish its potential as a versatile and practical method for large scale container loading.
    URI
    http://hdl.handle.net/1903/3949
    Collections
    • Civil & Environmental Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility