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The ship turnaround time at container terminals is an important measure of a 

port’s efficiency and attractiveness.  The speed and quality of load planning affect the 

length of turnaround time considerably.   Container operations are extremely important 

from an economic standpoint, making them a prime target for productivity 

improvements.  In addition, load planning is a very complex problem, since the planners 

have to account for the stability of the ship and rely on a variety of other stochastic 

processes.   

Unfortunately, the load-planning problem is NP-hard making it difficult to obtain 

an optimal solution in polynomial time. Heuristics that trade quality for tractability are 

therefore promising tools when coping with this problem.  Efficient load planning is 



accomplished by formulating the stowage-planning model to minimize extra shifting as a 

mixed integer-programming problem.   

The key contributions of this dissertation are as follows. 

 A mathematical model is developed which considers real life constraints and 

considering loading/unloading along the entire voyage. 

 A second mathematical model is formulated to obtain a lower bound on the value 

of the objective function of the exact solution.   

 A heuristic procedure is developed that is guide by practical considerations that 

account for the structure of the stowage-planning problem.  

All proposed mathematical models and heuristic are validated with experimental results. 

In all cases, these results demonstrate the stability, flexibility and efficiency of the model, 

and establish its potential as a versatile and practical method for large scale container 

loading. 
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Chapter 1: Introduction 

 
 
1.1 General   
 

Stowage problems arise in diverse areas, ranging from inventory management to 

information dispersal.  Efficient solutions for this problem are critical for effective 

resource utilization and good system performance.  However, stowage problems are hard 

to solve optimally; not many algorithms exist and they strain to cope with even the 

smallest instances, using many assumptions.  From the complexity theory point of view, 

problems can be classified as simple or difficult, depending on whether the best known 

algorithms for solving them run in polynomial time or whether they are known to be NP-

hard problems.  It is widely believed that polynomial time algorithms to find optimal 

solutions do not exist for NP-hard problems.  It is therefore natural to consider heuristics 

that can in some sense provide an approximation to the optimal solution.  Such heuristics 

with a bounded worst-case performance, in terms of the quality of the solution, are called 

approximation algorithms.  Approximation algorithms trade quality for tractability and 

therefore can deal with NP-hard stowage planning problem.  Avriel et al., (2000) proved 

that the minimum overstowage (stowage planning) problem is NP-hard.     

Stowage/loading planning is present in every circumstance involving operations.  

Stacking in warehouses, airplanes, parking garages, circuits and databases are very 

common areas where stowage problems occur.   Container terminals and containerships 

are the most common areas where stowage problems arise with significant impact on 

their operation.  
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1.2 Containerization 

Containerization is a system of intermodal cargo transport using ISO containers 

(also known as standard containers) that can be loaded sealed and intact onto 

containerships, railroad cars and trucks.  Containerization is one of the most important 

cargo-moving techniques developed in the 20th century.  Although rail and road 

containers were used early in the century, it was not until the 1960`s that containerization 

became a major element in ocean shipping.  Containerization is the term that 

encompasses the industrial shipping process of packing goods into boxes at the point of 

production and transporting the container and its contents as a unit until it is unpacked at 

its final destination.  The primary advantages in container shipping are the radical 

reduction in the number of cargo pieces to be handled and the high degree of protection 

the containers provide.  The increase in container cargo since the late 1980`s is shown in 

Figure 1.   

 

 

 
 
 
 
 
 
 

 

 

 

 

Figure 1:  Container Volume (Kerr-Dineer, 2003) 
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In 1966 the first deep-sea container service was introduced for the transportation 

of general cargo (Stopford, 2002).  Since then, container shipping has become the most 

efficient method for all types of products.   

 
 
1.2.1 The First Years  

 
Man has been experimenting with containers since the first years of commercial 

history.  The merchants who first sought to improve cargo handling and protection by 

placing small parcels in the same crate or using sealed amphorae (Greek transportation 

method) took the earliest steps toward containerization. 

The introduction of modern containerization in the shipping industry took place 

over 40 years ago and has not stopped evolving since.  The containerization industry 

began with the plans of Malcolm McLean and the departure of the vessel Ideal X with a 

deck load of containers from Port Newark enrooted to Houston in 1956.  

Malcolm McLean, the owner of a North Carolina trucking firm, had long believed 

those individual pieces of cargo needed to be handled only twice (Van Den Burg, 1975).  

They could be packed at the factory into a truck trailer and the entire trailer could then be 

moved to the seaport and across the ocean to the door of the recipient.  Only then would 

the trailer be unloaded.  McLean was aware that there were railroads already moving 

trailers full of cargo across the country.  He purchased a small ship line, renamed it Sea-

land, and initiated the movement of containers from New York to the Gulf Coast and 

Puerto Rico in 1956. For McLean it was simply a logical extension to load several trailers 

onto a refitted World War II tanker in the spring of 1966 and send them across the 

Atlantic.  From this point on, containerization of international commerce had truly begun. 
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Subsequently, other ship owners began placing containers on the deck of their regular 

cargo freighters.  Progressively, the size of containerships increased from 150 Twenty-

foot Equivalent Unit (TEU) fully cellular containerships to vessels with capacities 

exceeding 8200 TEUs (USDA, 2002).  In parallel the size of the containers themselves 

increased from the standard 10 to 20 foot containers to 35 and 40 foot ones (Whittaker, 

1975). 

Changes occurred not only in the size of the vessels and containers, but also in the 

transportation system itself.  The concept of intermodal transportation proved to be 

economically and practically very efficient.  Under this system, the transportation 

network includes both ocean and land routes.  Usually, the container is loaded and sealed 

by the shipper and driven by truck or train to the port, where a ship is employed, moving 

the container to its ultimate shore side destination.  From that point on truck or rail 

resumes the responsibility for the final delivery to the destination.   

Increasing competition and ever increasing shipping costs demanded greater 

efficiency in every stage of the journey.  With vessels carrying a large number of 

containers today, the time and, consequently, the cost of waiting while being loaded 

contribute to a continuously increasing share of the overall cost. 

For any given port facility, the time required for loading and unloading is a 

function of the arrangement of the cargo on board the vessel (vessel stowage).  Both ship 

operators and port managers are interested in determining the optimal vessel stowage, 

that is, the one that minimizes loading cost and berth time (Shields, 1984). 

The main reason for delay is moving those containers not destined for a particular 

port so as to be able to get to the containers that are.  This increases handling cost. The 
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placing of containers might have been necessary to satisfy the minimum metacentric 

height requirements (e.g. stability requirements): heavier cargo must be placed lower 

despite destination. The result is that some lighter containers must be unloaded and re-

loaded in order to unload the heavier ones.  This is referred to as “Overstowage cost” 

(Aslidis, 1989). 

Another factor that affects the loading/unloading time is the distribution of the 

containers along the vessel.  If containers of the same destination are spread randomly 

along the vessel additional crane movements are necessary, resulting in longer port time.  

Such delays can be avoided if containers with a common destination are “Blocked” 

together.  Blocking containers in different locations on board allow dock cranes to work 

simultaneously with very good results during the time that the vessels are docked at the 

port.  In modern container terminals that service the docks with more than one crane, 

blocking containers with the same destination on board is an advantage for fast loading 

and discharge for port operations and maritime corporations as well (Imai et al., 2002).  

   

1.2.2 ContainerShip 
 
The first generation of containerships was made up of existing ships that were 

converted for the transport of containers.  They were usually “self-sustaining” or 

“geared” in that they had their own lifting gear and thus could use any marine terminal 

berth that was available.  For the past three decades, however, ships have been built 

specifically for the transportation of containers. Many are gearless in that they do not 

have container-lifting gear aboard.  The cargo carrying section of the ship is divided into 

several holds with the containers racked in special frameworks and stacked one upon the 
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other within the hold space.  At times a special quayside crane handles cargo movement 

in a vertical motion.  Containers may also be stacked on hatch covers and secured by 

special latching arrangements.  Cargo holds are separated by a deep web-framed structure 

that provides the ship with transverse strength.  The outboard structure of the 

containership hold is a box-like arrangement of wing tanks ballast and can be used to 

counter the heeling of the ship when discharging containers.  A double bottom is fitted 

which adds to the longitudinal strength which is employed not only for environmental 

reasons but also for providing additional ballast space (Kostalas, 1980). 

Accommodation and machinery spaces are usually located in the stern leaving the 

maximum length of a full-bodied ship for container stowage.  Cargo-handling equipment 

is rarely fitted, since these ships travel between specially equipped terminals to ensure 

rapid loading and discharge.  Containerships have carrying capacities that range up to 

8000 TEUs (Figure 2).  The twenty-foot equivalent unit (TEU) represents a 20-ft (6055-

mm) ‘standard’ container.  Containerships are faster than most general cargo ships, with 

speeds of up to 30 Knots. 

 

Figure 2: Containership design [(Εφοπλιστης (Greek Maritime Magazine), 1999] 
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One of the major components during berthing operations is the vessel’s weight.   

The vessel’s weight is composed of two parts: lightship and displacement.  The lightship 

is the vessel’s weight itself plus the weight of the miscellaneous items such as: oil, 

lubricants, storage, etc.  The displacement is the cargo weight on board or the weight 

capacity of the vessel.  The vessel’s lightship, and miscellaneous weights are based on a 

series of basic formulas.  These along with the fuel weight and the centers of gravity of 

the weight components are brought together in the total weight and center of gravity 

module.   The weight-displacement balance is maintained through the stability constraints 

(Ganesan, 1999). 

Vessel design has traditionally been an iterative process in which various aspects 

of the design pertaining to stability, strength, weight, power and space balance have been 

performed in sequence to arrive at a variety of feasible designs.  Although the vessel 

design it is not the major issue in this research, we have to consider a few technical vessel 

characteristics such as the vessels cross section.  Our research is focusing on stowage 

planning; therefore the containership design is beyond the scope of this research.    

   

1.2.3 Roll on – Roll off Ships 
 
Roll on-Roll off (RO-RO) vessels are designed to permit containers (as well as 

other cargo) to be driven on and off the ship.  The cargo can be rapidly loaded and 

unloaded through the stern or bow doors and sometimes side-ports for smaller vehicles.  

These ships also have been adapted to carry containers.  The cargo-carrying section of the 

ship is a large open deck with a loading ramp.  In the last few years there have been 

shipping companies who placed their ships in the regular lines allowing this open space 

to be loaded by pallets.  One or more hatches may be provided for containers or general 
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cargo, served by deck cranes.  Since this inevitably involves sacrificing some space for 

internal ramps and decks, the RO-RO vessel is less efficient than the cellular 

containership in handling large volumes of containers.  The sizes range considerable with 

about 16,000 dwt (Deadweight Tones), with an equivalent to 28,000-displacement tons, 

being quite common.  Speeds in the range of 18 to 22 knots are usual (Walter, 1996). 

There is considerable variation in the design of RO-RO vessels.  In addition to 

roll-on/roll-off capability, many Ro-Ros also have lift capability, which is called lifton-

liftoff (LO-LO).  These ships can, either use their own cranes or those of the terminal.  

These vessels are sometimes referred to as LO-RO.  The proportion of cargo space 

available to LO-LO handling can vary.  In some cases, the ship is equipped with cellular 

holds.  In others, LO-LO cargo can only be accommodated on deck (Kostalas, 1980). 

Today with a diverse cargo that may or may not fit in containers, there exist 

alternatives to cargo space as general cargo, Ro-Ro and finally containerships.  In the 

maritime industry the use of containers has decreased the cost of loading/unloading, the 

time that is spent in port, and the extent of damage to the cargo. 

 

1.2.4 Fleet Capacity 
 
Although containerized cargo will continue to grow, the capacity of the ocean 

container carriers is likely to grow even faster on a percentage basis.  Throughout the 

1980s, the global container carrying capacity was 20-30 percent ahead of demand.  In the 

nineties the world containership fleet have reached forty million dead weight tones 

(>38.2 DWT).  ** Drewry is forecasting an average growth of over 9% p.a. in container 

handling up to 2010 (Figure 3). In the recent times maritime corporations have placed 

orders for a fleet of bigger and faster ships an example could be the COSCO HELLAS 
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with a capacity 9,500 TEU, including 700 refrigerated containers, and a total capacity 

109,140 gt (Lloyds` List, 2006)  

 

    Figure 3: Containership fleet expanding (Drewry, 2006)   

 

Often it is more economical to build a ship larger than to make it faster.  This is 

due to several fixed relationships between hull shapes, construction material costs, 

propulsive power requirements, and vessel speed.  However, a few maritime companies 

own containerships usually 3700 to 5300 TEU that are used in the pacific area for the 

express service between USA and overseas (i.e. China, Malaysia, etc).  Express traffic is 

approximately less than 8% of the whole traffic. Also we have a class of smaller vessels 

for coastal, between secondary ports, lower volume trades that service special areas such 

as the Mediterranean ports.  In addition, barges and ships with low depth are very 
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commonly used for inland transportation. For instance, in inland transportation in US, 

and particularly in inland European transportation, special ships are used to navigate the 

rivers as well as the open seas (MARAD, 2000).  

 

1.3 Containers 

The container is the key element in the marine network. The freight containers 

include many different types (Figure 4).  In general, they all have the same shape 

(rectangular) and a relatively weatherproof outer shell over a strong inner structure that 

protects the load (Whittaker, 1975). Containers are built using strong materials to resist 

the weight of a big stack above them, the wear and tear of continuous loading and 

unloading, and the turbulence of heavy seas that ships usually face in the oceans.  They 

must also be durable to meet their long life expectancy and survive both marine and land 

transportation. 

International organizations not only have established the technical guidelines for 

container construction, but also have established the security plates the containers must 

bear for approval.  These plates have to be placed in an easily visible location and must 

contain the following information: 

• Manufacturing data. 

• The name of the country that approved the container. 

• Container number. 

• Its weight and its test data. 

 Containers that do not bear these identifying plates are not accepted at ports even 

if their origin is from a country that has not signed the international treaty regarding 
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containers.  This treaty, among other things, specifies that containers can only vary in 

length, not the other two dimensions.  However, changes in this treaty in the last few 

years allow changes in the height as well.  

 The construction material depends on the utilization purpose.  Possible choices 

include steel, aluminum with steel reinforcement, plastic and wood with fiberglass 

reinforcement (Fiberglass – Reinforced Plywood, FRP). 

Depending on the load and the container’s use, different kinds of containers 

(types, length, etc.) that facilitate operations on board or in port terminals are used 

(Figure 4).  Materials carried in containers, when properly fitted, are less likely to suffer 

damage due to loading or unloading and handling. 

Figure 4: Container Characteristics and Dimensions (Van Den Burg, 1975) 
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Different types of containers exist in the market today. The most common type is the 

general-purpose container.  General-purpose containers are very popular in trade 

transportation.  Table 1 lists possible container dimensions for two types (steel 

construction) that are very common in container industry. 

Table 1: ZIM Corporation Containers Suitable for Commodities in Bundles, Cartons,     
                  Boxes, and any Other Cargo (www.zim.com, 2003). 

 

Size 
Weight 
 
Kilograms Lbs. 

Internal Dimensions 
 
Millimeters feet/inches 

Vol. 
 
M3 ft3 

Feet Max 
Gross Wt. 

Tare 
Wt. 

Max 
Payload Length Width Height Capacity

24,000 2,200 21,800 5,902 2,350 2,392 33.2  
20 59,910 4,850 48,060 19’423/64” 7’833/64” 7’1011/64” 1,172 

30,480 3,800 26,580 12,033 2,390 2,390 67.6  
40 67,200 8,380 58,600 39’547/64” 7’833/64” 7’107/64” 2,387 
 
 

General-purpose containers are the same as dry containers but have a higher 

volume capacity, like 76, 2 M3 and 2,690 ft3.   

Another major category is the refrigerator containers. These containers are used to 

transport temperature sensitive cargo.  They are very popular in meat and fruit 

transportation.  Tank containers are another type that are used for the transportation of 

non-solid materials. Tank containers were initially used for wine and olive oil in the 

Mediterranean Sea.  As a rule containers were used for small cargo between islands and 

coastal transportation.  In recent years however, tank containers have become very 

popular for chemical cargo.  Tank containers carrying hazardous materials are stored in a 

special location on board for safety reasons.  As a rule they have open sides for adequate 

ventilation. 

Bulk containers are very popular today. These containers are used for the transportation 

of material like gravel and seeds. Finally platform containers are used for the 
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transportation of merchandise that is not affected by atmospheric conditions.  These 

containers are preferable for the transportation of materials such as wood, yachts, etc.  

 

1.3.1 Container Loading Methods 
 

Two methods are used for loading containerships: 
 

a. Vertical “lift on-lift off” in the special cargo holds.  Ships have cellular type 

holds onto which the containers can be latched for extra security. 

b. Horizontal “Ro-Ro”: containers are rolled on and off the ship either on their 

wheels, or on trailers, or other wheeled platforms or machines onto which 

almost any kind of cargo can be loaded. 

The cargo holds might have two levels (twindeck) that can be served by special 

elevators.  The unloading procedure can also use escalators to assist in pulling out.  Most 

containers are loaded / unloaded vertically.  They are placed in columns in the cargo 

holds and on the deck of the ship by the port equipment (cranes etc.) or by the ship’s own 

equipment (bridge crane telescopic cranes, etc.) (Kostalas, 1980). 

The loading and discharge by ship equipment is not as efficient as operations 

performed by cranes built in port.  However, vessels with cranes have the advantage of 

being able to service ports that do not possess the proper equipment.  It is customary for 

containerships with less than a 1000 TEU capacity to have cranes on deck.  Usually, 

these ships are preferable for particular areas such as the Black Sea or the Adriatic.  

Larger vessels are used to carry containers to major hubs leaving smaller ships to service 

these particular areas.  For instance, Piraeus represents a hub for several corporations.  

One of these, COSCO, uses Piraeus as a hub for large vessels (Shipping and Trade, 

2006).  Cargo arriving here is shipped to the Adriatic and Baltic Seas using smaller ships.  
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COSCO either owns these smaller ships or they can be leased from other corporations 

that service this particular area. 

 

1.3.2 Loading Restrictions 
 
 Containers are loaded from the bottom up on the vessel, tier by tier.  This 

compiles with the requirement that containers going to the later ports of call should be 

stowed under those going to earlier ones. Violation of this condition is referred as 

“overstowage” (Aslidis, 1989, Avriel et al., 1998, Wilson et al, 2000).  

 Under-deck bays are usually dedicated to a specific container size such as 20 feet 

and 40 feet in most cases generally.  The loading of two 20 foot containers is allowed 

above a 40 foot container but not vise versa.  In most cases on deck bays loading of a mix 

of containers are allowed.  For instance, 45-foot containers are stowed on deck in a 

specific bay.  Reefer containers can only be stowed in areas with electric outlets, either 

on-deck or under deck.  Hazardous material containers can only be stowed in the bays 

that have been assigned and which are not close to areas of accommodation.  

 The containers that are on deck must be secured to the deck before the vessel 

departs.  This should be done so that container movement is minimized as the vessel 

moves.  Usually lashing systems are used for securing a container on deck. 

 Total container weight in a stack must not exceed a certain strength limit.  This 

restriction often forces some light-weight containers to be selected for on deck stowage. 

Guidelines for loading containers on the vessel were developed by the Maritime 

Administration with the help of the Technical and Research Panel 0-31 of the society of 

naval architects and marine engineers.  
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1.4 Thesis Organization 

The rest of this thesis is organized as follows:  Chapter 2 presents the problem 

statement and discuses the important issues of vessels stability and cargo safety.  Chapter 

3 presents a survey of research work closely related to this thesis.  In Chapter 4 loading 

model is constructed and a stowage-planning model is developed.  Discussion follows on 

constraints, tradeoffs, and performance goals.  Chapter 5 introduces and examines the 

lower bound techniques.  In Chapter 6 different sets of algorithms and techniques used to 

manage the container information in loading planning are set forth.  Chapters 7 and 8 

summarize the contributions and results of our work, and indicate some possible future 

research directions that may be taken. 
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Chapter 2: Problem Statement 
 

2.1 Loading Characteristics 

 
In this research, the primary interest is the category of cellular containerships.  

These ships are designed from keel up solely for container transportation. They have 

fixed cellular construction and the lift-on, lift-off method of handling is used. Containers 

are loaded from bottom to top of a ship, tier by tier. Container cells are grouped into 

“bays”. A bay is either “on-deck” or under-deck”.  Cell guides facilitate lowering of 

containers to their proper storage positions and resist horizontal loads exerted by 

containers as a vessel rolls sideways during its voyage. Under-deck bays are usually 

dedicated to a specific container size, either 20 feet or 40 feet in most cases. The on-deck 

bays allow mixes of different container sizes.  Refrigerator container (Reefer) can only be 

stowed in areas of ship with electric outlets, either on-deck or under deck.  All on-deck 

containers must be properly secured to the deck, which can minimize container 

movements, with possible damages, under vessels’ roaring. 

Total container weight in a stock must not exceed a certain deck strength limit. 

This restriction forces the empty containers or lightweight containers to be selected for 

on-deck stowage. Also, the total weight of all containers cannot exceed the maximum 

weight capacity of the containership. 

 

2.2 Ship Stability 

 
This section provides detailed discussion of the vessels stability and safety, which are 

very important components in the stowage planning.  Before going into details of the 
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problem, it is essential to have a basic understanding of the terminology used in vessel 

design and characteristics. This section presents an overview of the requisite naval 

architectural terms used in this formulation, along with their definitions, and a brief 

discussion of the stability and safety issues. 

Definitions 

Maximum Beam: The maximum molded width of the vessel measured to the outside of 

the hull frame angle of the channel but inside of the shell plating. 

Molded Beam: The maximum breath of the hull measured to the inboard surfaces of the 

side shell plating of the flush-plated vessels, or between the inboard surfaces of the inside 

strakes of lap seam-plated vessels. 

Deadweight: The carrying capacity of a vessel at any draft and water density.  This 

includes the weights of the cargo, fuel, lubricants, oil, fresh water, stores, passengers, 

crew, and their effects. 

Maximum Depth: The modified distance between the vessel’s baseline and the underside 

of the deck plating of the uppermost continuous deck, measured at the side of the vessel. 

Molded Depth: The vertical distance from the molded baseline to the top of the freeboard 

deck beam at side, measured at mid-length of the vessel. 

Light Displacement: The weight of the vessel including hull, machinery, outfit, 

equipment, and liquids in the machinery. 

Loaded Displacement: The displacement of a vessel floating at the greatest allowable 

draft.  

Freeboard: The distance from the waterline to the upper surface of the freeboard side. 
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Keel: The principal fore-and-aft component of a vessel’s framing, located along the 

centerline of the bottom and connected to the stern and stern frames. 

Knot: A unit speed, equaling one nautical mile per hour, the international nautical mile is 

1852 m (6076 ft).  

Length between perpendiculars: The length of a vessel between the fore and the other 

perpendiculars.  The forward is a vertical line at the intersection of the fore side of the 

stern and the summer load line.  The after perpendicular is a vertical line at the 

intersection of the summer load line and either the after side of the rudder post or the 

sternpost or the centerline of the stock if there is no rudder post. 

Service Speed: The service speed is defined as the predicted average speed at which the 

vessel is expected to operate over its entire life at sea.  The prediction takes into account 

such factors as: the environment, the weather, fouling, corrosion, and any other items that 

end to reduce a vessel’s speed. 

Waterline: The waterline is the line of the water’s edge when the vessel is afloat.  

Stability: The stability of a vessel is its tendency to remain upright or the ability to return 

to her normal upright position when heeled by the action of waves, wind, etc. 

Metacenter: The center of buoyancy of a listed vessel is not on the vertical centerline 

plane. The intersection of a vertical line drawn through the center of buoyancy of a 

slightly listed vessel intersects the centerline plane at a point called the metacenter. 

 

The Vessel Hull Form 

 Vessel hull form refers to the shape of the hull, especially the part of the hull that 

is covered by water in normal operating conditions. The properties are called hull form 



 

 19

characteristics or hydrostatic properties because they pertain to the underwater form of 

the hull.  When these properties are displayed in graphical form, the set of curves is 

referred to as the hydrostatic curves. 

 

Properties Included in Hydrostatic Curves     

 The hydrostatic properties are included in hydrostatic curves that are provided by 

vessel personnel.  In this kind of problem the vessel stability is important and since we 

are taking into account vessel stability as a constraint, it is useful to discus the hydrostatic 

properties.   

1. Displacement ( )∆ :  In the United States measurement system, displacement is 

based on the weight of the vessel and its contents.  It is equal to the volume of 

displacement times the weight density of the water in which the vessel floats.  The 

displacement is calculated as follows:           

    Dispg **ρ=∆       

 where: 
 

=∆      Displacement weight 
                   =ρ  Mass density of water 
             =g  Acceleration of gravity 
            =Disp   Displacement volume  

                             

2. Longitudinal center of buoyancy (LCB): The longitudinal center of buoyancy is 

the distance of the center of buoyancy from a specified transverse reference plane, 

usually the midship section of the vessel.  The LCB units are in meters. 

 
3. Vertical center of buoyancy (KB): This is the height of the center of buoyancy 

above the baseline or keel.  
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4. Longitudinal center of flotation (LCF): The longitudinal center of flotation of 

the vessel is the centroid of the waterplane about amidships (amidships is exactly 

halfway between the forward and the after perpendiculars).  

5. Tons per inch immersion (TPI): The tons per inch immersion is defined as 

follows: 

( )unitsSU
A

TPI w ..
420

=  

where: 

Aw = Area of waterplane shown in figure 5. 

 

 

 

 

Figure 5: Vessel’s waterplane 
 

6. Change in displacement per inch ( )PId∆ : It is defined as follows: 
 

      
LwI

LCFTPIPId *
=∆  

        where: 
 

  TPI    =  Tons per inch immersion 
LCF  =   Longitudinal center of flotation 
LwI   =   Length, waterline  

 
 
 
 
 
 
 

 

LwI

Hatched Area = Aw 
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7. Weight module:  
 
The lightship weight and its center of gravity are calculated using empirical relations 

given in literature.  All weights are in metric tons, and the center of gravity is in 

meters. 

Weight is broadly classified into three categories: 

• Lightship 
• Cargo 
• Fuel and miscellaneous  

 
The cargo weight is the product of the number of twenty-foot equivalent units 

(TEUs) and the weight per unit.  We discretize the space available for container 

stowage in the lengthwise, beamwise, and the depthwise directions.  The product 

of the number of TEUs in each direction and a stowage factor accounts for a 

geometry of the hull form and the space available for container stowage after 

accounting for the space occupied by the containers cell guides. The lightship 

weight is composed of: 

 Hull steel weight 
 Outfit and hull engineering weight 
 Machinery weight 

 
The empirical relation for weight is as follows: 
 
The Hull Steel Weight is: (Schneekluth, 1987) 
 

]3.8*000928.01[*)*49532.01[*
1000

*98.5905
691.1003.1







 −++






=

D
LoaCbCNWs  

 
where: 
 

CN   = Cubic number = 
100

** DBLoa  

Loa   = Length, overall 
B      = Beam, maximum 
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D      = Depth at side 

Cb    = Block coefficient = 
TBLwI

Disp
**

 

Disp = Displacement, volume 
LwI  = Length, waterline 
T      = Draft, design 

 

In the stowage-planning problem the stability is very important.  A vessel 

becomes unstable if the vertical, transverse or longitudinal distribution of the 

vessel’s weight is excessively unbalanced.  Some stowage plans may result in the 

instability of the vessel.  In these cases, changes of the stowage plans, i.e. 

rearrangements of containers, are necessary to regain the vessel’s stability.  While 

the vessel’s stability is affected by various factors, we consider the following 

important factors: 

 Transverse metacentre 

 Ship stability is a key requirement for safe ship operation and must be considered 

at the design stage. One of the major issues for ship stability is the metacentre.  The 

position of the metacentre is found by considering small inclinations of a ship about its 

centerline, (Figure 6).   For small angles the upright and inclined waterlines will intersect 

at point 0  on the centerline. The transverse moment with respect to the centerline must 

be zero or, at least, between very narrow limits around zero. 
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Figure 6: Shape of Transverse Metacentre. 
 
 

For small angles the emerged and immersed wedges are approximately triangular 

(Tupper, 1993). The height of metacenter above keel is required to calculate the initial 

transverse stability.  

 Referring to Figure 6, KB is the height of the center of buoyancy above the keel. 

The difference between KM and KG (where G is the center of gravity) gives the 

metacentric height GM. 

 Longitudinal Moment (Trim) 
 
 The principles involved are the same for transverse stability but for longitudinal 

inclinations, the stability is based upon the distance between the center of gravity and the 

longitudinal metacentre.  In general, the trim must be based on specification that provides 

good performance and safety.  The trim must be close to zero.  In the case that trim is not 

close to zero stern trim is preferred to bow trim. The moment to change one inch is 

defined as follows: 
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where: 

MTI  = Moment to change trim one inch 

∆      =  Displacement, weight 

LBM =  Longitudinal metacentric radius 

LwI  = Length, waterline 

 Metacentric Height (GM) 
 
 Metacentric height is the distance between the center of gravity of the ship (G) 

and the metacentre and symbolized with the letters GM or MG.   The position of the 

metacentre is found by considering small indicators of a ship about its centerline.  The 

position of the metacentre in relation to the center of mass of the ship determines the type 

of balance of the ship (Figure 7). 

 When M is above the of center gravity (G), we have positive metacentric height 

and stability. 

 When M is under the center gravity (G) , we have negative metacentric height and 

lack of stability 

 When M is in at the same level with the center gravity (G) and we have neutral 

stability.  

Satisfying this constraint implies placing the heavier containers at the lower rows.  

However, we cannot have very large metacentric heights because the righting lever 

becomes very high and causes the vessel to have a short rolling period.  Quick rolling 

periods are very bad for the cargo and worst for the crew.   

LwI
BMMTI L

*12
*∆

=
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Figure 7: Metacentre and GM in Small Angle Stability. 
 
 
Loading the heaviest container in the lower rows, may conflict with the objective of 

minimizing the container re-handling if the heaviest containers are those that are going to 

the nearest destinations.  The minimum cost requires that the containers that will be 

unloaded first be placed at the upper rows. 

  Structural stresses 
 

 The structural stresses allowed on the keel and on the deck are constrained to be 

less than the maximum ones approved for the ship by the ship’s classification society. 

 Deck Strength 
 

 It is possible that a stack of containers on deck weighs more than the deck 

structure can bear.  In this case the number of containers per stack must be restricted. 

 Raking Strength 
 

 The containers are aligned and stacked according to weight in order to avoid 

collapse.  In stacking containers these collapse limits must be considered especially if 

they are placed on the deck. 
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    Refrigerated Containers 

 These containers carry refrigerated food and products. These containers are 

located in specific areas on vessels` near the vessels’ power outlets.   Usually the power 

outlets are on the deck in the lower rows. 

 Container support 
 

 Containers of similar size and shape are stacked together so that they are 

supported on all four corners. This does not allow containers of different lengths to be 

stowed in the same stack. 

 Chemical (hazardous) Container 

 A minimum distance between hazardous containers must exist. 

In container loading not all the above constraints have the same importance.  

Furthermore, there may be constraints rising from different port facilities, which can 

restrict the possibility of using the full capacity of the vessel.  In the era of 9000 TEU`s 

containerships certain ports might not be deep enough to handle these kinds of ships.    

Generally, the most important constraints are those related to the trim, stability and 

strength of the vessel.  These constraints must be satisfied in any vessel’s departure.  In 

the past few years a few accidents in which those containerships broke in two were 

attributed to incorrect stowage planning and stability measurements.  For instance, the 

containership “Han Se” capsized outside of South Korea on April 10, 2000  (Lloydlist, 

2006)  
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2.3 Definition of Overstowage 

 Containerships make repeated tours of a series of ports according to their planned 

routes.  At each port containers are unloaded and additional containers are loaded on 

board into stacks.  A container is only accessible if it is on the top of the stack.  Time 

duration required for loading and unloading depends on the arrangement of the cargo on 

board, referred to as the stowage plan (Aslidis, 1990), which specifies where each 

container is assigned on board.  Stowage plans, if not prepared well enough, may cause 

unnecessary handling time, required for temporary unloading and re-handling of 

containers from or onto the vessel.  Consequently, port efficiency and vessel utilization 

are largely affected by stowage plans.  Overstowing is defined as follows.  A container 

C destined to port 1+j   of a column e  is overstowed when it blocks the retrieval of 

another container *C  destined to port j  and port 1+j  is later on the schedule than 

destination port j of container *C  (Aslidis, 1989).   

This research deals with the management of overstowage. In general, shifting is 

caused by overstowage, which denotes the situation when containers that should be 

unloaded at the current port are placed under other containers that should go further in the 

vessel’s route. In this case, the latter containers should be temporarily unloaded in order 

for the former containers to be unloaded at the current port.  These temporarily unloaded 

containers, commonly referred to as a overstowage, must then be re-loaded before the 

vessel departure from the port. 

 Also, movements of port cranes are affected by the distribution of containers on 

the containership.  If containers with the same destination are spread over the 

containership in different bays it takes a longer time to unload the containers than the 
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case in which those containers are placed as a group.  A potential stowage plan for one 

section type is presented in Figure 8. For each column container information is specified.  

 

Discharge port B weight 10t

Discharge port B weight 20t

Disharge port A weight 20t

Disharge port S weight 20t

TEU already on board
 

Figure 8: An Example for a Stowage Plan Provided by the Operational Office 

 

Overstowage is a condition that arises in any stacking operations.  The low cost of storing 

items in stacks is balanced by the limited accessibility of the items.  Overstowage occurs 

when one item that is scheduled to be retrieved is under another item scheduled to be 

retrieved later.  The item that has to be moved is overstow.  Several reasons can be 

identified for overstowage:  

• If containers become available for storage at different times 

• If schedule of delivery is not known in advance 

• Wrong stowage planning  

In the first two cases it is very difficult for overstowage to be avoided.  However, 

it can be minimized.  Avriel et al., (2000) modeled the containership’s single bay as an 

array with k  rows and e columns.  There are J ports. The following example 

demonstrates the main idea of the overstowage.  In Figure 9 container A has to be 
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retrieved in time T.  However containers 1B  and 2B  have to be re-handled at that time 

so that A can be retrieved.  The example set forth in Figure 9 demonstrates the basic 

concept that is what items have to be rearranged in order to minimize the total number of 

item rearrangements over a certain period. 

 

      

  B1
  B2    B1   B2

   B1
   B2   B1

    A     A    A   B2   B2

    A    A
   B1   B2

   A
  B1   B1

    A   B2   B2   B2

Total Number of Re-arrangements = 2

Total Number of Re-arrangements = 1
 

Figure 9: Items to be rearranged 
 
 It is worth mentioning in the above example that it is not logical to place 

container 2B above 1B . Were the latter done then, an additional overstowage happens 

that is a wrong planning.  It is apparent from the above that a usual place in which 

overstowage situations arises is stacking items in warehouses.  However, this work is 

motivated by a different application, which is the field of containership operations.  Other 

contexts in which overstowage happens are presented in the next section. 
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2.4 Other Causes for Overstowage 

Container operation is not the only area facing the extra handling cost, called 

overstowage.  Overstowage is present in all circumstances involving operations, in the 

industry or in routing/circuits on the telecommunication network.  Stacking in marble 

factories and warehouses is another very common area where overstowage occurs 

(Schreiner, 2003). 

The marble industry needs huge open storage areas for marble stock.  It is very 

common to rearrange stock reflecting orders that each industry has.  As a rule some gains 

can be made from blocking the rocks by color and point of origin.  However, it is very 

common that the first rock at the lower level is needed to satisfy requirements for a 

particular order. 

The operation of warehouses involves the arrival of purchases and their 

subsequent regaining later on (Christofides, 1989).  Suppose that the next day’s 

shipments are retrieved overnight and are placed in a standby area awaiting pickup. 

Similarly, assume that the items that arrive during the day are stored in the standby area 

as well.  The latter area is placed in the warehouse main storage area during the night 

(Figure 10).  This kind of operation resembles the one in which a vessel is visiting a 

series of ports.  Imagine that the vessel is the warehouse, which “travels” in time and 

visits a series of “days” (ports) (Beasley, 1989).  Fortunately, many of the constraints 

described in the containership (i.e. stability constraints, vessel constraints, etc.) operation 

do not apply. 
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Delivery
Area

Warehouse

Stand
by

Pick up

 

         Figure 10: Warehouse model with overstowage 
 

A case similar to a containership visiting a series of ports comes up when a truck 

visits a series of locations where it loads and /or unloads boxes stored in stacks.  Of 

course, the scale of the problem is smaller (fewer stacks) and again most of the 

constraints that apply in containership problem, such as trim constraint, do not exist here. 

The concept of stacking does not require the stack to be physically vertical.  Any 

linear arrangement with only one access point may serve as a stack.  A typical example is 

parking garage operation as shown in Figure 11. 
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           Figure 11: Horizontal storage example - parking garage 
 

In this case the stacks are horizontal.  Another example of horizontal stacking is 

in a railway transportation system. As in many other transportation systems, there are 

spatial imbalances in the freight flows.  Intermodal facilities or terminals ship out a 

different amount of goods than they receive, and some receive more than they ship out.  

Therefore, the arrangement of train tracks in the storage yard is very important. The same 

situation may arise in container terminals that use chassis to move containers around. A 

somewhat different view of overstowage appears in the following situation.  Suppose that 

there exist a number of tools, say, M .  These tools are stored in a stack.   Every time a 

tool is to be retrieved and used, all tools that block it have to be removed.  After being 

used, the tool is restocked.  Removing a tool costs a certain amount of time and money.  

If the frequency by which each is used is known, a natural consideration would be the 

order of items in the stack that minimizes the expected cost (time or money). 

Lane 4

Lane 3

Lane 2

Lane 1

Lane Station Parked Vehicle Moving Vehicle
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In another version, let’s say that the sequence by which the tools are used is 

assumed known.  Again, the question is “what is the order that minimizes the 

rearrangement cost?”  These problems define the class of “use-and-restock” problems.  

This is to be contrasted with the type of problems introduced earlier (containership, 

warehouse) which define the class of “pickup-and-deliver” problems since the items 

come on a stack for a certain period of time, and then, go off for ever (Aslidis, 1990). 

There are many variations of overstowage problems that can be constructed.  All 

of them have a combinatorial nature.  Consequently, their solution requires techniques 

from the field of combinatorial optimization.  Undoubtedly, this class of problems is very 

interesting from both the theoretical and practical viewpoint.  It appears that overstowage 

problems are hard in the general case (Wilson, 2000).  Special or restricted versions of 

them can be solved efficiently, though. 

A more promising way to handle the allocation of containers to stacks is to 

describe the list of items in each stack at a particular time.  Items can still be individually 

identified.  The problem can be expressed as a series of assignment problems of items to 

stack position at the time of interest.   Inspired from the short description of the state of 

the stacks, solving the loading problem subject to the placement constraints (as in 

containership operations) appears to be a different task because of the knapsack nature of 

the problem.  The objective of this thesis is to study the optimal loading on containership.  

The presence of side constraints may obscure the aspects of the pure loading problem and 

add difficulty.   As the literature survey in the following chapter reveals, very little 

research has been done on this problem and on the problem of minimizing overstowage 

costs. 

 



 

 34

2.5 Problem Statement  

Stowage planning is important in the design, load planning and techniques in the 

containerships and in maritime industry in general. While the users’ demand for 

improved and more sophisticated models of inventory and allocation increases rapidly, 

improvements in stowage planning come at a slower place. Therefore, the possibility of 

designing a control function (such as stowage, and allocation mechanisms) in a way that 

takes into consideration safety and minimum overstowage, presents a novel opportunity. 

This research is motivated by a stowage planning problem with integrated 

optimality criteria.  The cost of stowage of the units (containers) is minimized when 

certain units are scheduled “close” to each other.   For example, the units may overlap in 

the work needed to accomplish them and the design of effective stowage policies must 

take these overlap into consideration.   

A crucial design in the maritime industry is that of stowage planning. Due to the 

importance of the container loading accounting for different container types over multiple 

container destinations may require better planning.  On the other hand, multiple journeys 

could result in significant overhead and routing complexity along with utilization of a 

larger amount of network nodes (ports), thereby potentially increasing the overall 

complexity.  The use of good heuristic procedures can give very good results in a 

reasonable computing time.   

Motivation comes from containership operations that include the most difficult 

aspects of loading.   The focus of this work is to develop an optimization method and 

algorithm for optimal loading of containerships to minimize the extra handling cost.  Our 

objective is to minimize the extra and un-necessary container movements on board during 
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the loading and unloading procedure. This translates into minimizing the time at port per 

vessel call.  

With modern containerships carrying several thousands of containers (in the range 

of 8,000), margins for improvement exist.  The containers on board are placed in stacks. 

Access to these stacks is possible only from the top.  In fact access to stacks below the 

deck requires clearing the hatch (deck cover) that leads to the components below the 

deck. The stacks on board create the overstowage. Containerships visit (call at) ports in 

which they pick up and deliver containers.  The time it takes to load and unload a 

container is usually two to four minutes.  Therefore, if 50 to 150 re-handlings at each port 

can be eliminated, the amount of time saved in one year would be approximately three 

days.  This represents about a 1% increase in the productivity of the vessel (measured in 

container miles per year). 

In this research, we plan to develop an optimization model that includes a set of 

rules, guidelines, and constraints which must be met, including: 

1. Strength requirements of the vessel structure.  This requirement is 

extremely important for the strength limit of the vessel construction.  In 

addition, this requirement accounts for the limit on the bending and shear 

stresses that are developed along the vessel.  

2. Stability requirements of the vessel. These constraints are very important 

for vessel stability.   

3. Cargo constraints: This requirement accounts for the fact that different 

containers must be placed in different positions.  For instance refrigerated 

containers must be placed at positions supplied with power outlets. 
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4. Container stability constraints: these constraints account for the fact that 

the stack of containers must have a height limit, because the containers at 

the bottom should be able to carry the weight of the containers above 

them. 

5. Cargo adjacency constraints: these constraints take into account 

regulations related to hazardous cargo.  For example, reacting cargoes 

cannot be placed in adjacent positions. 

A similar conclusion can be drawn from the perspective of port operation.  The 

same saving of container re-handling corresponds to a greater percentage of port time.  If 

50 re-handlings are saved per ship call, and if the latter involves the pick up and delivery 

of 1000 to 2000 containers, then the savings may reach to 5% of port time.  Generally, 

port time goes down in direct proportion to the number of container re-handlings saved. 

The main difficulty of any mathematical model using real world constraints is the 

large number of variables used.  For instance, if SV is the number of available positions 

on board and CV is the number of containers we want to ship, SV*CV variables should 

be defined.  It is clear that with a vessel carrying more than 1000 TEU`s, the number of 

required variables is greater than 1,000,000. The number of variables relates solely to the 

assignment part of the problem.  Figure 12 simplify the problem formulation by 

introducing the concept of virtual container (or blocks) as defined in the previous 

sections.  Even this virtual representation of the container assignment in each station/bay 

shows the number of the possible variables. Therefore with this number of variables the 

use of any formulation to handle large-scale problems is virtually impossible.  A heuristic 
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is therefore introduced to produce a solvable model for medium and large-scale 

problems. 

 

 

Figure 12: Virtual representations of the container assignment 
 

In our research we use a fixed geometric configuration for ships.  For instance, we 

are using the normal cross cutting configuration as shown in Figure 13.  Note the stacks 

above and below the deck of the containership. 
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Figure 13: Containership cross-cut section for 5,500 TEU(Εφοπλιστης, 1999). 
  
 

2.6 Research Objective and Scope 

The major goal of this research is to formulate a realistic stowage planning problem and 

find an efficient solution algorithm for container loading as described in Section 1.  In 

order to achieve the purpose of this research, the following objectives will be pursued: 

• Development of a mathematical model for stowage planning model (container 

loading) stated in Section 4.4. This model will be used for finding the exact 

solution. 

• Development of a heuristic algorithm for container loading.  The heuristic 

algorithm must find a good solution to the problem within a reasonable time. 
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• Conducting extensive testing to examine the performance of the proposed model 

and solution approach. 

 

2.7 Research Contributions 

 Driven by the ever-increasing demand for container transport, the lagging 

capacities of container loading procedures, and the capabilities of emerging operations in 

the network, this thesis broadly addresses the problem of container loading into the 

containership.  It capitalizes on the scalability potential of container loading from the 

container terminal (Dock) to thousands of clients.   

Stowage planning has been investigated by a few researchers, along with a 

number of related issues.1  This thesis focuses on stowage planning for containership 

regulated by safety constraints.  So far, every technique proposed for this planning 

follows a common thread: There is an assumption that the users are fully aware of the 

safety constraints used to produce a static data loading schema.  The premise of these 

approaches is that users provide loading plans, which are compiled to derive the stability 

pattern.  While this may be suitable in some instances, it is not applicable when the 

interests of the client changes and when the container load is huge and definitely require 

optimal solutions, at the appropriate time.  

The key contributions of this dissertation are as follows. 

• A mathematical model is developed which considers all operational 

constraints.  After discussing the advantage of the model, we make test 

cases and we study the results. 

                                                           
1 For a survey refer to Chapter 3 
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• The mathematical model is used to develop a procedure to obtain lower 

bounds for the optimal objective function values. 

• A heuristic procedure is introduced that essentially disguises the problem 

of loading to the stowage-planning problem.  The special properties of this 

planning are identified, a discussion of its performance is offered and 

basic management principles are set.  The general goal of stowage 

planning is to minimize the unnecessary shifting of containers on board.  

Based on this algorithm, updates are made, which are intended to offer 

optimum guidelines with respect to safety, stability, and maritime law 

requirement. 

All proposed algorithms and mathematical models are validated with 

experimental results drawn from a detailed model of the loading operation.  In all cases, 

these results demonstrate the stability, flexibility, and efficiency of the model, and 

establish its potential as a versatile and practical method for large scale container loading. 
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Chapter 3: Related Work 
 
 
3.1 Literature Survey 
 

Stowage problems have been subject of research since the early 1970’s and a 

small amount of literature has been created in this area.  At the same time, starting with 

the first worst case analysis of the performance of an approximation algorithm in 1966, 

(Graham, 1996), there has been a significant progress in the development of 

methodologies for designing efficient algorithms for NP-hard problems.  Recently there 

has also been much progress in our understanding of the extent to which near-optimal 

solutions can be efficiently computed for NP-hard problems.  Despite the impressive 

amount of literature that exists in the area of heuristic algorithms for loading problems 

not much work has been done in solving loading problem in the containership (Wilson, 

1999).  Broadly, our work falls in general research area of container shipping industry.  In 

the following I will outline the research that exists in related areas. 

 

3.2 Literature in Container Loading 

While the container-loading problem has now been explored for more than three decades, 

not many papers can be found in the literature.   The first study about this problem was 

done by W.C. Webster and P. Van Dyke, of Hydronautics Inc. (Aslidis, 1989).  Their 

work focused on the loading / unloading process and it was presented at the Computer 

Aided Ship Design Engineering Summer Conference at the University of Michigan in 

1970.  In their study, the stability constraints of the vessel are important.  The flexibility 

one has in allocating the cargo on board is also given great attention.  Through their work 

they hope to optimize the operation of the ship and the container system. The overall 
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system is divided into components – the “ship” and the “container”.  Each component is 

assigned optimal goals.  For the ship they include (a) having desirable longitudinal, 

vertical and transverse centers of gravity to satisfy stability or trim constraints; (b) the 

ballast must be as little as possible to satisfy the stability constraints; and (c) utilization of 

consumables while underway to maintain this desirable conditions.  

The containers are grouped in blocks based on the destination port. The containers 

for further ports are loaded in lower rows. The paper has 3 steps: first, general 

characteristics and assignment of containers by destination, second, the schedule of 

container loading for the next route and third the decision of the loading and unloading 

sequence for the next route.  This study does not follow the optimal solution procedure 

and the presented method was not tested.  Also, it was the first in analyzing containership 

operations.  However, the heuristic that was developed was simple and not completely 

tested and real results are not available. 

The first major study came with the adoption of the Computer-aided preplanning 

system (CAPS) by American President Line (APL) in 1981.  This system, explained by 

Shields (1984), uses simulation techniques and human interaction to provide possible 

vessel plans. This work took a completely different approach to the problem. Different 

loading patterns were randomly generated and analyzed.  To minimize the possible large 

number of inefficient loading patterns the process was tweaked to produce favorable 

results.  The criterion through which a specific loading was generated was selected 

randomly among a set of criteria.   

Each pattern produced was evaluated based on the increase of time in handling of 

containers.  Each increase was assigned a penalty.  An even larger penalty was assigned 



 

 43

to violations of constraints.  Patterns with the least amount of penalties were selected 

(Shields, 1984). 

Patterns for loading containers of the next port were developed using the strategy 

of starting points.  The procedure was repeated at each port.  At the end the least costly 

solution was adopted.  This algorithm considers many parameters and satisfies them 

equitably well.  However, it does not guarantee optimality.  Moreover, the selected 

solutions at each port are not necessarily the best.  This algorithm stays more in 

probabilistic view of the problem. The probability to find a better solution increases when 

we can run more combinations of loading patterns.  However this requires greater 

processing time and power. 

The PhD thesis by Aslidis in 1989 deals with the minimization of the overstowage 

cost in stacking operation.  The one-stack overstowage is examined first. The algorithm is 

based on the property of the problems that decompose under certain assumption into 

smaller size problems.  The algorithm runs in O (M3) polynomial time, where M 

represents the number of ports for the containership problem.  The multi-stack 

overstowage problem is examined in the second part of his thesis.  His analysis leads to a 

set of heuristic algorithms.  These heuristics try to solve the container case without 

stability or placement constraints.  He also looked at other stacking operation that he tried 

to solve under certain assumptions. 

Botter and Brinati (1992) developed a mathematical model for the stowage 

problem.  While the model shows the complexity of the problem it has many limitations.  

Therefore, it cannot be guaranteed that an optimal solution can be found for a vessel in a 

reasonable time.   
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A simplified mathematical model for the stowage-planning problem was 

presented by Avriel and Penn in 1993.  They developed a 0-1 binary linear formulation 

that can find the optimal solution.  The model used the General Algebraic Modeling 

System GAMS software, but they found out that using this model is quite limited because 

of the large number of binary variables that were needed for the formulation.  In addition, 

the authors developed several heuristics algorithms to solve the problem.  The one 

presented here is based on a reduced transportation matrix.  The model tries to minimize 

shifting without considering stability constraints. 

Todd and Sen in 1997 developed an algorithm for container loading.  The authors 

compared the containership-loading problem to the Traveling Salesman Problem (TSP).   

They concluded that unlike the TSP problem the numbers of containers are usually less 

than the numbers of possible locations and this makes the problem more complex. The 

model is tested in simplified versions of the problem.  The authors used a genetic 

algorithm to solve the problem.  Several of the objectives were combined to form a single 

criterion and others were omitted.  The GA is able to produce a range of configurations 

with generally good properties.  However, the nature of the algorithm prevents it from 

being able to deal with a single mis-positioned container. 

Avriel et al. (1998) treat the stowage-planning problem as a two-dimensional 

stacking problem, and give a heuristic procedure called the suspensory heuristic 

procedure for the objective of minimizing the number of shifting operations.  However, 

they assume that there is only one large cargo bay in a vessel without considering 

constraints related to batch covers and the stability of the vessel. 



 

 45

Kaisar, in his MS thesis in 1999, examined a simplified version of containership 

operation.  He assumed that a vessel visits a series of ports of which, at the first port the 

vessel is totally empty.  The mathematical model presented addresses the complexity by 

considering many factors, such as longitudinal moment, trim, and metacentric height 

(GM).  This model does not take into account any other hydrostatic requirements.  The 

model deals with containers with same dimensions, but considers a variety of different 

weights.  The model first assigns containers to available positions.  If the GM and the 

trim are not within the specifications, then the containers are re-assigned.  Positions are 

assigned through column interchanges taking into account that the water ballast must be 

kept to a minimum.  Iterations continue until requirements are met. 

The proposed formulation is tested in a variety of example problems using 

different networks of ports.  It provides good results in a reasonable computational time. 

This mixed integer-programming model is based on minimizing the extra container 

handling cost (Kaisar, 1999). 

Wilson and Roach (1999) presented a methodology for generating automated 

solutions to the containership stowage problem.  Cranes were taken into account, with 

tests assuming two cranes being available at the berth.  They developed a tabu search 

combined with a packing heuristic based on the conceptual processes employed by 

human planners.  They summarized their results and highlighted how incorporating 

modern heuristics (such as Tabu search) in a traditional heuristic can give good results 

even if the solution is not optimal.  The standard heuristic for crane usage is to make sure 

that any port specific crane limitations are taken into account and to make sure that cargo 

for a given port is blocked in such a way that crane usage is maximized.   
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Steenken et al. (2001) considered the ship planning problem at maritime container 

terminals where containers are loaded onto and discharged from containerships using 

cranes.  The container transport between the containerships and the yard positions in the 

terminal is carried out by a fleet of straddle carriers.  Based on a stowage plan provided 

by a shipping company, the dispatcher assigns containers to specified positions.  Then, 

subject to operational constraints, he schedules containers in order to avoid waiting times 

at the quay cranes.  They considered the cranes in their model.  Based on the availability 

information of cranes, a crane split can be computed by solving a partitioning problem 

with some operational side constraints.  They presented computational results based on 

real-world data of a German container terminal.  Moreover, they discussed some real-

time and online influences on the daily dispatch situation.  

Also, Imai, et al. (2002) studied the problem from two different points of view.  

First, they consider the ship stability and second the number of necessary container re-

handling.  The paper did not give an inferior solution set for the containership loading. 

They developed two types of mathematical formulations: a linear and an integer 

programming.  The authors did not guarantee that their model always obtains feasible 

solution in terms of GM, and the computational time is reported to be very high.  

 Dubrovsky et al. (2002) used a genetic algorithm for solving the stowage planning 

problem of minimizing the number of container movements.  They used parallel 

implementation for their research.  The GA approach is ideal for parallel implementation.  

Using parallel processors in their research they were able to speed up the process 

considerably.  A compact and efficient encoding of solutions is developed, which reduces 

the search space significantly.  The efficiency of the suggested encoding is demonstrated 
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through an extensive set of simulation runs.  This algorithm is much more suitable for 

handling real life containership stowage problems and may be further developed to 

include all ship constraints.  

Kim et al., (2002) focused on the stowage problem with the objective of 

minimizing the time that containerships spent in port terminals, or equivalently, a 

weighted sum of the number of shifting operations and the frequency of required crane 

movements, which are major factors that influence the time.  In this study the stowage 

planning problem is partitioned into two sub-problems, the problem of assigning 

container groups to holds and that of determining specific positions or slots for the 

containers assigned to each hold.  The container group denotes a set of containers with 

the same port of origin and the same destination and the same weight, but it includes the 

time required to move crane from one bay to another.  In this study the sub-problem 

referring to assigning the cargo in holds is formulated as a mathematical program which 

is similar to that of the fixed change transportation problem.  The other sub-problem 

referring to the cargo to the particular slot is defined and solved based on a tree search 

method.  Although, the authors considered several aspects or characteristics of cargo 

handling operations at ports to make the research practical, there are still more to be 

done.  In this study they considered only one standard type of containers, but there are 

containers of various sizes. 

 Ambrosino et al., (2004) proposed a linear programming model for a bay plan 

problem that is the problem of finding optimal plans for stowing containers into a 

containership, with respect to a set of structural and operational restrictions.  They 

presented a heuristic approach that relaxes some relations from the model and gives pre-
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stowage rules to solve this combinatorial optimization problem.  In particular, they split 

the set of available locations of the ship into different subsets and focus the stowage of 

containers within them depending on their features and handling operations. Also, this 

linear programming model is aimed at defining the stowage planning only for standard 

containers.   

 Finally, Ambrosino et al., (2006) presented a decomposition approach that 

allowed them to assign a priori the bays of a containership to the set of containers to be 

loaded according to their final destination, such that different portions of the vessel are 

indecently considered for the stowage.  They checked the global vessel stability of the 

overall stowage plan and look for its feasibility, by using an exchange algorithm which is 

based on local search techniques.  However, in the proposed approach they assumed that 

the vessel starts its journey in the problem for which they are studding the problem, and 

visits a given number of other ports where only unloading operations are allowed that is 

they are only concerned with the loading problem at the first port.   

 

3.3 General Literature on Loading and Re-handling Problems 

3.3.1 Bin-Packing Problem  
 

The loading problem is now well recognized in the literature and has become 

widely used in a variety of transportation operations.  Most of this work has been done 

for container loading (as bin packing problem).  A few papers from the bin-packing are 

reviewed here.  Some of the papers formulated the problem as a zero-one mixed integer-

programming model.  They include the consideration of multiple containers, multiple 

cartons sizes, and carton orientations.    
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Scheithauer in 1992 considers three-dimensional problem of optimal packing of 

container with rectangular pieces.  The author proposes an approximation algorithm 

based on the forward state strategy of dynamic programming.  A good description of 

packing is developed for the algorithm, and some computational experience is reported. 

Tarnowski, et al., in 1994 developed a polynomial time algorithm for solving the 

two-dimensional cutting stock problem where all small rectangles are of the same 

dimensions.  The authors tried to solve the major problem by decomposing it into three 

subproblems.  The authors used dynamic programming to solve two of the sub-problems 

in polynomial time, and the third used a search algorithm (TINOS).  The reason that the 

authors used a polynomial time algorithm is because the algorithm that they developed 

requires the minimization of linear modulo functions. 

Scheithauer, and Terno in 1996 developed a new heuristic for the two-

dimensional pallet-loading problem.  The heuristic structure tries to generalize the 

structure of packing patterns, which requires the same organization of packed boxes 

within each box.  The heuristic gives optimal solution and solves all instances where at 

most 50 boxes are contained in optimal packing.  The algorithm runs in polynomial time.   

Faroe, et al., in 1999 developed a heuristic for three-dimensional bin packing 

problem.  The presented algorithm decreases the number of bins.  Each time the search 

for a feasible packing of the boxes was guided local search (GLS).  The procedure 

terminates when a given time limit is reached or the upper bound matches a precomputed 

lower bound.  The algorithm can be applied for two-dimensional problem as well. 
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3.3.2 General Literature on Re-handling Problems  
 

In order to speed up the loading operations of export containers onto vessels, the 

rearrangement operation is very important.  The re-handling work influences the 

performance of transfer cranes significantly in a container terminal.  There are very few 

research results published about the re-handling operation.  Cho (1982) developed a 

methodology for containership load planning.  McDowel et al. (1985) analyzed container 

handling operations and focused on re-handling problem.   Watanabe (1991) suggested a 

simple method to estimate the number of re-handles.  Kim (1997) proposed a 

methodology to estimate the expected number of re-handles to pick up an arbitrary 

container.  In addition, the author estimated the total number of re-handles to pick up all 

the containers in a bay for a given initial stacking configuration.  Kim and Bae (1998) 

proposed a methodology to convert the current bay layout into a desirable layout by 

moving the fewest possible number of containers and in the shortest travel distance.  The 

authors divide the problem into three sub-problems including the bay matching, the move 

planning, and the task sequencing.  In addition the authors suggested a basic 

mathematical model for each sub-problem. 

 

3.4 Balanced Loading 

An important consideration for loading is balance. Currently, load planners rely 

on rules of thumb for loading vessels, trucks, and aircrafts.  Computerized systems such 

as those described by Cochard and Yost (1985) and Martin-Vega (1985) are used to help 

solve the higher-level problem of assigning cargo on planes.  Zhang, Amiouny, Bartholdi 

III, and Vande Vate (1992) developed a heuristic for a problem motivated by the loading 
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of aircraft or trucks: pack blocks into a bin so that the center of gravity is as close as 

possible to a target point. The heuristic also works when non-homogeneous blocks are 

loaded into a bin of nonzero and possibly non-homogeneous mass (Zhang, et al., 1992).  

Mathur in 1998 presents an efficient algorithm for a one-dimensional loading problem.  

The goal is to pack homogeneous blocks of given length and weight in a container in 

such a way that the center of gravity of the packed blocks is as close to a target point as 

possible.  The proposed algorithm is based on the approximation of this problem as a 

Knapsack problem.  This algorithm performs better on randomly generated problems 

(Mathur, 1998). 

 

3.5 Heuristic Algorithms for Stowage Problem 

 Not many heuristic methods have been applied to this problem.  For stowage 

problem once an efficient estimation is obtained for the performance of the system, a 

search of the parameter space to find the optimal values will be required.  This section 

presents the modified algorithms that could be used, taking into account the complexity 

of the system.  

 
 
3.5.1 Simulated Annealing  
 
 Simulated annealing is a technique that first became very popular in the mid of 

1980`s (Kirkpatrick et al., 1982).  The simulated annealing technique can be viewed as a 

general approach for solving hard combinatorial optimization problems through 

controlled randomization problems (Eglese, 1990).  In addition, simulated annealing 

adopts the analogy between the physical annealing process of solids and that of solving 

combinatorial problems.  This technique is similar to local search with the added 
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advantage of not being trapped in local optima.  The local search strategy starts with an 

initial solution, which is then perturbed in an attempt to improve it.   It works by allowing 

for the escape from local optima, with the possibility of reaching a global optimum, by 

allowing uphill moves.  In addition the algorithm allows moves to inferior solutions 

under the control of a randomized scheme.  Specifically, if a move from one solution x  

to another neighboring but inferior solution 'x  results in a change in value ε∆ , the move 

to 'x  is still accepted if: 

( ) RT <∆− /exp ε  

where T is a control parameter, and R  is a uniform random number between (0,1).  The 

parameter T  is initially high, allowing many moves to be accepted, and it is slowly 

reduced to a value where inferior moves are nearly always rejected.  There is a close 

analogy between this approach and the thermodynamic process of annealing in physics. 

Simulated annealing is a simple procedure to apply.  However, there are several decisions 

to be made in applying it.  Usually, simulated annealing can be implemented in 

combinatorial problems by using a simple neighborhood solutions, a starting temperature 

suggested by some small scale initial experiments, and a simple cooling schedule, and 

then makes further improvements. 

 

3.5.2 Tabu Search 
 
 Several schemes for incorporating nonimproving moves in improving search 

without undo cycling have proved effective on a variety of discrete optimization 

problems.  One is called Tabu search and was first introduce by Glover in 1993 and has 

been used to solve many practical problems that arise in real world applications. 
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 The basis for Tabu search is described by Glover.  Given a function )(xf to be 

optimized over a set, X , Tabu search begins in the same way as an ordinary local search, 

proceeding iteratively form one point (solution) to another until a given termination 

criterion is satisfied.  Each 'Xx∈  has an associate neighborhood ,)( XcN ⊂  and each 

solution )(xNx∈ is reached from x  by an operation called a move. 

 The quality dimension refers to the ability to differentiate the merits of the 

solutions visited during the search.  Quality is a foundation for incentive-based learning.  

The flexibility of these memory structures allows the search to be guided in a multi-

objective environment.  In tabu search, a neighborhood of current solution is generated 

through different classes of transformations.  Unlike classical local search heuristics, 

Tabu search does not stop at the first local optimum when no improvement is possible.  

The best solution in the neighborhood is always selected, even if it is worse than the 

current solution.  This approach allows the model to escape from local optima and 

explore a larger fraction of a feasible region (Glover, 1997). 

 To avoid cycling, transforming to solutions recently visited during the search are 

forbidden.  To achieve this goal, a data structure known as a Tabu list stores the recent 

search trajectory.  

 

3.5.3 Genetic Algorithms 
 
 Another method for avoiding optima in improving search is known as genetic 

algorithm and it has been used in container loading (Dubrosky et al, 2001).  The original 

aspiration for genetic algorithms comes from the population genetics.  The metaheuristic 

genetic algorithm uses a collection of solutions, from which using selective breeding and 
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recombination strategies, better and better solutions can be produced.  Simple genetic 

operations such as a crossover and mutation are used to construct new solutions from 

pieces of old ones, in such a way that for many problems the population steadily 

improves.  It many applications, the component vector or chromosome is simply a string 

of 0`s and 1`s.  Goldberg (1985) suggests that there are significant advantages if the 

chromosome can be structured.  

 The best single solution encountered so far will always be part of the population, 

but each generation will also include a spectrum of other solutions.  Ideally all will be 

feasible, and may be nearly good as the best abstraction in terms of the objective 

function.  New solutions are created by combining pairs of individuals in the population.  

Local optima are less frequent because this combining process does not center entirely on 

the best solution.  In order to generate automatically strategic stowage plans and explore 

the application of artificial intelligence to cargo stowage problem, Wilson et al., (2001) 

used a genetic algorithm (GA) approach. 

 

3.6 General Literature 

Another area of research in which the loading procedure is of great interest is the 

Traveling Salesman Problem.  Many researchers have studied this problem in different 

ways and approaches.  Ladany and Mehrez (1984) considered a form of the Traveling 

Salesman Problem in which overstowage costs are also included.  This problem is very 

common in large delivery corporations that deliver merchandise door to door (Ladany 

and Mehrez, 1984).  Researchers have taken different approaches based on dynamic 

programming.  These approaches can be regarded as extensions of the Christofides 
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(1981) state space relaxation method to problems with time windows. Problems with up 

to 15 customers have been solved to optimality. 

  Usually trucks carry the load in stacks.  For this problem loading capacity is to be 

maximized while the total time of the operation is to be minimized.  This consists of the 

traveling time between the pickup and delivery points, and the time spent at each of the 

above locations. 

The number of stacks is a function of the number of boxes that are unloaded from 

or loaded onto the truck.  Obviously the fewer is the number boxes that are re-handled at 

each location the lower is the total operation time. Given the sequence by which the 

locations are visited, a minimum rearrangement plan may be derived. If the sequence of 

visits is not specified and is to be decided, then there are two traveling salesman problems 

that need to be solved. However, the two TSPs are linked through the requirement of 

minimization of the rearrangement time.  This is a generalization of the TSP problem and 

consequently it is very difficult.  In fact it can be easily proven that the problem belongs 

to the class of NP complete problems (Aslidis, 1989). 

Laporte (1997) considered an arc routing problem that can be modeled and solved 

as traveling salesman problem.   Computational results indicate that the approach works 

well on low-density graphs containing few edges.  It constitutes also the approach for 

solving Stacker Crane Problem to optimality (Laporte, 1997). 

Christofides and Collof (1989) have published a paper on finding the optimal way 

of rearranging items in a warehouse.  The rearrangements are necessary in warehouses 

for good service and “fast moving”.  Usually, the most common items have to be at the 

“front” end of the warehouse while slow moving ones must be moved towards the rear.  
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The paper gives a two-stage algorithm that produces the sequence of item movements 

necessary to achieve the desired rearrangement and incur the minimum cost (or time) 

spent in the rearranging process (Christofides et al., 1989). 

Finally, papers from different areas such as airline and paper industry were 

reviewed such as George (1993) and Cochard et al., (1985).   A common idea to provide 

a solution approach that provides the loading procedure focusing on reducing cost. 

 

3.7 Other Container Problems 

3.7.1 General Literature on Rearrangements Problems  
 
 Containerized liner trades have been growing steadily since the globalization of 

world economy intensified in the early 1990s.  However, these trades are typically 

unbalanced in terms of the number of inbound and outbound containers.  As a result, the 

relocation of empty containers has also become a major problem. The earliest description 

of using models of empty container relocation can be dated back to 1972.  White (1972) 

introduced the problem.  Florez later in 1986 formulated the problem as a deterministic 

network problem (Florez, 1986). Crainic, Gendreau, and Dejax worked on this problem 

from different point of view (Dejax, et al., 1991).  Crainic, Gendreau, and Dejax (1993) 

further developed a model to minimize the total inland transportation costs.  Lai, Lam, 

and Chan used a simulation model to represent the problem and developed heuristic 

search techniques to find the lowest cost option (Chan, et al., 1995). 
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3.7.2 General Literature about Vessel Design 
 
 Vessel design, in general is a multifaceted activity requiring the efficient 

utilization of resources to meet some functional requirements. A slender hull form is 

preferred for minimizing resistance, whereas maximizing cargo volume results in a fuller 

hull form.   

 Ericson (1991) presented a mathematical model for containership design 

optimization that considers operating costs incurred at container port terminals and for 

land transportation.  In this research the author discovered that the objective function is 

found to be flat in the neighborhood of the optimum point and further reductions of the 

stepwidths did not improve the value of the objective function by more than 0.2 percent. 

 Crhyssostomidis (1996) proposed an optimization approach to containership 

design in which the carrying containers and the speed is fixed during the design process.   

A random search optimization technique is employed, for many cases until a near least-

cost design is achieved. 

Recently, Neu et al., (2000) developed a prototype tool with a multidisciplinary 

optimization approach to ship design.  A containership is used as a test case and the 

problem formulation treats the carrying capacity (numbers of containers) and the speed as 

variables in the design process.  In this research, the weight-displacement equality is 

enforced through a decomposition approach that speeds up the design process.   

 

  
3.7.3 General Literature about Container Terminal 
 
 Another area in which containers have significant effect is in container terminal 

operation.  There is a significant amount of container port literature available, but only a 
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small fraction of it deals with relatively new services such as intermodal containerized 

cargo. The limitations of these methods became evident when new technologies were 

introduced and ports grew in complexity and importance, spurring new interest in port 

and rail research. 

 A number of authors have developed analytical models for the analysis of port 

related problems.  One of the most comprehensive contributions from a systems analysis 

viewpoint was by Imakita (1978).  Also, Castilho and Daganzo (1991) examined the 

trade-off between container storage and handling efforts for different operating strategies 

(Castilho and Daganzo, 1991).  The operations of modern container terminals are 

described by many authors (for example Atkins, 1983).    Ballis and Abacoumkin (1995) 

introduce a computer simulation model for a container terminal equipped with straddle 

carriers.  The proposed model was used to examine the differences between “the 

observed” operation strategy and the strategy dictated by the operational rules of the port 

of Piraeus.  The results show that “the observed” strategy leads to shorter truck service 

time but increases the traffic conflicts in the terminal internal transport networks. 

 The efficiency of container ports is of great importance to the shippers, ship-

owners, and ports.  Because the time that a ship spends in a port is very crucial, port 

facilities need to minimize queuing delays to ships.  Several researchers have tried to 

optimize the number of berths in a port by minimizing the port cost and ship delay 

(Schonfeld and Sharafeldien, 1985).  Siberholz in 1989 developed a simulation program 

to transfer containerized cargo to and from vessel.  The model addresses this complexity 

by stochastically simulating many functions, such as work crew schedules and vessel 

capacities.  The model allows owner to analyze cost and service times incurred at the 
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facility.  Also the model permits port operators to examine throughput rates, total costs 

and overhead costs. 

 There are a few more container-related problems with which researchers have 

been dealing including truck loading.  Brown and Ronen in 1997 developed an interactive 

system based on a mathematical optimization model that is used by a major US 

manufacturer to consolidate customer orders into truckloads (Brown and Ronen, 1997).  

Since the thesis topic is more focused on loading, we do not need to go deeper in 

containerization problems. 

Following the review of the container loading problem we realize that the container 

loading has some particular characteristics.  Because of these characteristics, the general 

heuristic methods are not appropriate for this problem. A new approach is needed that 

accounts for realistic constraints.  These include constraints related to ship stability and 

loading requirements.  A realistic model should also be able to handle containers in 

different sizes in producing a loading scheme. 

In this research, we propose a new formulation for the optimal container loading, 

and develop a new algorithm to solve the problem. The proposed model has the following 

characteristics.  

1. The model can deal with containers with different dimensions as well as 

containers that have specific loading requirements such as: refrigerated and 

hazardous material containers. 

2. The model can adjust the number of containers to minimize the cost for extra 

handling.   
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3. The heuristic solution method can solve large problems with acceptable gaps in 

reasonable solution time. 
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Chapter 4: A Mathematical Model 

 

4.1 The General Problem 

The loading / unloading procedure of containers in the vessel is an important 

activity in the maritime industry.  The container loading can be classified as the three 

dimensional (ED) rectangular packing problem, in combination with an assignment 

problem, and it is a NP-hard problem.  Because the number of different packing patterns 

increases exponentially with the number of units (containers), results for solving 

problems of small size are reported in literature only for heuristic algorithms (Wilson, 

1999).  These algorithms make many assumptions that result in an over-simplification of 

the problem.  

 The loading problem is one of the most common and difficult problems in the 

maritime industry.  A survey and classification about bin-packing problem is available in 

Drychoff (1990).  The problem also arises in warehouses, trucking industry and any 

storage area such as: in the marble industry.  In this thesis we focus on containership 

loading, however, the developed models and algorithms can be applied in other problem 

contexts as well.  In containership operations the preferred situation is to have the best 

possible arrangement of containers that minimizes the total number of extra handlings of 

containers in ports, and then the cost will be as low as possible. 
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4.2 Assumptions 

 The assignment of containers to locations in the containership is a major issue in 

shipping industry.  In an attempt to achieve tractability, a few assumptions are made that 

are necessary for developing the model: 

1) The route of the vessel’s tour is given, as the origin and the destination port of 

the network is given as well. 

2) We are going to optimize the loading procedure with respect to cost.  The cost 

of horizontal crane movements is significantly smaller than the overstowage 

cost and can be ignored.  However, the algorithm offers the option to choose 

between “blocking” and “nonblocking” the containers for the same 

destination. 

3) The stations, columns and rows on the deck are fixed. 

4) The (un)loading schedule is known before the ship starts the trip from the first 

port till the final destination.  This is very hypothetical because it is very 

difficult to know the complete loading schedule at the beginning of the 

voyage.   For instance, for a network of twelve to fifteen ports for which the 

voyage takes three or more weeks it is very difficult to know the final 

schedule of loading at the beginning of the journey.   Usually, the officers on 

the vessel receive the schedule of loading a day (or maybe a few hours) before 

the ship arrives at the port because the number of containers that have to be 

loaded changes very often. 
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5) The structural stresses on the containers are not taken into account.  The 

structural stresses require a more detailed analysis and are beyond the scope of 

this research. 

6) Containers have the same height 

 

4.3 Problem Characteristics 

The problem of efficiently operating a fleet of container vessels serving a network 

of ports is composed of several sub-problems, among them finding the optimal sizes and 

the optimal routing of the vessels.  In addition, container assignment on the dock is very 

important for smooth and efficient operation.  Nevertheless loading cargo is still one of 

the major issues in the maritime industry.  The transfer of containers to and from the 

vessel has to be carried out rapidly and efficiently. With the very large vessels of today, 

requiring thousands of container movements to load and discharge, it is quite difficult to 

achieve such efficiency. Also, the variety of cargo and regulation imposed by the port 

authorities has significantly increased the complexity of loading problem.  Inefficient 

loading schedules could result in the increase of ship operating cost.  Therefore the 

container-loading (stowage-planning) problem is a very important issue in the shipping 

industry.   

Since the transfer of containers to vessel is critical in port facilities, it becomes 

very important that it be carried out rapidly and efficiently.  For any shipping operation to 

be cost-effective it is essential to optimize the utilization of the vessel itself by 

arrangement of the cargo on board the vessel.  The cost includes the lifting of containers 

from the deck and putting them in the assigned “slots” (Cells) on the vessel.  The crucial 



 

 64

cost depends of the rearrangement that will be necessary during the loading procedure.  

Container to vessel cell assignments is of one-to-one type.  Whereas most stowage plans 

are based on port efficiency and general loading, the subject of our study is to create a 

plan that reduces as much as possible the number of shifting operations while including 

all real world  constraints.  This nature of the assignment easily leads to the 0-1-integer 

program as a possible model structure for solving the containership load-planning 

problem. 

Aslidis in his work presented a polynomial-time algorithm for the stowage 

planning problem that solves the single column case (Aslidis, 1989).  In this work we 

address the computational complexity of this optimization problem including multi-

column cases. In the solution procedure suggested in this work, the stowage-planning is 

partitioned in two sub-problems: the problem of assigning container groups to holds and 

that of determining specific positions or slots for the containers assigned to each cargo 

hold.  The container group denotes a set of containers with the same characteristics 

(origin port, destination port, type, and weight).     

Let us consider a containership consisting of bays for container stowage.  Each 

bay has d  stations, and each station has vertical columns labeled e , where Ee ,.....,2,1=  

(column 1 is the first column on the left).  Each column has k  cells, where  

Fk ,.......2,1=  (cell 1 is the bottom cell). Since each column in the station has a finite 

number of cells, the bay is referred to as a capacitated bay.   

Speaking in maritime terms, we assume that the vessel (containership) is 

scheduled to visit a series of ports 1,,.....,3,2,1,0 +MM .  We assume  that the ship starts 

its service route at port 0  with its bays empty of containers, and sequentially visits ports 
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1, 2, 3,……M, M+1.  In each port Ml ,...,2,1,0=  containers can be loaded to 

destination 1,.....1 ++ Ml .   In the last port ,1+M  the vessel is emptied of all remaining 

containers and starts the route in the opposite direction.  Also, in each port j  the vessel 

discharges containers with destination. j   Containers with the same origin and destination 

belong to the same group of containers.  Containers with the same destination and 

characteristics belong to the same group of class containers.  The placements of 

containers in a section-bay when the vessel leaves port j  have to be unchanged until 

arrival at port 1+j .  Let ][ ljTT = be the ( ) ( )MM *  transportation matrix, where ljT  is the 

number of containers originating at port l  with destination ,j .,.....,1 Mij ==  Thus, 

0=ljT for all .jl ≥  Note, that the indices of the diagonal of T  are .1, +jlT  A stack is in 

“in-order” condition if the containers of the stack are placed in ascending order of 

destination from top to bottom, or it is grouped for a section-bay.  Assume that the stack 

is ‘in-order” as the vessel arrives at port .j  Also, that the transportation matrix is known 

before the vessel starts its service route or at least before each departure.  

A container i  is a containerj −  if its destination is port .j  The set of all 

containersij − is referred to as an .groupij −  The problem of finding a stowage plan with 

the smallest number of shifts, is referred to the minimum shift problem (Avriel et. al, 

1993). The minimum shift problem is part of the problem which in general called 

stowage planning problem.  A binary variable ijkX from the groupij − , could be designed 

to describe the assignment of the containers to the loading cells that are available on the 

ship. 
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Xijk= 




otherwise   0
k cell  toassigned is jport   thefrom icontainer  if    1

 

 
 

Therefore, the loading problem with the assignment cost of the containers on 

board could be expressed as: 
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The following notation is used for the above expression: 
 
i :    index for containers; ....,,.........2,1 ni =  
j :   index for ports; .,..........3,2,1 Mj =  
k :   index for cells; .,,.........3,2,1 qk =  
 
 
Where: 
 

=ijkC  the handling cost of the container i  in the port j , which it is assigned in the cell k . 
Since stowage plan at a port is affected by those made at previously visited ports, 

one has to make stowage plans at all ports included in a tour of containerships 

simultaneously. As it will become clear in the sequence of ports, multiple-stack 

overstowage problems are much harder to solve than their single-stack case. Exact 

efficient algorithms cannot be developed even for very simplified versions of multiple-

stack problems (Aslidis, 1989).   The sequence of ports during the containership voyage 

and the different loading schedules in each port can make the stowage-planning problem 

very difficult.  Avriel et al., (1998) described and studied this problem as a traveling 

Salesman problem but it is a more difficult problem because of the specific locations to 

which the containers have to be assigned. 
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Eventually, with the large vessels of today requiring literally thousands of 

container movements to load and discharge, this operation with “Jumbo” vessels can be 

very difficult to achieve.  So, we can represent cell ( )K in three dimensions; section, 

column and row.  Because in the loading procedure we do not avoid station interchanges, 

it would be better if we introduce index for a station in our formulation.  Figure 14 shows 

a simple station configuration of the vessels cross section that proves the benefit of the 

new cell representation. 

 

-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 0 0 0 0 0 0 0 0 -1
-1 -1 0 0 0 0 0 0 -1 -1
-1 -1 0 0 0 0 0 0 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

 

 

       Figure 14: A simple station configuration of a vessels cross section 
  

In Figure 14 the negative numbers (-1) represent the cells in which we are not 

allowed to assign any container.  These particular cells are for the geometric of the ship.    

Because the stowage-planning problem deals with a huge number of variables it is 

necessary to represent the cell in a different way.  Furthermore, we could represent the 

cell by column and row in different stations.  Now we are sure that containers should be 
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assigned column by column, which can change the whole loading procedure.  This is an 

entirely new “feature’ in the problem (Aslidis, 1990).  In this approach containers should 

be assigned to the group.  In the case that we have to “re-arrange” containers in the group 

are treated as deliveries to that port plus an equal number of pickups from that port with 

destination the same as those considered delivered.   

The following example demonstrates that rearrangement and the bigger picture of 

the model.  The network has as many components (nodes) as destinations, which is 

1+M . Suppose that a container of group ( )ji,  needs to be rearranged at the portΩ , and 

addition is switched from the stack it is on as the containership enters portΩ , stack A to 

stack B.  Then the situation is like having a container of group ( )j,Ω , in stack A and a 

container of group ( )Ω,j  at stack B.  The above observation reduces an assignment 

problem with bin-packing constraints (for stability).  Let us consider a container of group. 

It can be assigned to any of the groups at port i .  Suppose that Ω is the first port where its 

get re-arranged.  At port Ω though it gets off that stack and can be re=assigned to any 

stack, again.  Figure 15 shows how much a container switches.  It becomes clear from 

Figure 15 that when a container gets re-arranged it essentially joins the group of 

containers of the same destination with that originated at the port of re-arrangements.   

. 
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Group Cij

AA A

Step 1I,j

BStep 2

n321

ji+3i+2i+1

n1

ji+3

2

i+2

i+2,j

Step 3i+1,j

 

Figure 15: The Network Representation of Rearrangements (Aslidis, 1989, Modified by  
                       Kasar, 2006 ) 
 
 

The representation of the problem as a network is not new; a few researchers have 

represented the problem as a network flow problem.  First, Aslidis in his thesis studied the 
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problem as a flow problem with capacity constraints, and Avriel et al studied the 

connection to the coloring of circle graphs (Aslidis, 1989, and Avriel, et al., 1993) 

The objective of the network representation of the problem is to minimize the 

flow along the arcs at the step 3, because the flow of containers along these arcs gives the 

direct count of the container movements on and off board. Obviously, the flows on all arcs 

must be integer; otherwise the solution does not correspond to a physical situation.  

Unfortunately, previous studies did not lead to an efficient algorithm.  In fact, it appeared 

that this problem is particularly hard in terms of finding the optimal solution (Avriel, et. 

al., 1998). 

 Let us consider the network flow representation of the problem, and keep at the 

beginning of this study the assignment of containers to the bay/section as the only 

decision.  During each voyage the vessel picks up containers from each port, or discharge 

containers at this port, and distributes them to the ports on its route.  In this era that we 

have Transatlantic and Transpacific routes of trade, with more than ten ports, 

containership corporations consider the origin, the intermediate and the destination ports 

as the major ports in the trade routes (for “Jumbo” ships) with major container 

movements.  The objective of our study is to minimize the incurred extra container 

handling cost with respect to ship safety regulations.  The cost associated with placing the 

container at a certain location depends on the necessary rearrangements of cargo.  The 

loading problem is a combination of an assignment problem, bin-packing problem and 

knapsack problem.  In addition, with respect to ship stability and safety the problem 

becomes more difficult.   
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Therefore, the binary variable ijkX can be redefined as follow: 

Xijhdek=








otherwise   0
k. row     

and ecolumn in   dstation   toassigned ish port   tojport  from icontainer  if    1
 

The cell is now represented by three co-ordinates: station, column and row.  Therefore, 

we can deal with this problem as a part of a pure assignment problem.   

 Let us consider a single bay for container stowage.  The bay has one section with 

horizontal rows that represents cells Fk ,....,3,2,1= , and vertical columns labeled 

Ee ,.......,3,2,1=  It is assumed that in each column of the station there is room for FEK  

containers.  Such a bay is called a rectangular bay.  Without loss of generality, we 

consider the columns arranged in a single line, therefore we are forming ‘two-

dimensional” section/bay, although in reality a bay is always three-dimensional. 

 

Column C

Station d

Cell k

h+1 Port

 

          Figure 16: Column Overstowage Represantation 
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The placement of containers in a bay/section when the vessel leaves port j  

remains unchanged until arrival at port 1+= jh .  Let jhTT = be the transportation matrix, 

where jhT is the number of containers which originate at j with destination h . 

Transportation matrix is said to be feasible if all the containers can be stowed in any 

given cell.  Figure 16 along with the shipment matrix constitute the input for the version 

of re-shifting problem to be formulated in this chapter.   

There are two stack operations that are performed at every port.  First, delivery of 

containers with destination at the current port, and secondly, placement on board the 

stack of the containers to be shipped out of the current port.  Along with the above, there 

exists some containers that are quay, although neither are destined to nor originating from 

the current port.  These are containers are blocking the delivery of those to be delivered 

(see figure 16) and consequently have to be taken off the place on board temporarily.  

However, these ‘re-handled” containers need to be placed back onto the stack along with 

the new containers. In fact, there is no reason to treat them differently from the latter.  

Therefore, all the containers of the same origin j , and destination h  should be grouped 

together and experience the same methodology in terms of rearrangements.  

 

4.4 Notation and Variables 

 We define the data sets and constants used in the formulation before we present 

the mathematical model.  We also define the decision variables used in the model 

formulation. 
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Indices 

i :   index for containers; Ni ,......,3,2,1=  

j :  index for origin ports; Mj ,........,3,2,1=  

 h :  index for destination ports;  Hh ,........,3,2,1=   

d :  index for stations; Dd ,........,3,2,1=  

 e :  index for columns ports; Ee ,........,3,2,1=  

 k :  index for cells; Fk ,........,3,2,1=  

Data Sets 

N  : total number of containers  

D  : section sets 

E  : column sets 

F  : cell sets 

Constants 

DS  : deck strength limit 

kSH  : stack height limit 

cW  : total weight of containers 

kY  : Y-axis location of the center of gravity of cell k  

yH  : magnitude of maximum allowable yCG  deviation 

yCG  : center of gravity for loaded containers in athwartship direction 

dX  : X-axis location of the center of gravity of station d  from the midship 

lP  : Desirable position of xCG  from the midship 

xD  : Maximum allowed deviation of xCG  from lP  
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eX  : Z-axis location of the center of gravity of cell e  from the keel 

vP  : Desirable vertical location of zCG  from the keel 

zD  : maximum allowed deviation of zCG  from its desirable position 

dekC  : rearrangement cost of  container i  from the position dek  

 

Decision Variables 

Xijhdek = 1, if container i  from port j  to port h  is assigned to station d  in column  

         e  and row k  

  = 0, otherwise 

Ydek=




otherwise   0
ndestinatiolater with container   theon topcontainer  a is  thereif    1

 

 

4.5 Objective Function  

 The objective of this problem is to minimize the total re-handling cost in a rolling 

port horizon.  As we mentioned in the previous chapters, we do not have to consider the 

fixed loading cost of containers on board.  We would like to minimize the un-necessary 

container movements on board within the total available number of containers.  

Therefore, the objective function of the stowage-planning problem could be expressed as: 
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4.6 The Constraints 

 The constraints of the model consist of three categories: container constraints, 

stability constraints, vessel constraints and other constraints.  The detailed explanations 

of the constraints are as follows. 

 
4.6.1 Container Constraints 
 
 There are several constraints related to the containers.  These constraints are 

relatively simple compared to the stability constraints.  Every container has to be 

assigned in a particular cell at once and discharge in the proper destination port.  Also, a 

few cells are limited by capacity constraints and must be assigned before the regular 

cells.  These constraints are expressed in the following equations. 

The containers can be assigned in any cell on board.  In equation (1), dek  represents the 

cell position on board.  In the port h , container/s with destination 1+h  above the cell 

(node) dek   has to be rearranged prior to discharge the container underneath.   

 

    

Constraint (2) is the well known assignment constraint forcing each container to be 

stowed only in one ship location.  This constraint is very important especially for the 

containerships built with cells auxiliary tools in which containers are lashing in particular 

space.  
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Constraint (3) is also the well known assignment constraint which is explains that the 

container for particular origin port that is going to delivered port must be assigned to one 

and only one cell 
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The containers can be assigned to any cell on board. However, constraint (4) ensures that 

the containers are stacked on top of each other that is, if a location dek  is occupied all 

other cells under it must also be occupied. 
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Containers that are scheduled to be loaded have different lengths.  Equation (5) is the size 

constraint, as they have been described in Section 2.  In particular this expression 

ensures, respectively, 40’ containers to be stowed in even bays, and 20’ containers to be 

in odd bays.  Also this constraint expression makes infeasible the stow of 20’ containers 

in those odd bays that are contiguous to even locations already chosen for stowing 40’ 

containers.    

 

             
                  (5)            
 
 
Containers have different destinations.  The destination constraints (6) avoid positioning 

containers that have to be unloaded first, below those containers that have a later 
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destination port.  Also, in each column e the containers are vertically stowed with the one 

above the other for containers with the same length and same destination in decreasing 

order of weight 
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Constraint expression (7) is the assignment constraints for special containers such as 

reefer container by forcing them to be stowed only in a specific location on board. 

              
0=ijhdekX            (7) 

 
             
4.6.2 Stability Constraints 
 
 Stability is very important in stowage planning, and incorporates bin-packing 

elements.  At present, the only known methods for producing optimal packing involve 

examining essentially all possible packing and choosing the best one.    Constraint 

expressions (8), (9), (10) ensure the ship’s stability in terms of the trim, heel, and GM 

respectively. 

 
Horizontal Stability 
 
 Constraint (8) is the horizontal equilibrium condition, stating that the difference in 

weight between the anterior and posterior bays must be at most yH± tons. 
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Longitudinal (trim) stability 
 
 The longitudinal center of gravity must be within certain limits from a desirable 

position.  Thus, we have: 
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Vertical stability 
 

 Upper and lower limits of a vessel’s metacentric height (GM) for a given vessel 

displacement can be translated to the following constraints on its vertical center of 

gravity: 
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4.6.3 Vessel Constraints 
  
 The vessel constraints ensure that only a specific number of containers can be 

assigned in any column, and enforce the height limitation for safe navigation.  Constraint  

(11), explains that the stock of either 20’ or 40’ containers cannot exceed the value DS  

that usually correspond to 125 and 166 tons; note that such constraints verify the 

corresponding tolerance value in all occupied columns in the same section, as required by 

the weight constraints described in Section 2. 
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The height constraints (12), avoid positioning containers above specific height limits in 

upper deck, and ensure better stability and safe navigation. 
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Finally, in (13) the binary variables of the problem are defined. 

δεκιjhΧ  = 0,1 binary variables.                                                                                    (13) 

 
Note that in the formulation of the problem we assume that the ship start its journey in 

the port for which we are studying the problem and successively visits a given number of 

other ports.   

 

4.7 Summary  

 In this chapter, we proposed the formulation of the stowage planning problem as a 

mixed integer linear programming problem.  The objective of the problem is to minimize 

the total re-handling cost in a rolling port horizon.  The constraints of the problem consist 

of container constraints, stability constraints, vessel constraints and other constraints. 

 As we discussed in previous chapters, the stowage planning problem is a NP-hard 

problem and it very hard to obtain an exact solution.  Moreover, the formulated problem 

is more complicated because it is the stowage problem with the additional stability 

constraints. When we consider a very small problem with 100 cells and 100 containers 

the number of binary variables is 10,000.  When we increase the number of cells to 1,000 

with the same number of containers the number of binary variables is 100,000.  We can 

recognize how rapidly the number of binary variables increases.   
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 We use the proposed formulation to solve as large a problem as possible exactly.  

A heuristic procedure is proposed in the following chapters to solve larger problems.  The 

proposed formulation will be used for developing an approach to generate lower bounds 

on the value of the objective function as well. 
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Chapter 5: Lower Bound for Stowage Planning Problem 
 
 

A stowage planning problem is a combinatorial problem that generally can be 

categorized under the umbrella of discrete optimization problems.  Discrete optimization 

problems are defined by a finite set of solutions and objective function values associated 

with these solutions (Jacobson et al, 1997).  The goal when addressing such problems is 

to determine the solution for which the objective function is optimized.  

Garey et al., (2000) present an in-depth discussion on the complexity of discrete 

combinatorial problems, which can be classified as easy (i.e., solvable in polynomial time 

in the size of the problem instance) or hard (i.e. in the class NP-hard). The stowage 

planning problem is an NP-hard problem (Avriel, 1993).  Algorithms are typically 

formulated to address combinatorial problems with the hope of finding good and near 

optimal solutions as we are going to address in the next chapter.   

In addition to a good solution we would like to have some guarantee on the 

quality of the solution found.  Such a guarantee can be given through a lower bound on 

the value of the objective function.   In general, lower bounds can be obtained by solving 

relaxations of the original problems. Then the optimal solution of the relaxed problem 

gives a valid lower bound for the value of the objective function of the original problem.  

Different relaxations provide different lower bounds.  The main goal is to find relaxation 

problems for the stowage planning problem that can be solved efficiently and which give 

lower bounds as tight as possible.   

There are no lower bound methods for stowage planning problems in the 

literature, although there are a few lower bound methods for bin-packing problems.   For 

the stowage planning problem, which it is a combination of knapsack, bin- packing, and 
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assignment problems, obtaining a good lower bound would be very difficult.  The 

difficulty of finding a lower bound algorithm suggests that we should focus on the 

characteristics of the problem.  The nature of the constraints is such that even the lower 

bound method still has conflicting constraints that make the implementation very hard to 

find a bound.  Although doing this will limit our method, the ideas behind the method 

may be applied to general stowage problems also. 

 

5.1 Branch and Bound Strategies 

Branch and bound algorithms are commonly applied to integer programming 

problems.  The effectiveness of a branch and bound is heavily influenced by its lower 

bounds.  Such bounds are useful when they are tight and easy to compute.  The 

characteristics of the stowage planning problem suggest that we may use the branch-and-

bound method to obtain the lower bound.  Because of the special requirements of the 

field operations, we can reduce the branch and bound tree significantly by imposing these 

special requirements (constraints). In the next sections, we will discuss several strategies 

to take advantage of different special characteristics of the problem. The size of 

branching tree is significantly reduced and good or acceptable lower bounds may be 

found in a reasonable time. 

 

5.1.1 The Basic Scheme 
 

In a branch-and-bound scheme there are two important question: how to split a 

problem into subproblems and which node is to be processed next.  To a branching 
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variable we apply the most infeasibility rule.  This rule chooses a variable with the 

fractional part closes to 0.5.  For node selection, the following strategies are tested: 

Best first search.  A node is chosen with the weakest parent lower bound 

(promising the best solution). The goal in this search is to improve the global lower 

bound, which is the minimum of local bounds of all unprocessed leaves.  However, when 

the state space is large this approach may prove costly in terms of time. 

Depth first search .  This rule chooses one of the deepest nodes in the tree,  The 

advantage of this search are the small size of the search tree and fast re-optimization of 

the subproblem.  Also a good feasible solution is found very quickly that it is so 

important in a stowage planning problem.    

Consider the search tree for our model.  Node ∅  represents the null assignment.  

Every other node represents a partial assignment ( ) ( )( )sCCC ...,.........1= , indicating that 

container gC  is assigned in thg position on each bay s .  Any permutation σ  of the set of 

misplaced containers defines a complete assignment for containers NC  when NC  is the 

total containers that has to be loaded in the vessel from port j : 

( ) ( ) ( ) ( )( )sNsCCC −= σσσ ,.......,...,......... 11 .  By placing any misplaced containers misC back   

in to position )1( +kde , we produce a descendant node ( ) ( )( )misC C
mis

,,.......1 σσσσ = .  In our 

model we have to incorporate a best-bound rule.   
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Begin 

 Initialize C  
The initial state is made up of the available cargo-space referring as a 
cargo space, and an ordered list of containers comprised of all containers 
to be loaded at current loading port 
    

 While (not termination-condition) do 
 Remove best section iDC →  

New solutions are generated that reflect every possible placement into a 
block of the first group of containers.  Then in this phase we remove from 
the search space S all potential locations that a priori are not to be 
considered for stowing container ,c .Cc∈∀  If after expanding a partial 
solution a feasible solution found, then it is set  

 
Reduce or subdivide l

ii DD →  
Each of the candidates locations on board produced during the branching process 
is sorted according to its fitness value and the number containers within 
associated list of containers that needs to be loaded 

 
 Update boundf  
 l

iDCC ∪←  
 For all CDi ∈  do 
      If boundi fDF >)(  then remove iD  from C  
 
end 
 

Therefore for stowage planning problems, it is very hard to get a good lower 

bound using a pure branch-and-bound. For a set of examples, where the optimal solution 

was known, the Branch and Bound had an average gap of 17.64% from the optimal 

solution value.  Other methods must be explored, In the next section we will discuss 

another popular lower bound method Lagrangian relaxation, to find the lower bound. 
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5.2 Lagrangian Relaxation Approach 

An approach to solving the integer programming problems is to take a set of 

“complicating” constraints into the objective function in a Lagrangian fashion.  This 

approach is known as Lagrangian relaxation.  By removing the complicating constraints 

from the constraint set, the resulting sub-problem is often considerably easier to solve.  

The bound found by Lagrangian relaxation can be tighter than that found by linear 

programming.  Lagrangian relaxation requires that one understands the structure of the 

problem being solved in order to relax the constraints that are “complicating” (Fisher, 

1981).  A related approach which attempts to strengthen the bounds of Lagrangian 

relaxation is called Lagrangian decomposition (Guignard and Kim, 1987).  This approach 

consists of isolating sets of constraints so that one can obtain separate, easy problems to 

solve over each of the subsets.  The dimension of the problem is increased by creating 

linking variables, which link the subsets.   

Most Lagrangian-based strategies provide approaches that deal with special row 

structures.  Other problems may process special column structure, such that when some 

subsets of the variables are assigned specific values, the problem reduces to one that is 

easy to solve.  Bender’s decomposition algorithm fixes the complicating variables, and 

solves the resulting problem.  Since each of the decomposition approaches provide a 

bound on the integer solution, they can be incorporated into a branch and bound 

algorithm, instead of the more commonly used linear programming relaxation.   

In following section, we describe a solution method based on a Lagrangian 

relaxation within a branch-and-bound framework.  Lagrangian relaxation in combination 

with branch-and-bound is often used for NP-hard problems.  Because this approach has 
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been successfully applied to the Knapsack and bin packing problems, it is interesting to 

investigate this method in stowage planning problems as well.  The Lagrangian relaxation 

for the stowage planning problem must be designed in such a way that it results in easily 

solved sub-problems and yield lower bound tight enough to an optimal solution.  

Consequently, we optimize a relaxed problem, which contains the original problem as a 

special case.  The basic idea of this method is to change the original NP-hard problem to 

an “easy” and solvable problem.  Notice the lagrangian relaxation keeps variables 

discrete.  Integrality requirements of the original model have not been dropped (Fisher, 

1985). 

Even when the given model is an integer liner problem, the strongest practical 

relaxation may not be the LP relaxation. Lagrangian relaxation, which proves stronger for 

some model forms, adopt a completely different strategy.  Furthermore, information 

communicated between the Lagrangian relaxation and the bounding process serve to 

improve the performance of both processes.  When the branch-and-bound algorithm 

accumulates sufficient fathoming information so that permanent (or even temporary) 

decisions can be made on the solution matrix, these decisions are communicated to the 

lagrangian and serve to improve the lower bound calculations.  An advantage of the 

relaxation is that in a branch-and-bound algorithm it produces feasible solutions, without 

having to progress through all the branches of the tree to their outermost tips.   

To perform a Lagrangian relaxation, a suitable constraint set is chosen to be 

relaxed.  Considering the stowage planning formulation in the previous chapter, the two 

main alternatives are to relax either the stability (Bin-packing) constraints (8), (9), or 

(10), or the grouping constraints (5) and (6).  To maintain the problem structure in the 
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relaxation, one might prefer to choose the second relaxation related to grouping 

constraints.  In choosing to relax the grouping constraints the cost is going to be higher 

and the result is not tight to the exact solution. The reason behind is because the solution 

now is in a wider neighborhood.  

For proof of this result see Bourjolly and Rebetez (2003), where also they analyze 

a lower bound for the bin-packing problem.  Also, see Gendron and Grainic (1994) where 

the Lagrangian relaxation is compared with an LP relaxation.  In the computational tests 

in Gendron and Grainic, sub-gradient optimization methods are run for a certain number 

of iterations.  The conclusion is that the second relaxation regarding the grouping 

constraints does not provide a good lower bound.  

In this study we use the first type of Lagrangian relaxation, obtained by relaxing 

the stability constraints.  The main advantage of this relaxation is that it yields a very 

simple separable sub-problem as shown later in this section.  In addition, relaxing the 

stability constraints yields a quicker procedure and most of the time the resulting bound is 

significantly good.  A significant improvement is obtained by strengthening the 

formulation of the model.  This benefits both the straightforward use of branch-and-

bound, and the Lagrangian relaxation.   

The strategy of the lower bound solution procedure for the stowage planning 

problem is to find a way that minimizes the number of integer variables. In the previous 

chapters, we note that the value of the dekY depends on the assignment and stability 

(knapsack, and bin-packing) constraints through the variable ijhdekX . Moreover, the part 

that is involved in stability constraints can be identified as a special case of the linear 

Bin-packing problem in which all the variables have coefficient 1.  This fact suggests that 
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we can relax the horizontal and longitudinal constraints (8) and (9) of the stability 

constraints group.  Also, we notice that in this model the condition related to the vertical 

equilibrium given in the previous sections can be dropped since it becomes redundant due 

to the group (weight related) constraints.   

As we discussed, instead of dropping integrality requirements we relax a couple 

of the main linear constraints of the model.  By relaxing the constraints set (8), and (9) 

using multiplier 1µ and 2µ we obtain the following Lagrangian: 

 

2
1 1

1
1 11 1 1

)(

)(min

µ

µ

∑ ∑

∑ ∑∑ ∑ ∑

= =

= == = =

++

+−+

N

i

F

k
xlijhdek

C

i

yijhdek

N

k

F

e C

i
k

D

d

E

e

F

k
dekdek

DPX
W
W

HX
W
WyCY

 

 
 

Subject to: 
 

    

∑∑∑
= = =

≤∀≤
N

i

J

j

H

k
ijhdekX

1 1 1
(2)                                k         e,d,n,i                                  1  

 
 
 

∑∑∑
= = =

≤∀=
D

d

E

e

F

ki
ijhdek nX

1 1 1
(3)                                  h         , j,i                                   1  

 
 
 
 

∑ ∑
= =

+ ≤≤∀≥−
N

i

N

i
kijhdeijhdek XX

1 1
)1( (4)                                1)-(Fkle,d,                     0  

 
 

(1)                                   k         e,d,                          
1 1 1 1

∀= ∑∑ ∑ ∑
= = += +=

N

i

J

j

H

hh

F

kk
ijhdekdek XY



 

 89

             
                                  (5)            
 
 
             

)1(,,,..............)1(
11

−≤≤∀≥ +
==
∑∑ FkedhjXWXW kijhde

N

i
iijhdek

N

i
i                      (6) 

             
 
             

0=ijhdekX                  (7) 
             
 

keDPX
W
W

DP zv

N

i

D

d
ijhvdek

c

i
zv ,.....................

1 1
∀+≤≤− ∑∑

= =

                               (8) 

 
 
           

kdhjDSXW ijhdek

N

i

E

e
i ,,,...........................

1 1
∀≤∑∑

= =

                   (9) 

             
 

edSHHX k

N

i

J

j

H

h

F

k
ijhdek ,................

1 1 1 1
∀≤∑∑∑∑

= = = =

                   (10) 

             
 

δεκιjhΧ  = 0,1 binary variables.                                                                                    (11) 
 

A close look at the remaining constraints in Lagrangian relaxation will reveal it 

conforms to requirement.  Also, dropping linear constraints in a Lagrangian relaxation 

cannot eliminate any solutions.  That is, Lagrangian relaxation parallels property in 

having every solution feasible in the full model still feasible in the relaxation.  The 

optimal value of any valid Lagrangian relaxation of a minimized model yields a lower 

bound. 

The simplest lower bound is to set 0=µ , which means that the relaxation 

constraints are simply ignored. By changing Lagrangian multiplierµ , if we can find a 
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certain )(: 21 µµµ −  that the decrease in objective function valued due to part B of the 

objective function (Part  B: 
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), and then a better lower bound is found.  

We have observed from the literature that many researchers have used the 

Lagrangian relaxation fior problems related to container loading (e.g. one-dimensional, 

two-dimensional).  For stowage planning problem, it is very hard to get a very good 

lower bound using any technique. Lagnangian relaxation is a very promising technique to 

get a lower bound in very reasonable time. As far as we can compare the lower bound 

with the exact solution, the Lagrangian relaxation method provides excellent results 

within a short time.  Table 2 below shows the comparison of a few test problems of the 

exact solution and the lower bound.  From the Table it is obvious that the gaps are less 

than 4% for 150 to 1050 TEUs test problems 
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Table 2: Comparison of the Exact Solution and Lower Bound   
 

Size Exact Lower Bound Problem 
Ports TEU  Special Result Time Result Time 

                
1 3 150 5 25 14 25 12.5 
2 4 300 15 52 14 50 15.6 
3 5 500 50 74 19 70 16.5 
4 4 750 100 170 32 167 21 
5 6 500 25 120 25 110 27 
6 5 750 50 375 30 120 18.5 
7 5 1000 43 1555 168 1478 12 
8 5 1050 25 1378 167 1367 19.5 
9 5 1000 70 1390 169 1360 19 

10 5 1000 150 1760 178 1705 11 
12 5 750 25 203 70 188 19 
13 5 800 200 403 85 383 18.2 
14 4 500 10 241 38 215 16 
15 5 900 100 397 218 378 16.4 

                
 
 
 
 

The key requirements of a suitable relaxation are the quality of its solution with 

respect to the optimum of the original problem and its efficient solvability.  Precisely, 

there should exist a fast algorithm that solves the relaxed problem.  Therefore, we 

propose a first relaxation, which can be solved using AMPL optimization software and 

run in CPEX environment 

.   
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Chapter 6: A Solution Method for the Stowage Planning Problem  
 
 

6.1 Philosophy Behind the Heuristic Algorithm  

Prior to this chapter, we have dealt with mostly every aspect of the stowage-

planning problem.  We have explained the problem (in Chapter 2), we have developed 

the mathematical model including all practical constraints (in Charter 4), and examined 

alternative formulations for the lower bound (in Charter 5).  In this chapter, we describe a 

solution method for the stowage planning problem. 

The container stowage-planning problem is concerned with the suitable placement 

of container units in the vessel (usually a cellular containership) on the multi- port 

journey, such that each container placement has one assignment at any subsequent ports.  

Considering that stowage planning is NP-hard and formulating it as a binary integer 

program does not provide much hope to obtain results in a reasonable time, developing a 

heuristic procedure is necessary (Avriel, 2000).  The container stowage planning problem 

is a combinatorial optimization problem, its size depends upon vessel capacity (given by 

the number of TEU units) and the container loading schedule at each origin-destination 

port (POD).   Formulation of the combinatorial optimization problem is complicated by 

the need to consider stowage across a number of ports, with respect to a vessel’s stability 

and its restrictions.  Even for the smallest cases, container stowage planning is a large-

scale problem due to the extensive number of variables.  For instance, for a medium-sized 

containership of 2000 TEU being huge (approximately 3.3 times ten to 5735th power 

(Wilson, 1999, and Dillingham, 1986).  
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There are two possible sources of difficulty in this complex problem.  First of all, 

we should account for the problem of assigning containers to cells.  Since the cost of the 

one-stack overstowage problem is not a linear function of the cost sCij `  

),1,.....1;,....0( ++== Mijmi  the assignment alone can make the problem very difficult 

(Aslidis, 1989).   Secondly, in the multi-port journey, it is possible to switch a container 

from one cell to another.   

 As discussed in previous chapters, formally, the stowage planning problem 

involves determining how to stow a set C of N  containers of different types, dimensions, 

and weights into a set at S of F  available locations (cells) within a containership.  This 

study focuses on how those N  containers can be grouped and then left unmoved or when 

necessary, shifted minimally, before the discharge at the destination port.  This must be 

accomplished subject to constraints on structural and safety constraints, whilst 

minimizing the re-handling cost and loading/un-loading time.  Most existing heuristic 

methods have drawbacks in that they do not consider the stability of the vessel, and/or the 

stowage plans at subsequent ports do not account for container characteristics.  Initial 

attempts at understanding the problem components and deriving some rules for 

determining good container stowing plans were based on work reported in Kaisar (1999) 

and Wilson et al., (2000).  In this chapter, complexity issues are reviewed and the stage is 

set to develop a heuristic algorithm.   

 

6.2 Iterative Development of the System-Level Models. 

Re-arrangement is a situation arising in all types of stacking operations and it is 

not restricted in applications found in the maritime field.  Stacks can be defined as three-
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dimensional storage systems with one access point at the top.  Each stack consists of 

containers that are stowed one on top of another.  In each one, the end point is close to 

the access point and the bottom of the stack is the least accessible end.  In stacking 

operations, the last item put in is the first one to be taken out.  

There are two types of stack operations that are performed at each port.  First, is 

the delivery of containers with a destination at the current port, and second, is the 

placement of the containers to be shipped out of the current port on board, onto the stack.  

Furthermore, there exist containers that end up on the quay that have nothing to do with 

the current port.    These are containers that block movement and consequently must be 

removed from the stack temporarily.  These “re-handled” containers must be placed back 

onto the stack along with the ones from the current port.  

Although we do not have a measure of disorder for a given arrangement of the 

containers of a current stack for any stack storage system, we can easily compare two 

arrangements with the same characteristics.  Speaking in maritime terms, we assume that 

a containership is scheduled to visit a series of ports ( 1,,.........,,......2,1,0 +HHpj ).  

Suppose the vessel is at port j  and has already discharged the containers destined for 

that port.   Figure 17 shows the arrangement of a section in which containers are blocked.   

It is obvious that there are two containers in Figure 17 (a) that need to be “re-arranged”, 

but in Figure 17 (b), these two containers are not blocked relative to the containers with 

destination ).( tpj ++  The arrangement in Figure 17 (b) is not worse than the 

arrangement in Figure 17 (a). 
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   a)     b)

(j+p)

(j+p+t)
(j+p)

(j+p+t)

 

Figure 17: Different Stack Arrangements / Same Section 
 
The rearrangement of containers with destination )( tpj ++  in Figure 17 (a) would not 

be optimal if the rearrangements happen to be in any port before the destination port 

)( pj +  (Aslidis, 1989).  As we have seen in Chapter 3, the term re-arrangement is used 

both when it is voluntary and forced.   Since there are no containers going to previous 

ports, below the container with destination )( pj + , no such container is blocked by 

containers with destination ).( tpj ++  Therefore, the arrangement of containers in 

Figure (b) does not result in more re-arrangements under the same loading plan.  This is 

because )( pj +  and )( tpj ++ either move or stay together, including at )1( +j  and 

( )1−+ pj . Hence, the arrangements (a) and (b) of Figure 17 can be thought of as the 

initial stack for a vessel starting at port )1( +j and going to ( )1+H .  It is clear that these 

containers should be placed in descending order, according to their destination.      

   In addition, for any bay and section, containers of origin j and destination h  

should be grouped together and treated the same in terms of re-arrangement. Otherwise, 

grouping them together can always decrease the number of re-arrangements.  In his 
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thesis, Aslidis (1989) showed that an optimal re-arrangement policy treats containers of 

the same group in the same manner.  The optimal re-arrangement policy at any port, h , 

involves re-arrangements of all containers that block them (Aslidis, 1989).   However, in 

the multi-destination case, when a group with an intermediate destination is delivered, 

any improvement in the stability and cost, from re-arrangements in the previous port, is 

lost.  This means that the re-arrangement policy depends on what containers are on board 

at port h .  Based on the above discussion, we can understand that the design of the 

solution approach for stowage planning problem is generally complex, and that there is a 

high possibility that subtle error will cause stability issues and erroneous behavior.  

To overcome the difficulties associated with producing a good solution for the 

stowage planning problem we propose that the process be decomposed into two sub-

processes.  The first is the general planning phase for assigning container groups to the 

bay-section cargo spaces, and the second is the cell-planning phase for determining a 

loading pattern for containers assigned to specific cells within each blocked bay-section 

space.   These two sub-processes are solved iteratively using information obtained from 

the solution of the other.  Due to this iterative procedure, we may assume the 

interdependency of the two stages.  For instance, if a solution of the loading pattern to 

each bay results in “re-arrangement” at a particular iteration, then the number of 

containers that can be stowed in the same hold can be limited to a certain number of 

container groups that can prevent the “re-arrangement” in the next iteration.     
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6.3 Solution Approach  

 The stowage-planning problem, as we mentioned earlier in this chapter, is very 

complex and typically contains millions of decision variables and thousands of 

constraints.  Modeling techniques are now routinely used to transform this problem, with 

nonlinear constraints and objectives, to one with a linear constraint and objective.  A 

specialized branch and bound technique and simulated annealing with heuristics 

embedded within the optimization algorithm are used to exploit the problem structure and 

speed up the solution process.  In this study, the stowage-planning problem is portioned 

into two sub-problems: the problem of general planning and the cell-planning process.  

In the general planning process the bay-section cargo space on board S was split into 

different partitions, in order to be able to solve separately the stowage-planning problem 

for each portion of the vessel.  Simulated annealing can be used in cell planning process 

used to produced a stowage plan and to guide any process that employs a set of moves for 

transforming one solution plan to another. The following sections explain how the 

stowage planning is decomposed into sub-problems to simplify the overall process (see 

Figure 18). 
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Figure 18: Heuristic Procedure Split it in two Sub-processes. 
 
 
6.3.1 General Planning    

The first sub-problem, which will be described in more detail later in this section, 

is the general planning phase, aimed at tightening the constraints of the model and 

reducing the feasible region of each container Nci ∈  on board.  We sort the data related 

to the available containership locations on board according to their bay-section address, 
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in order to look at the container assignment on board, with respect to indices anded ,,  k .  

In this phase, we allocate groups of containers on board the containership according to 

destination, length, and type.  The container’s assigned position depends on the 

availability of containers with the same characteristics.   The presence of the existing 

cargo, on board, is crucial in the decision making process because it indicates to which 

bay-section the containers that are being loaded will be allocated.   

Also, at this stage it is possible to allocate containers to more specific areas along 

the bay-section, such as above or below deck cells.  A further consideration when using 

this procedure is the particular container position on board with regard to the bay-section 

address.   A specific container is not necessarily allocated to a particular cell, but instead 

to a general location.  The final solution at this stage is a picture of the loaded 

containership in general. The assignment of a containers group to particular cells is 

associated with the cell-planning process. 

A potential stowage planning for a bay-section is presented in Figure 19.  

Discharge port B weight 10t

Discharge port B weight 5t

Containers Already on board

Discharge port C weight 20t

Discharge port B weight 20t

Discharge port B weight 15t

     

Figure 19: An Example of Potential Stowage Planning 
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A container type is specified for each bay section position.  The required size of a 

container is defined by the bay-section’s characteristics.  Usually, the bay is restricted to 

handle 20’ containers or 40’ containers.  It is very common for a 40’ section to contain 

two 20’ containers, with the loading restriction that only a 40’ container can be stored 

above the two 20’ containers.   The on-deck positions can also accommodate 45-foot 

containers in specific cells.  It is assumed that the under-deck bay will be used to store the 

entire refrigerated, 20-foot and 40-foot containers.  The hazardous container is only 

permitted to be stored under deck in the stern bay. 

  The steps to determining to which special bays that hazardous cargo and other 

special containers are assigned are a part of the general planning process.  Vessel stress 

and stability can be calculated during this process, using the bin-packing constraints that 

we discussed in Chapter 4.  Appropriate longitudinal center of gravity (LCG) and vertical 

center of gravity (VLC) values are tested as well.   This sub-process provides a plan for 

distributing containers at the end of the loading/unloading process, which is used at every 

subsequent port.    

 

6.3.2 Cell Planning   

    After the general planning process has produced a plan, containers allocated to each 

bay-section block are assigned to available cells in the bay-section cargo area.  In the 

cell- planning process, we consider the set ∆  of available locations, split into different 

blocks with respect to their bay-section address. During the cell planning phase, specific 

allocations of containers to cell location within the bay are recorded on the stowage plan.  

This stowage plan can be determined for each bay-section cargo area because the groups 
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of containers that should be loaded and unloaded from each hold at each port were 

determined by the solution of the general planning process.  Therefore, those loading 

plans at port j  should be made while considering the loading/unloading plans of the 

other ports.  Figure 20 shows an industry example of a section plan, in which the numbers 

correspond to the weight, origin and destination port of certain containers.   

 
    

  
 
 

 Figure 20: Sample by-Section Plan 

 

This process determines the exact cell occupied by each container at the current 

port.   The generalized stowage pre-plan of the cell stowage planning process is used to 

direct these specific placements of containers to cells.  Additionally, we ensure that all 

constraints, such as reefer placement, upon container assignments are satisfied, during 

this stage.  The cell-planning process then helps to optimize the stowage plan throughout 



 

 102

an entire voyage by reducing the number of container moves within the same cargo space 

and/or the entire containership. 

 

6.3.4 Obtaining an Initial Solution 

 We have seen that the size of real world problems (i.e. the stowage planning 

problem) can grow very large, as the number of variables in the problem increases.  

Recall that there are 2/)1( −M  different solutions for the stowage planning problem, 

where M is a port series length in the particular route (Aslidis, 1990).  Exhaustive search 

is out of the question for a large M , so it would be helpful to have a process that 

eliminates parts of the search space and minimizes the computational time.  

 An initial examination of the stowage-planning problem, based upon discussion 

with maritime personnel, resulted in research focusing upon cellular containerships.  

Examination of a number of cellular containership structures revealed the fact that a 

vessel can be divided into a few bays where all sections share a common set of vertical 

center of gravity (VCG`S) (Ganesan, 1999).   Each bay is divided into a number of 

sections, usually of the same level and size 

The hatch-lid can be used as a reasonable separator for upper-deck and below-

deck cargo holds.  Load restrictions applied to upper deck bays are different from those 

applied to the under deck bays.  In addition, upper deck cargo can be placed across two 

sections of the lid, creating groups of cargo cells that have a partnership with these 

sections of hatch-lids.  Thus, grouping the cargo space of the containership would reduce 

the number of options for specific container placements available at any stage of the 

general planning process.  Since the containers have been allocated to certain groups, the 
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general planning process can now proceed to assign the containers to groups within each 

bay.   Constraints (8), (9), and (10) from Chapter 4 must be satisfied; that is, it becomes 

necessary to distribute the containers between the latitudinal groups associated with each 

longitudinal group as well.  Only containers with particular characteristics are allocated 

to their corresponding groups.  The vessel stress constraint (11) relating to the lateral 

distribution of weight limit can be calculated to an acceptable level of tolerance.   

   Therefore, we first sort the data related to the available containership location 

according to their bay-section address, and then create a load list, taking advantage of the 

container descriptions.  The generated load list of containers grouped into different 

classes of containers.  For instance, all the 40’ containers destined 2+j  would be placed 

in the same class.  Each of these classes (groups) would then be sorted in ascending order 

of weight.  When classes (groups) consist of a large quantity of containers with large 

spaces within the cargo bay-section, more than one container would be placed.  The 

number of containers placed could possibly start out large and be reduced at each branch 

of the search tree. 

The method that is used most often to solve integer programs that minimize the 

search space is called branch and bound.  Branch and bound is the method usually used to 

solve integer programs. It does so by minimizing the search space. This is an enumerative 

procedure that examines all possible values of the integer variables, either implicitly or 

explicitly, in the search of the optimum solution (Jensen, 2003).   Because every bounded 

integer program has a finite number of solutions, it is conceivable that one could examine 

each solution with an exhaustive enumeration procedure and then choose the feasible 

solution.  Also, branch and bound is a technique that works on the idea of successively 
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portioning the search space, and can be applied to the general planning process to allocate 

all containers to individual cargo bay-section spaces.  We first need some means of 

obtaining a lower bound on the cost of any particular solution.  If we have a solution with 

a cost of C units and we want to minimize the objective function, then if we know that 

the next solution to be tried has a bound greater than C, we do not have to compute its 

specific value. We can skip it and move on to the next feasible solution (Michalewicz, 

2000). 

  In the general planning, where the cargo-space is divided longitudinally into 

different blocks, the algorithm for performing the search would be as follows:  First, we 

sort the loading information (container destination, type, and characteristics), and group 

the containers into classes.  Each of these classes would then be placed into ascending 

order, according to weight, and used to generate the load list. Containers would be placed 

sequentially, generating a number of different stowage configuration combinations.  

When classes of containers consisting of many containers with large available cargo 

spaces, more than one container would instead be assigned.  The number of containers 

assigned could start out large and be reduced at each branch of the search tree. Therefore, 

at the first port, we start out with an immense search space, which gets smaller as cargo 

accumulates.  

This process is illustrated in Figure 21 (a), where large group spaces at the 

beginning of the search imply that there are many possible moves (container 

assignments) to the new state.  As space fills up, the number of possible assignments 

decreases. The above process produces many different stowage configurations for a 
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single port.   Figure 21 (b) is a simple example that shows the loading pattern 

representation scheme used in this research. 

0 2 5 5 0 5 5 2
0 2 5 5 0 5 5 2
0 2 5 5 0 5 5 2
0 2 5 5 0 5 5 2

4 3 5 5 3 4 5 5
4 3 5 5 3 4 5 5
4 3 5 5 3 4 5 5
4 3 5 5 5 4 5 5

b)
   a)

 Voyage

     4,3

 0,5,2  0,2,5 Port 1…………

     3,4 Port 2…………

 
 
Figure 21:  a) A Partition of the Search Space S of the Tree, b) the Loading Pattern  
                    Associated with the Tree 

 

It is important to remember that each of the solutions passed on for consideration 

at the next port are starting points from which a large number of solutions will be 

generated. From these, the best solutions are chosen and passed on.  Each solution will be 

then be ranked according the cost associated with the “re-arranged” containers.    

 Furthermore, in order to avoid investigating wrong branches, we proposed a 

combination of best first search, and depth first search.  It first selects the most promising 

node to explore, akin to a best-first strategy.  Then, it explores one of its branches using a 

depth-first approach, without backtracking.  Once this branch has been explored, it 

returns to the best-first approach to select another promising node (loading pattern), and 

explores one of its branches in a depth-first fashion and so on.  The solution process stops 
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when a good feasible solution is found    Thus, the branch and bound procedure to obtain 

an initial solution is as follows:  

Procedure “Initial Solution” 

Begin 

 Initialize C  
 Initialize boundf  
 While (not termination-condition) do 
 Remove best section iDC →  
 Reduce or subdivide l

ii DD →  
 Update boundf  
 l

iDCC ∪←  
 For all CDi ∈  do 
      If boundi fDF >)(  then remove iD  from C  
end 
 

For the stowage planning problem, the branch and bound algorithm is specialized 

as follows: 

Step 1:  The initial state involves the available cargo-space, referred to as bay–sections,     

and an ordered list of all the containers to be loaded at current port.   The total number of 

containers to be loaded at each port ∆  split into subsets jC∆  where .,.....,3,2,1 Mj =  

where 1>j  is the number of different ports visited by the containership.  We associate 

subset jC∆  where .,.....,3,2,1 Mj = with sections Dd ∈ , depending the on the size of 

jC∆ , the value of j , and the subsets jD∆  of all sections on board.  Devoted to the 

stowage of containers ., jcc ∆∈∀   The reefer and the hazmat containers are ordered on the 

list, according to which ones are to be placed first.  We consider the specifications for both 

types of containers by setting to one the corresponding variables (e.g. hazmat and special 
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constraints).  Then, the groups of containers with the furthest destinations are placed in the 

sequence.  

Step 2: New solutions are generated, which reflect every possible placement into a block 

of the first group of containers.  Then in this phase we remove from the search space S , 

all potential locations that a priori are not to be considered for stowing container 

,c .Cc∈∀  If after expanding a partial solution, a feasible solution is found, then it is set 

aside. 

Step 3:  Each of the candidate locations on board produced during the Step 2 process, is 

sorted according to the number of containers associated with the bay-section cargo space.   

Containers from the loading list are sorted as well.   According to the size constraints, we 

can a priori remove all variables related to both odd bays for 40’ containers and even 

bays for 20’ ones. 

Step 4: A single bay iD  is selected and removed from the candidate set C during every 

iteration.  There are many methods for choosing which section to remove, but one 

common method is to select a section with a smallest bound.  We then try to reduce the 

size of iD  or to eliminate it altogether.  If this utilized for some dimension i , then the 

section is reduced to a single point, along with the dimension on the boundary of the 

section.  Then, in this algorithm, we remove from the set S  all potential locations that a 

priori are not to be considered for stowing container Ccc ∈∀, in the blocks. 

 Constraints related to special cargo types can be stored in each cargo space and will 

be used to prune branches from the search tree.  Each of the newly generated states is 

then examined to ensure that no constraint has been violated.  Metacentric height and 

trim will be calculated for each final solution for a given port, starting with the most 
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promising, until all constraints are satisfied. Another important point of consideration at 

this stage is the fixed data, such as the dead weight and light ship condition.  The trim 

limits are also checked, due to changes from one voyage to another. In addition, the file 

contains the total number of sections and bays to load.  The longitudinal moment (LM) 

and vertical moment (VM) on board prior to loading are also included.   

We obtain the following notations: 
 
    :W  Total ship displacement, including containers and equipment  

   :MTC  Moment to change trim by cm1  at a given displacement 

   :KM Keel to metacenter distance  

   :LCB  Longitudinal center of Buoyancy 

   :VM  Total vessel vertical moment  

   :LM Total vessel longitudinal moment 

  :FS  Free-surface effect moment by liquid stores 

  :LBP  Length of vessel between two perpendiculars  

The most important characteristic for the loading is the longitudinal moment 

(LCB) that is given by the vessel’s builder.  The LCB is different for each vessel.   

Knowing the characteristics of the containers that are going to be loaded, the LCB can be 

calculated.   Usually, the longitudinal moment is somewhere around the middle of the 

ship.   

The trim is another important coefficient.  We prefer to have zero trim, but when this is 

not possible we prefer to have stern trim.  Especially if the ship is not fully loaded, then it 

can have negative trim.  This is the ideal case, because the propeller is immersed in the 

ocean, providing greater fuel economy and better navigational control. 
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Therefore, the relationship to compute a containership’s GM and trim is: 

( ) WFSVMKMGM /+−=  

The model calculates the upper and lower limits of applicable moments due to the 

current set of containers to be loaded.  To calculate the load, we input the light vessel’s 

condition, the constant load, liquid stores, and the weight of containers that are already 

loaded.  The model is called to check if the GM and trim have intersects feasibility.  If 

not, the model is reviewed for possible modifications.  Again, the model checks for 

stability through the (8), (9), and (10) constraints.  

The vast combinatorial problem described in Chapter 2 has been reduced in size 

by analyzing the problem in two sub-processes.  The purpose of the general planning 

phase is to arrange containers in such a way that the number of cells occupied by each 

destination and the number of cargo blocks occupied by containers are minimized.     

 Now that all containers have been allocated to a block within the cargo space, the 

next step is to allocate specific stowage locations for each of the containers placed there.  

This is accomplished by adopting a two-stage procedure for planning the stowage 

configuration, which is done for each of the cargo bay-section blocks.  Stage one of the 

proposed stowage procedure uses heuristics to generate an initial stowage configuration.  

Stage two of the proposed methodology uses simulated annealing to optimize the initial 

configuration.  The following section describes this proposed two-stage procedure. 

  

6.3.5 Cell Planning Procedure  

 The previous section described how the general planning phase would be 

implemented.  The overall solution also requires the implementation of the cell-planning 
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phase, which we are going to discuss in this section.  In the cell planning phase, we are 

considering the general planning process where groups of containers are allocated to bay-

section locations as input.  At this point, we should use a heuristic approach that makes 

individual assignments based on three-dimensional bin-packing problem.   

The cell planning phase uses the best solution found in the general planning 

phase.  The solution assigns all containers that are to be loaded to blocks.  At this stage, 

we prepare an initial specific solution using the following heuristic approach.  The 

heuristic is used to load the cargo bay-section space depending upon where the block is 

located and the special requirements, if any, associated with the grouped containers.   

The blocks under the hatch usually have restrictions that limit the length of 

containers that can be placed there.  Hazardous containers are more likely to be stowed in 

the upper deck area, typically in the extreme bay or starboard.    As we mentioned earlier, 

before containers can be allocated to particular cells, we need to sort the containers to be 

loaded by standard size, destination, and weight.  Then, depending on which cargo bay-

section space is being filled, containers are sequenced into the blocked cargo space using 

the following heuristic.   

 Assume that group G  is the set of containers i  from the same class and that they 

still need to be assigned to a place on board.  The algorithm searches for the first 

candidate location to be filled. Usually, if the vessel is empty or partially empty, the 

group G  has to be assigned close to LCB, which is the center of the loading vessels’ 

area. At this point, the procedure also assigns other containers that need special 

assignment on board.  The basic steps of the heuristic approach are as follows: 
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Step 1.  The set of bays B  on board are sorted and a cargo- space to consider is chosen. 

Step 2.  Choose a stacking order for the cargo-space under consideration 

  Loading starts: stern to bow and from centre outwards 

Step 3.  Find the first bay-section space that it is not full 

Step 4.  Find the next container from the loading list (database) 

Step 5.  If there are still containers to be loaded, then find a stack S that it is not full  

             the top container i  on the stack or all the containers on the stack have the same     

             destination port as the candidate container.  Place the container into stack S . 

Step 6.  If there is still a container i  to be loaded, go to Step 3. 

Step 7. If there are containers with different destinations/characteristics, either find a    

              different stack S  where the assigned containers in the stack have the same     

              destination with the  candidate container to be placed or attempt to relocate.  If    

             they can be legally relocated, then do so and place the removed container back       

             into the load-list. 

Step 8.  If there are still containers with different destinations/dimensions go to Step 7 

Step 9.  If there are containers in the load list, go to Step 3 

Step 10. Check the stability and loading restrictions. Stop.  

Using this heuristic, all containers will be allocated a relative location in the cargo 

bay-section space such that; 

• Overstows are minimized (since containers with the furthest destination 

are the first to be loaded onto stack 

• Heavier containers are stowed lower than lighter ones 

• Stacks usually have containers of the same group 
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The number of containers assigned to a stack at any port cannot be larger than the 

capacity of the stack.  The stability and loading restrictions are checked with the load 

plan obtained by the algorithm.  The sums of weights and both moments (vertical and 

longitudinal) prior to the loading are part of the input data. The vertical and longitudinal 

moments’ contribution by each bay load is computed. The resulting GM and trim values 

are checked against their upper and lower limits.  The total weight stacked in each on-

deck column is checked against the limit applied to the bay.  Any violation is reported 

and the model rearranges the containers in such a way that satisfies the GM and Trim 

conditions. 

 The heuristic, which is given in this section, is sufficient to demonstrate the 

applicability of this approach and generate a starting point for the optimization process.  

The heuristic used to place containers into the cargo bay-section space could produce a 

good stowage solution.  However, this solution is unlikely to be optimal.  The solution 

found at this stage, therefore, is used as a starting point for an optimization process, 

which rearranges the containers in the cargo bay-section space.  This optimization 

process is explained in the next section by using Simulated Annealing. 

 

6.3.6 Simulated Annealing Approach  

Simulated Annealing is similar to tabu search.  As we mentioned earlier, it is a 

stochastic neighborhood search process. In each stage, L  randomly chosen candidate 

solutions in the neighborhood of the current solution are evaluated.  If a candidate 

solution improves on the current solution, then it is accepted.  Otherwise, there is a 

probability of TeTP
∆

−
=∆),( that it is accepted, which depends on a control parameter 
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T and the amount∆ , by which a move worsens the current solution.  This relation ensures 

that the probability of moving to a poor solution is very small.  This is accomplished in 

the algorithm below, in steps 5 and 6.  At the completion of each stage the temperature 

T at the beginning of the process, the probability of accepting non-improving moves is 

fairly high.  As the process continues, the temperature decreases and the probability of 

choosing a non-improving moves decreases.  The search is continued until there is 

evidence to suggest that there is a very low probability of improving on the best solution 

found so far.  At this stage, the system is considered to be frozen.   

The simulated annealing search process is initialized with a starting solution 1x .  

Afterwards, set the iteration counters 1=l , 1=k , the best known solution 1* xx = .  

Furthermore, choose the initial temperatureT , a stage length L , a cooling rate r  and a 

stopping rule.  These choices are discussed in further detail below.  In addition, let 

]1;0[U denote a uniform distribution, from which random numbers are drawn.  The 

procedure can then be described as follows : 

 

Simulated annealing method  

Step 1:  Is the stopping rule satisfied? 

 If yes: Stop *X  is the best known solution 

 If no: Go to step 2 

Step 2: Is ?1+= Ll  If yes: Go to Step 8 

           If no:  Go to Step 3 

Step 3: Randomly choose )(' kxNx ∈  and compute the cost change )()( ' kxzxz −=∆  

Step 4: Is O≥∆  (is non-improving move)? 
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 If yes: Generate a random variable p and go to Step 5 

 If no: Go to Step 6 

Step 5: Is ?Tep
∆

−
≤   If yes: Go to Step 6 

            If no: Set 1: += ll  and go to Step 2 

Step 6: (Accept the move) Set  '1 : xxk == and 1+= kk  

Step 7: Is ?)()( *xzxz k <  If yes set 1,* == lxx K and go to stop 8 

         If no set 1+= ll  and go to step 8 

Step 8: Set rTT = , and 1=l and go to step 1 

The loading heuristic generated a stowage configuration that will require changes, 

since it is unlikely to be optimal and may have illegal relationships between containers, it 

would require containers to be moved to other locations.  Simulated annealing (SA) is a 

stochastic computational technique derived from statistical mechanics for finding close 

by, globally optimum solutions to large optimization problems.  It was developed by 

Metropolis (1953) to simulate the annealing process of crystals on a computer and was 

first proposed by Kirkpatrick et al., (1982) and Cerny (1985).  Kinrkpatrick adapted this 

methodology to an algorithm exploiting the analogy between annealing solids and 

solving combinatorial optimization problems.  The simulated annealing search process 

attempts to avoid becoming trapped at a local optimum by using the stochastic 

computational technique to find global or nearly global optimal solutions to 

combinatorial problems.   

Simulated annealing requires a valid solution to begin with, hence the need for 

first generating a stowage planning solution by the heuristic.  The task of the optimization 

process is to re-arrange the containers until no further improvement is expected.  The key 
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to the optimization process is determining a neighborhood of moves from the current 

state that are admissible.  The neighborhood, in the context of the stowage planning 

problem, is the set of permissible moves within a single block of cargo bay-section space.  

The basic step that we used in stowage planning problem follows:   

Step 1.  Cargo space is optimized by re-arrange containers along the containership until  

the number of re-handling has been reduced to a minimum.  At this stage the       

neighborhood of the search process is the set of all moves of all containers 

within the particular cargo space regarding their destination. 

Step 2.  Cargo bay-section space is optimized by moving containers around until as 

many blocks as possible have the same length and characteristics of container 

stowed there. 

Step 3. Within each block, arrange containers with the same destination so that heavier  

             containers are stowed below lighter ones.  The neighborhood is limited to the  

  same destination containers stowed in the same block. 

Step 4. Cargo bay-section space is optimized by re-arrange containers until the weight   

  distribution, satisfying the stability issues.   The re-arrangements at this stage    

  occurred only for containers with the same destination. 

In summary, the experimentation with simulated annealing search applied to the 

optimization of the stowage containers, within pre-assigned blocks, resulted in the rapid 

generation of optimal stowage configurations. When bays have been assigned, then the 

section part is called to make individual container-cell assignments according to the 

generated routing plan. Stability and loading restrictions, such as the number of high 

cubes and weight on-deck are checked on this load from the vessel information.  Any 
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violated constraints and locations are identified as well.  At this point, the heuristic calls 

the vessel information to compute the most favorable values of GM and trim.  When the 

algorithm reaches the last step, it performs iterations towards feasibility.  Each iteration 

consists of a pairwise exchange of assignments. At the conclusion of the check, the 

algorithm calls back the stability function and recomputed stability figures. 
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Chapter 7: Experiment and Results 
 
 

7.1 Experiment 

  In the previous chapters, a mathematical model, improvement methods and 

heuristic procedures were developed.  Since we design these methods for different route 

and port networks, the algorithms can be applied to different variation of the stowage-

planning problem.   In this chapter, we will test the proposed algorithm with fixed and 

randomly generated examples for the algorithm parameter calibration. Many factors had 

to be considered and evaluated to make the experiment both realistic and interesting.  The 

routing plan is an optimal plan for a situation at a particular period.    

  In this chapter we present results, which are performed on a 1.40 GHz CPU with 

512 MB Memory.  The algorithms are implemented in Visual Studio .Net on windows 

platform.  The experiments were varied with vessel capacity and numbers of ports 

considered, and in the presentation of the experiments, time measurements as well as 

loading parameters are expressed in terms of container units.  

 The goal of this chapter is to verify that the proposed algorithm can produce good 

stowage planning and it works well in a loading procedure of a given port network.  

 

7.2 Performance Analysis 

 The test problems are based upon today’s shipping operations, which are used by 

different maritime companies.  All test problems are for direct port networks, and are 

classified into two types: problems with low-density networks (partial loading), and 

problems with very dense or complete networks (almost full loading).  
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 We generated fixed and random test problems that were used to compare the 

performance of the proposed algorithm with the exact solution and the lower bound of the 

solution.  There are three ranges of problem sizes, which are each in terms of the number 

of demand nodes.  Demand nodes represent the cells on the containership. 

  The first is a small range with 100 to 500 TEUs, including special containers.   

For these small problems, we can have an exact solution, lower bound solutions and 

algorithm solutions.  The second is a mid-size range of problems with 501 to 3500 TEUs, 

which also includes special containers.  It is quite difficult to solve this kind of network 

within a reasonable time.  When the number of special containers increases, the difficulty 

of the problem increases as well.  These problems were used to compare the results of the 

algorithm solution procedure to the lower bounds solutions and on occasion, to the exact 

solutions.  The third range is used for the large networks, for which the exact solution is 

difficult to obtain. However, the proposed algorithm can give results within a reasonable 

time. A few problems are used for the analysis at the end of this chapter. 

 In summary, various scenarios are generated for each combination of port 

networks and the number of containers to be loaded/unloaded during the voyage.  

Therefore, the total number of test problems gives a complete overview of the stowage 

problem and solution procedures.   Each scenario has several variables associated with it, 

including the stability requirements and the container capacity of each bay/section.  The 

number of containers is randomly generated using different fluctuating patterns during a 

planning period.  The random number generator is based on a uniform distribution 

between ],1[ M , where M is the maximum capacity of any variables that we need for 

initialization.   
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The purpose of this chapter is to verify the proposed heuristic solution procedure, by 

comparing its result with the exact solution and/or the lower bound solution. The first 

solution’s results are those obtained by directly solving the mixed integer formulation 

(MIP).  We used AMPL Plus version 1.50 with CPLEX 6.5 and/or CPLEX 8.1 solver for 

the exact solution procedure.  It is quite difficult to solve the IP formulation in a 

reasonable time by using the existing IP solver software for large problems.  The 

commercial software helps us to establish the formulation and is intended to verify the 

effectiveness of the proposed heuristic algorithm for optimal container loading.  Also, we 

run the LaGrangian relaxation lower bound procedure.  In this procedure, we tried several 

approaches, as discussed in the previous chapters.  In this chapter, we present the results 

that are efficient and reasonable; also, we use AMPL Plus version 1.50 with CPLEX 8.1 

solver.  The third set of results is from the heuristic solution procedure.  We applied the 

proposed algorithm, which we introduced in the previous chapter, to each set of different 

scenarios.  A summary of the experimental scenarios is shown in Tables 3 and 4.  Note 

that if we want to achieve a good solution, it should be in the vicinity of the local optima. 

Tables 3 and 4 contain the combinations of approaches that are implemented in each 

case. 
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Table 3: The Expected Result from Each Problem Size 

Number of
Containers 1 3 4 5 7 8 10 12

100 E, LB, H E, LB, H E, LB, H E, LB, H
200 E, LB, H E, LB, H E, LB, H E, LB, H
350 E, LB, H E, LB, H E, LB, H E, LB, H
500 E, LB, H E, LB, H E, LB, H E, LB, H E, LB, H E, LB, H E, LB, H
750 E, LB, H E, LB, H E, LB, H E, LB, H E, LB, H E, LB, H LB, H
1000 E, LB, H E, LB, H E, LB, H E, LB, H LB, H LB, H LB, H
1250 E, LB, H E, LB, H E, LB, H LB, H LB, H LB, H LB, H
1500 E, LB, H E, LB, H LB, H LB, H LB, H LB, H
2000 LB, H LB, H LB, H LB, H LB, H
2500 LB, H LB, H LB, H LB, H
3300 LB, H LB, H
4500
5200
mega * * *

Number of Ports

 
�) H: Heuristic solution, L: Lower bound solution, E: Exact solution 

     

              

Table 4: Expected Result from Different Problem Size  
 

Number of 
Containers Port 5 Port 6 Port 7 Port 8 Port 9 Port 10 Port 11 Port 12 Port 13 Port 14 Port 15

3000 LB.H LB.H LB.H LB.H LB.H LB.H
3500 LB.H LB.H LB.H LB.H LB.H LB.H LB.H
4000 LB.H LB.H LB.H LB.H LB.H LB.H
4500 LB.H LB.H LB.H LB.H LB.H LB.H
5700 LB.H LB.H LB.H LB.H H H
6500 LB.H LB.H LB.H H H H
8300 H H H H H H H H H
9350 H H H H H H H H H

Number of Ports

 
�) H: Heuristic solution, L: Lower bound solution, E: Exact solution 
 

  

7.3 Test Environment and Procedure 

 Experiments of different loading scenarios have been created to test the model. 

The computational time is one of the major issues in our stowage problem.   In addition, 
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in our study, we test the effectiveness of the algorithm using actual load sets of vessels, 

which visited a series of ports. Containerships commonly carry containers of many other 

companies, in addition to their own.  They ordinarily make cross-Atlantic and cross-

Pacific voyages. In our test problems we are going to use cellular containerships, which 

can carry both 20-foot and 40-foot containers.  We also have special cases for 45-foot 

containers, which are tested using the heuristic solution. 

 

7.4 Comparison of the Results 

In this section, we describe the results from the three solution procedures, namely 

the exact solution method, the L.B. solution procedure, and the heuristic solution 

procedure.  As is shown in Tables 4 and 5, we cannot have all results from all three 

solutions for each test problem. The gaps between the exact solution (E), the L.B, and the 

heuristic solution are calculated as follows.  

• Total cost gaps between He. and Exact solution =  (He – E )/He. * 100 

• Total cost gaps between He. and L.B. solution =    ( He. – L.B. ) / L.B. * 100 

• Total cost gaps between L.B. and Exact solution = ( E - L.B. ) / L.B. * 100 

• Ratio of calculation time between He. and Exact solution =     E / He.  

• Ratio of calculation time between He. and L.B. solution =  L.B. / He. 

• Ratio of calculation time between L.B. and Exact solution =  E / L.B.  

 Test results are summarized in several tables.  The results offer feasible load 

plans, which had acceptable stability indicators.  The allowable limits in GM and trim for 

any vessel in our tests range from 1.0M to 2.0M in both categories, with 0.1M excess in 

trim tolerated in certain situations.    

Unlike other real-world problems with many variables, the stowage problem 

requires that each container be treated as an identity and its exact shipboard assignment 
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produced by the model.  When handling containers, shipside cranes and yard transtainers 

move in discrete steps.  For a pair consisting of port crane and a transtainer, the work 

sequence is the same for both pieces of equipment.  In our model, we had to take the 

transtainer move distance (TMD) as an assumption.  The TMD is constant and can be 

studied at a future time.   Nevertheless, grouping the containers in advance (i.e. at the 

dock) helps immeasurably with the loading procedure.  The container has to be 

transferred to the dock near to the vessel ready for loading.   

 Statistics for the number of containers to be picked up per stage and the number 

of ports are shown in the tables.  The vessels we used are typical containerships (cellular 

or otherwise), which can carry different amounts of containers. The number of 

refrigerator containers comprises a small percent of the total, while the special containers 

usually represent less than 1% percent of the total in our tests.  We had cases with a large 

number of refrigerators and special containers, which required a designated storage area 

for proper ventilation.         

 We have exact solutions for less than 1500 demand node problems (TEUs) in 5 

port network combinations, and less than 2250 demand node problems (TEUs) in 7 port 

network combinations.  A total of more than 50 cases are used for the comparison 

between the exact solutions and the heuristic. To the extent that we can compare the 

heuristic and the exact solution results in very small problems (less than 750 TEUs), the 

heuristic produces excellent results, with short calculation times. However, there are huge 

differences in the calculation times as the number of TEUs increases. As far we as we can 

compare the heuristic procedure with the exact solution of medium and large problems, 

the gap increases.  To get the exact solution, we spent tremendous amount of time 



 

 123

compare with the heuristic solution. Even in the small cases. The following tables give us 

the flavor of results for a small cell-network, which is still considered to be a big problem 

with a huge number of variables.  Table 5 below shows the results for a very small 

problem for a 100-TEU (TEU: Twenty Foot Equivalent Unit) vessel (or barge).  In table 

6 Loads of TEUs means the vessel’s capacity, and Exact(E) represents the exact solution 

obtained from CPLEX.  L.B represents the lower bound solution using CPLEX, and He. 

is the solution obtained from the heuristic procedure. 

Table 5:  Experimental Result for 100TEU on Different Port Networks 
Load

Ports TEUS of Time Time Time Result Time Result TimeResult Time
TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)

3 100 100 75 8 75 0.3 75 0.15 0 26.7 0 53.3 0 2
4 100 100 75 10 73 0.5 75 0.1 2.74 20 0 100 2.74 5
4 50 100 19 6 19 0.15 20 0.1 0 40 5.263 60 5.26 1.5
4 90 100 60 8 59 1 62 0.15 1.695 8 3.333 53.3 5.08 6.67
4 100 100 75 8 75 1 76 0.2 0 8 1.333 40 1.33 5
5 90 100 60 12 59 1 62 0.15 1.695 12 3.333 80 5.08 6.67
5 100 100 75 14 73 1.15 77 0.2 2.74 12.2 2.667 70 5.48 5.75
6 100 100 85 14 84 1.15 89 0.2 1.19 12.2 4.706 70 5.95 5.75

E & L.B. E & He. L.B & He.Exact(E) L.B He.
Result Result Result

 
 
 

For TEUs larger than 100, we also compare the Exact solution, the Heuristic 

solution and the L.B. solution.  We have the exact solutions for 200 and 350 TEU 

problems and we could compare the L.B. solution and the exact solution results. In these 

small problems, we have a gap ranging from 0.27 to 1.7% between the L.B. and the exact 

solutions for the 200 TEUs case problems.  For 350 TEU case problems, the gap ranging 

from 1.3 to 4.4 % between the L.B. and the exact solutions.   When we consider the gaps 

between the L.B. and the exact solutions, we can anticipate the gaps between the 

Heuristic solution and the exact solution for 30 demand node problems to be less than 

4.5%.  
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Table 6 below shows the result of a 200 TEU containership capacity with a small 

percentage of special containers.  These special containers are hazmat containers. 

Table 6: Experimental Result for 200TEU 

Load
Ports TEUS of Time Time Time Result Time Result TimeResult Time

TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)
3 200 200 364 24 363 2 367 0.15 0.275 12 0.824 160 1.1 13.3
4 80 200 135 16 135 2 138 0.1 0 8 2.222 160 2.22 20
4 100 200 100 24 100 1 104 0.1 0 24 4 240 4 10
4 100 200 117 26 115 1 120 0.1 1.739 26 2.564 260 4.35 10
4 120 200 235 30 231 1 236 0.1 1.732 30 0.426 300 2.16 10
4 150 200 247 30 245 2 251 0.15 0.816 15 1.619 200 2.45 13.3
4 180 200 378 35 375 1.5 382 0.2 0.8 23.3 1.058 175 1.87 7.5
4 200 200 358 30 357 3 361 0.2 0.28 10 0.838 150 1.12 15
5 100 200 105 20 104 1 109 0.15 0.962 20 3.81 133 4.81 6.67
5 160 200 236 26 235 2 237 0.2 0.426 13 0.424 130 0.85 10
5 150 200 400 49 398 2 403 0.2 0.503 24.5 0.75 245 1.26 10
5 155 200 277 30 275 2 277 0.2 0.727 15 0 150 0.73 10
5 200 200 360 50 358 2.5 362 0.2 0.559 20 0.556 250 1.12 12.5
6 100 200 123 28 121 2 124 0.2 1.653 14 0.813 140 2.48 10
6 105 200 169 32 168 2 172 0.2 0.595 16 1.775 160 2.38 10

Result Result Result
E & L.B. E & He. L.B & He.Exact(E) L.B He.

 
 
 
 
 
Table 7 below displays a sample of results for a 350 TEU, in most of the sample cases the 

vessel is partial loaded.     

Table 7: Experimental Result for 350 TEU 
 

Load
Ports TEUS of Time Time Time Result Time Result TimeResult Time

TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)
3 350 350 157 24 155 3 157 0.15 1.29 8 0 160 1.29 20
4 100 350 145 16 144 2 147 0.1 0.694 8 1.379 160 2.08 20
4 200 350 340 24 335 2 349 0.1 1.493 12 2.647 240 4.18 20
4 200 350 313 26 308 2 322 0.1 1.623 13 2.875 260 4.55 20
5 200 350 311 20 305 4 325 0.15 1.967 5 4.502 133 6.56 26.7
6 300 350 593 26 585 4 603 0.2 1.368 6.5 1.686 130 3.08 20
7 100 350 670 49 660 4 693 0.2 1.515 12.3 3.433 245 5 20
7 200 350 268 30 262 3 274 0.2 2.29 10 2.239 150 4.58 15
7 200 350 280 50 268 4 284 0.2 4.478 12.5 1.429 250 5.97 20

E & He. L.B & He.Exact(E) L.B He.
Result Result Result

E & L.B.

 
 
  

 In the small problems, the results are quite interesting.  For 500 TEU, we have the 

exact solutions for any network in our test cases (12 ports).  The results are fairly good, 
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with the lower bounds and the exact solutions having an average gap of 3.46%.  The 

heuristic results are also good. However, the differences in the calculation times grow 

very large, as the number of demand nodes increases (TEU that has to be loaded). To get 

the exact solution, we spent about 200 times longer than was required for the heuristic 

solution.  For instance, in the case with 3 ports, with 200 TEU loading, the computational 

time is 114 hours, but with very good results.  The gap for both cases is below 3%. Table 

8 below displays the results of the exact solution, the lower bound, and the heuristic 

approach for 500 TEU case problems. 

Table 8: Experimental result for 500 TEU 
 

Load
Ports TEUS of Time Time Time Result Time Result TimeResult Time

TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)
3 200 500 280 114 274 24 280 2 2.19 4.75 0 57 2.19 12
4 400 500 345 168 338 28 349 2 2.071 6 1.159 84 3.25 14
5 200 500 260 150 253 20 264 1 2.767 7.5 1.538 150 4.35 20
5 320 500 310 175 308 29 312 2.5 0.649 6.03 0.645 70 1.3 11.6
6 200 500 250 140 241 24 256 1 3.734 5.83 2.4 140 6.22 24
6 300 500 290 185 282 28 291 1 2.837 6.61 0.345 185 3.19 28
7 300 500 410 154 406 21 416 2 0.985 7.33 1.463 77 2.46 10.5

10 200 500 240 120 235 19 249 2 2.128 6.32 3.75 60 5.96 9.5
12 200 500 275 160 270 17 276 2 1.852 9.41 0.364 80 2.22 8.5

Result Result Result
E & L.B. E & He. L.B & He.Exact(E) L.B He.

 
 
 
 Table 9 below displays the result of a 750 TEU containership capacity.  The lower 

bounds and the exact solutions have an average gap of 3.08 %.  The heuristic results are 

also good. As we mentioned in the previous cases, there are huge differences in the 

calculation times as the number of container increases.  To get the exact solution, we 

spent a lot of time more than the time required for the heuristic solution.   
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Table 9: Experimental result for 750 TEU 
 

Load 
of Time Time Time Result Time Result Time Result Time

TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)
3 750 500 240 32 235 6 246 0.2 2.0833 5.333 2.5 160 4.6809 30

4 750 450 285 95 277 7 293 0.2 2.807 13.57 2.807 475 5.7762 35

5 750 550 620 120 594 9 641 0.3 4.1935 13.33 3.3871 400 7.9125 30

7 750 500 785 130 758 9 805 0.3 3.4395 14.44 2.5478 433 6.2005 30

8 750 600 832 150 818 9 843 0.3 1.6827 16.67 1.3221 500 3.0562 30

10 750 500 925 135 903 11 972 0.35 2.3784 12.27 5.0811 386 7.6412 31.43

12 750 550 950 170 923 12 989 0.35 2.8421 14.17 4.1053 486 7.1506 34.29

Result

He.

ResultPorts TEUS
Exact (E)

Result

E & L.B. E & He. L.B. & He.L.B.

 

Table 10 below displays the results for 1000 TEUs case problems.  In this set of 

experiment runs, it is obvious that the number of variables is growing enormous, which 

affects the computational time.  In addition, from this point, the gaps between the lower 

bound and heuristic solution (LB - He.) and the heuristic solution and exact solution (He. 

- E) increase, but remain in an acceptable range (5 to 10% gap).  This could be caused by 

a number of different constraints that are interacting with each other or the stability 

issues, which are very sensitive components. 

Table 10: Experimental result for 1000 TEU 
 

Load 
of Time Time Time Result Time Result Time Result Time

TEUS (Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)

3 600 1000 1325 360 1290 29 1335 1.5 2.71 12 0.75 240 3.49 19
4 400 1000 1305 320 1280 31 1324 1 1.95 10 1.44 320 3.44 31
5 300 1000 1270 325 1210 24 1291 2 4.96 14 1.63 163 6.69 12
5 500 1000 1350 380 1265 36 1370 1 6.72 11 1.46 380 8.30 36
5 850 1000 1770 420 1685 54 1805 2.5 5.04 8 1.94 168 7.12 22
6 550 1000 1306 310 1255 42 1342 1 4.06 7 2.68 310 6.93 42

Result

He.

ResultPorts TEUS
Exact (E)

Result

E & L.B. E & He. L.B. & He.L.B.
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 Previous tables indicate that by using the algorithm, we obtain a desired solution 

and that the overall gap percentage over the lower bound is approximately less than or 

around 5%, at least for the small and medium cases.  We note that in most of the cases, 

the algorithm produces good solutions.  However, in a few cases we have slightly 

different results. This happens most commonly when we have special containers.  

 For a 1250 TEU containership with 7 bays, thirteen rows, and thirteen columns 

(eight is in the hold and five in the upper deck, respectively), we tested our model and 

heuristic solution by referring to the 15 cases, reported in Table 11 below.  It is clear, 

such cases differ from each other by the number of containers to load (ranging from 588 

to 1250), their size, type, and the number of ports to be visited (ranging from 5 to 10). 

Column “Full” gives the vessel occupation level (in percentages) when all containers are 

loaded.  A 100% occupation level is allocated when 1250 TEU containership are loaded 

for the second case.  Usually, a few cells on board are always kept free for security and 

possible emergency reasons (Ambrosino, et al., 2004). 

Table 11: Data of the 1250 TEU Case Under Consideration 
 

TEUs General Reefer Hazmat Destination
1 1234 925 306 13 10 1250 98.72
2 1250 845 392 13 10 1250 100
3 1008 742 256 10 10 1250 80.64
4 1008 802 196 10 10 1250 80.64
5 1214 909 302 3 8 1250 97.12
6 1200 1007 180 13 5 1250 96
7 960 662 288 10 5 1250 76.8
8 1092 745 336 11 7 1250 87.36
9 882 649 224 9 5 1250 70.56
10 896 663 224 9 5 1250 71.68
11 1120 913 196 11 7 1250 89.6
12 972 674 288 10 5 1250 77.76
13 588 414 168 6 5 1250 47.04
14 1230 1003 214 13 10 1250 98.4
15 1152 884 256 12 10 1250 92.16

Case Container Size Full (%)
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 The computational results related to the cases described in Table 12 are displayed 

in Table 12 below.  As before, Table 13 gives the value (He.) by solving the stowage 

planning model, the lower bound (L.B.), and the objective function value (Exact) by 

applying the mathematical model presented in Chapter 4, as well as their relative 

optimality gaps, as described in previous Section (Section 7.3).   The objective function is 

very close to lower bound, and differs from it by an average of 4.02%.   The good 

performance of the heuristic solution can be observed in column “Result (%)” that reports 

the optimality gap as a percentage difference, between the optimal solution and both the 

relaxed and the heuristic one, given by the ratios EEHe /).( −  and %/)( LBLBE − .  The 

computational times are in hours corresponding to the above solutions.   

Table 12: Experimental Results for 1250 TEU Case 

 

 

 The computational times in the three cases are also graphically reported in Figure 

22, which outlines the impressive reduction of the computational time when our solution 

is used.  

 

Size TEUs Result Time Result Time Result Time Result Time Result Time Result Time
(Hr) (Hr) (Hr) (%) (rt) (%) (rt) (%) (rt)

1 1250 1234 10 795 205 762 48 813 0.6 4.2 4.27 2.26 342 6.7 80
2 1250 1250 10 780 192 734 46 800 0.8 5.9 4.17 2.56 240 9.0 58
3 1250 1008 10 683 180 652 40 715 0.5 4.5 4.50 4.69 360 9.7 80
4 1250 1008 10 665 170 645 42 688 0.7 3.0 4.05 3.46 243 6.7 60

5 1250 1214 8 735 190 698 45 750 1 5.0 4.22 2.04 190 7.4 45
6 1250 1200 5 690 165 665 38 715 0.7 3.6 4.34 3.62 236 7.5 54
7 1250 960 5 625 140 602 44 646 0.8 3.7 3.18 3.36 175 7.3 55
8 1250 1092 7 645 146 615 36 674 0.6 4.7 4.06 4.50 243 9.6 60

9 1250 882 5 445 124 420 28 457 0.3 5.6 4.43 2.70 413 8.8 93
10 1250 896 5 420 130 408 26 460 0.5 2.9 5.00 9.52 260 12.7 52
11 1250 1120 7 515 154 489 34 554 0.3 5.0 4.53 7.57 513 13.3 113
12 1250 972 5 453 130 438 24 470 0.3 3.3 5.42 3.75 433 7.3 80
13 1250 588 5 375 136 368 24 394 0.2 1.9 5.67 5.07 680 7.1 120

14 1250 1230 10 815 235 785 56 870 0.9 3.7 4.20 6.75 261 10.8 62
15 1250 1152 10 751 222 725 46 779 0.7 3.5 4.83 3.73 317 7.4 66

L.B. & He.
Ports 

Exact (E) L.B. He.Case Container E & L.B. E & He. 
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  Figure 22:  Trend of the Computational Time for the 15 Cases 
 
 
 
7.5 Experimental Results for Different Port Networks  

 As a comparison and evaluation of the mathematical models and solution we have 

generated a few classes of small and medium sized scenarios, for the same port number 

of ports network, with containers having different destination, weight and size. All 

computational experimental experiments have been performed on the same platform as 

before.  The results are shown in Tables 14, and 15.  The heading as follows: TEU give 

for each problem size; “Exact” is the objective function value using CPLEX, L.B. is the 

value of the relaxed model without a couple of the bin-packing constraints, and He. Is the 

value obtained by applying our heuristic solution to the problem resolution.  Also, the 

headings Constraints, Non-zeros have been generated from CPLEX runs for each case. 

 Table 13 below shows the results for 5 ports network for different loading 

schedules.  TEU represents the capacity of the vessel.  Constraints and non-zeros are 

generated from the CPLEX.  The containerships which services the route is designed to 
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satisfy container demand in each port.  Less than 4% special containers are considered in 

problem 4 for 750 TEU.   

Table 13:  Experimental Results of 5 Ports Network 
 

Result CPU Result CPU Result CPU
1 100 122899 16419170 60 12 59 1 62 0.1
2 200 129904 18945621 231 26 230 5 232 0.1
3 350 165439 20239548 289 36 289 1.5 294 0.2
4 750 186654 34129870 210 29 207 2.1 213 0.2
5 1000 367104 42189751 301 124 299 2 307 0.2
6 1250 394512 48099189 294 176 290 2 299 0.2
7 1500 431981 57312540 345 201 339 2.3 351 0.2
8 2000 495533 63902430 510 230 499 2.1 519 0.3
9 2500 563299 70349012 555 230 551 3 563 0..2

Exact (E) Lower Bound Heuristic
Port Network 5

Constraints Non-zerosTEUProblems

 

 Table 14 shows the results for 7 ports network for different loading schedule.  

Each bay of the containership consists of two sections.  Also, in these problems the 

empty containers consists the 20% of loaded containers.  For problems 7 to 12 we were 

not able to obtained values for the exact solution using CPLEX. 

Table 14: Experimental Results of 7 Port Network 
 

Resutl CPU Resutl CPU Resutl CPU
1 500 180349 21349192 155 40 153 1.5 160 0.1
2 750 219745 29117234 185 48 185 2 189 0.2
3 900 223491 45858127 325 68 319 3 333 0.2
4 950 271219 49651938 274 80 269 4 278 0.3
5 1050 288346 58632931 293 88 290 3 300 0.3
6 1100 319812 64823953 343 92 340 3.1 347 0.4
7 1500 377873 72904822 * - 451 5 465 0.4
8 2000 418451 78969319 * - 565 4.5 574 0.5
9 3200 449347 82796990 * - 578 4 589 0.4
10 4500 500349 88010429 * - 596 5 603 0.4
11 5700 532009 94675672 * - 640 6 652 0.6
12 6500 632581 98389193 * - * - 695 0.5

Port Network 7

Problems TEU Constraints Non-zeros Exact (E) Lower Bound Heuristic
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The computational results related to the 5 port network cases described in Table 

15.  The heading in the Table 16 are as follows: columns Vessel Capacity and TEUs give 

for each class of scenario the specification of the set of containers to be loaded on the 

vessel.  Again, column Exact (E) is the objective function value, L.B. is the relaxed 

model, that it is our lower bound, and He. is the value obtained by applying our proposed 

solution to the problem.  

 

Table 15: Experimental Results for 5 Port Network 
 

1 5 100 100 12569 170 165 172
2 5 200 180 245632 265 230 272
3 5 350 200 437129 385 365 405
4 5 350 300 481546 355 330 380
5 5 500 420 410456 555 578 580
6 5 750 500 554398 750 730 795
7 5 750 540 559183 740 725 794
8 5 750 650 572345 885 825 915
9 5 900 450 639843 1140 1085 1195
10 5 900 700 682574 1180 1120 1220
11 5 900 800 693485 1160 1115 1705
12 5 1000 500 547634 1315 1280 1375

Problem Port 
Vessel 

Capacity TEUs
Number of 
constraints

Solution

 Exact (E) L.B. He. 

 
 
 
 
 
7.6 Computational Results 

 The goal of this section is to verify that the proposed heuristic works well in any 

port network that has loading schedule variation during the voyage when dynamic 

demand information is available in the database.  To investigate the performance of the 

heuristic procedure suggested in this study, computational tests were done on many fixed 

and randomly generated problems.  Test problems developed for each port network (i.e. 
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3, 6… 15), levels of the vessel capacity (i.e. 1000, 3000…, 8100) and a few levels for the 

number of container weights.  These parameters values used for problem generation were 

selected so that resulting test problems reflected real stowage planning problems in 

maritime industry.  The allowable limits in GM and trim for the containerships varies but 

for many cases were from 1.0M to 2.0M with 0.1M excess in trim tolerated in certain 

situations.  Different loading and special loading schedules must be dealt with.  We tested 

our algorithm for different loading scenarios on the same network, including four 

different types of containers, general, refrigerators, hazardous and empty containers. 

 In a real world situation, the loading plan for a vessel is generated based on 

consideration of all demand and loading schedules received from previous days.  Prior to 

the vessel’s arrival in a port the operational office prepares the loading plan.  After the 

vessel call, new containers can arrive.  There are two ways to deal with the newly arrived 

demands.   One is to postpone all new demands that arrive until the next voyage, while 

the other is to accept the new demands that arrive and re-schedule the container-loading 

plan for the new arrivals if there is adequate notice.  In our study we considered that the 

loading list is completed for each port.   

 For our study we generated a basic network that represents a service region 

consisting of different ports.  The port characteristics and the vessel design speed are also 

generated for this research by approximating the real world situation.  All the container 

weights are between 5 to 25 tons.  As mentioned earlier, the capacity of the vessel can be 

translated in the number of TEU’s, and into the number of tons.   

 To give an idea of the type of the problem that can come up, let us present an 

example concerning a stowage plan of the containership, where we have a load of general 
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containers split between 20’ and 40’ with weight ranging from 5 to 25 tons.  These 

containers have to be loaded for a 4 port network.  The containership consists of 4 odds 

bays, namely 01, 03, 05, and 07.  The bay has 10 rows, namely R01, R02… R10, and 

seven columns denoted by 06, 04, 02, 0.0, 01, 03, 05.  The containership has a capacity of 

15000 dwt.   The number of plugs under deck is 25. 

The vessel has sections separated into 20’ and 40’.  As a rule the 20’ cells are next to 

each other, which make up that particular 40’ bay see Figure 23.   

  

9 19 29 10 20 30
7 17 27 8 18 28
5 15 25 6 16 26
3 13 23 4 14 24
1 11 21 2 12 22

Bay A Bay A+1

Sequence of Cells loading
 

   Figure 23: Section Configuration (partial) 

 
 We solve the problem using CPLEX and the optimal solution is 235, which it was 

obtained in 2 hours and 35 minutes.  The formulation of the problem according to model 

results in 24200 variables, and 39546 constraints.  While using the heuristic approach 

proposed in Chapter 6 the minimum oversotwage cost is 238, corresponding to an 

optimality gap of 0.85 %.   Figure 24 below shows an example of a partial departure bay-

section plan giving container destination, origins and type.     
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  Figure 24:  Stowage Plan for the Bay-Section  

 

 Let us consider another example with a containership capacity of 700 TEUs, with 

11 sections, 8 columns and 8 rows.  Again we have general containers split between 20’ 

and 40’ with weight ranging from 5 to 25 tons.  The loading schedule is for 8 port 

network.  The vessel is 75 % full loaded. The vessel has sections separated into 20’ and 

40’.  The number of special containers constituted only 0.9 percent of the total.  Table 16 

below displays an example of loading plan for different ports in the same route.   For 

instance, in Port HDE the loading list includes containers from APL, and MSC lines 
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(APL and MSC are shipping and logistics companies).   G describes the general and R 

the refrigerator containers. 

Table 16: Example of loading schedule  
 
            
 APL MSC TOTALS
 20' 40' 20' 40' 
 G R G R H G R G R H 

 

HDE   12 20  9  76 5  122 
KHG 15  173 9  21 5 51   274 
PCT 2  40 1  10  29   82 
PCO 7  13 1  8  105   134 
UME 11  97     34 3  145 
 35 0 323 11 0 39 5 219 3 0 635 
TOTALS 35 334 44 222  
 369 266  
    
 
 
 The stability check for trim violations was effectively used to reduce the trim in 

most of the cases. The formulation of the problem according the mathematical model 

results of in 90500 variables, and 436578 constraints.  The optimal solution, 

corresponding the objective function value is 413 and it was obtained in 4 hours.  While 

using the heuristic approach the minimum cost is C: 418 corresponding to an optimality 

gap of 1.21 %.     

A complete set of section plans, optimized with respect to container allocation 

was generated using the heuristic procedure that an example of which is shown in Tables 

17 and 18.   Note that in Tables 18 and 19: X Marks the empty cells, PCT is an earlier 

port of destination that PCO.  Also, containers numbered 4020 are 40’ in length and ones 

labeled 2010 are 20’ in length.  
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Table 17: Departure Section Plan # 5 Giving Container Destination, 
                 and Characteristics  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Table 18: Departure Section Plan # 6 Giving Container Destination,  
                  and Characteristics 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Por3/Por4 Por1/Por4
10T 4020 10T 2010

Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 20T 2010 10T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 20T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 20T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 20T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 20T 2010 20T 2010 20T 2010

Por3/Por4
10T 4020

Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 10T 2010 10T 2010 10T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 10T 2010 10T 2010 10T 2010 10T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 4020 20T 4020 10T 2010 15T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 10T 2010 15T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 10T 2010 20T 2010 20T 2010 20T 2010
Por3/Por4 Por3/Por4 Por1/Por4 Por1/Por4 Por1/Por4 Por1/Por4
20T 2010 20T 2010 20T 2010 20T 2010 20T 2010 20T 2010
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The results we have presented and discussed in this chapter indicate that the 

algorithm works well. The idea behind the model philosophy is to assign containers on 

board according to overstowage cost.   

 

7.7 Sensitivity Analysis 

 In this section, sensitivity analyses for the problem parameters that can be very 

critical for the model were performed.  The intent is to examine the performance of the 

proposed model with respect to changes in the input parameter values. The parameters for 

sensitivity analysis that were studied in this section are as follows: 

• Different loading patterns for the same number of ports network 

• Different percentage of the number of special containers 

• Different percentage of the order of  20 and 40 foot containers  

 

The minimum overstowage cost changes win particular, were examined when the 

changes were made in the elements of the shipment matrix.    In order to perform the 

sensitivity analysis, different scenarios of the problem was tackled.  The containership 

that was examined for the most tests has a capacity of 350 containers, which are placed 

across five bays and seven columns up the ship’s configuration.  The containership also 

has split hatches covering pairs of bays along the length of the ship.  This means that if 

containers under the deck need to be removed all of the containers on the hatch must be 

removed first.  In our examples to follow it is clear that we kept the port network constant 

and the containers weight ranging from 5 to 25 tons.   

Port network with four ports were considered and different loading scenarios of 

different cases were tested.  These cases have different container distribution among the 

ports.  The first study is related to the four port network with 20% container distribution 

from the network’s first port (Port 1).  Also, these tests included 20% of 40 foot 

containers and less than 10% refrigerator containers.  The computational results for the 4 

port network with 25% container distribution are described in Table 19 below. 
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Table 19: Test Problems for Twenty Percent Containers from Port 1 
 

Container  Case 
Ports Variables Constraints Non Zeros Clique 

Object. 

       
1 4 35350 1255 369097 410 555 
2 4 35350 1254 368417 410 580 
3 4 35350 1260 372863 410 595 
4 4 35350 1253 367885 410 575 
5 4 35350 1247 364765 410 560 
6 4 35350 1257 370005 410 565 
7 4 35350 1248 365373 410 570 
8 4 35350 1254 368607 410 570 
9 4 35350 1258 370617 410 575 
10 4 35350 1254 371305 410 575 
       

 

  Table 19 above shows the number of problems (cases: 100_350) defined by the 

parameters’ combinations using 20%.   

Table 20 below shows the number of problems defined by the parameters 

combinations using 50%.   The re-arrangement cost in Table 20 obtained slightly lower 

value compared with the cases in Table 19.  This result was expected because the loading 

schedule plans from Table 20 has more containers to be distributed t the next port than 

the loading schedule plans from Table 19.   Therefore, containers have been assigned to 

the bay-section cargo space on board regarding the next destination port.   
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Table 20: 100_350_A Cases for Fifty Percent Container from Port 1 
 

Ports Variables Constraints Non Zeros Clique

1 4 77685 34652 2917234 410 535
2 4 77685 34558 2784531 410 580
3 4 77685 34761 2850912 410 520
4 4 77685 34034 2734053 410 580
5 4 77685 34200 2669097 410 555
6 4 77685 34983 2930134 410 540

Case Container Object.

 
 

As recognized from the Tables above, the re-arrangement cost varies and all these 

examples have the same total number of containers on board while the container 

distribution to each port changes.  Therefore, it would be interesting to see the loading 

pattern of these two cases.  Figure 25 below compares the two different loading patterns 

between cases in Tables 19 and 20.  This example will only cover the Bay 5 departure 

from the first Port.    

 

P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P2-P3
P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P2-P4
P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P2-P4
P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P2-P4 P2-P4

Case: 100_350_2 Case: 100_350_2A

Bay 5 Bay 5

 

Figure 25: Departure Plan from Port 1 Giving Origin-Destination 

 
Note that in Figure 25, for example, P1-P2 marks the origin and destination port 

of the container that has been assigned to this particular cell.  It is relevant to note how 
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the containers have been assigned in this particular Bay, because the stability constraints 

have to be satisfied 

In the case of the special containers in Figure 26 below the re-arrangement cost 

increased when the number of special container increases.  In the second test the cost is 

710 with 36% of the total being special containers including a combination of 20-and-40 

foot containers (see Figure 26).  Figure 26 also, shows the re-arrangement cost for 

different cases in the same port network.  The results are given for different loading 

plans.   
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Figure 26: Cost for 100_350_R and 100_350_G Cases for four Port Network 
 
 

Table 21 below shows the sensitivity analysis result for 350 TEU cases with a mix 

different container dimensions.  The table shows examples of the combinations in the 
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different loading plans for 20-and-40 foot containers.  The cost slightly increased when 

combination of 20-and-40 foot containers were loaded was taken into consideration.   

Table 21:  100_350_D Cases for a Mix Dimension  

Ports Variables Constraints Non Zeros Clique

100_350_D 4 35350 1245 363579 450 535
100_350_D1 4 35350 1240 360919 450 580
100_350_D2 4 35350 1246 364107 450 520
100_350_D3 4 35350 1230 360383 450 580
100_350_D4 4 35350 1257 369963 450 555

Case Container Object.

 

Figure 27 below shows the loading pattern of two different test cases with 

different loading combinations resulting in different loading plans for the partial load 

vessel.  Example 100_350_D represents case with a mix dimension when the 40-foot 

containers are 30% and the example 100_350_7 consist of 10% 40-foot containers   

P1-P4
P1-P3 P1-P4 P1-P4 P1-P4
P2-P4 P2-P4 P2-P4 P2-P4 P1-P4 P1-P4 P1-P4 P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3
P2-P4 P2-P4 P2-P4 P2-P4 P1-P4 P1-P4 P1-P4 P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3
P2-P4 P2-P4 P2-P4 P2-P4 P1-P4 P1-P4 P1-P4 P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3
P2-P4 P2-P4 P2-P4 P2-P4 P1-P4 P1-P4 P1-P4 P1-P4 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3

Bay 5 Bay 5

Case: 100_350_7 Case: 100_350_D
 

Figure 27: Departure Loading Plan at the Port 1 
 
 

  

 

 



 

 142

Another parameter that was tested in the container weight, particularly empty 

containers.  Empty containers are a very prominent problem for the maritime industry.  

More than 40% of the world’s container transportation refers to empty containers (Kaisar, 

1999).  Figure 28 below shows a loading plan example of container assghmnets in Bay 3 

which has different loading plans.  Case 100_350 has 10% empty containers when case 

100_350_D has more than 50 % empty containers.  This result could be different if there 

were a different loading plan or/and a full loaded vessel, because the empty containers 

should be assigned on the upper deck.   

 

P1-P3 P1-P3
P1-P3 P1-P3 P1-P3

P1-P3 P2-P4 P2-P4 P1-P3 P2-P3 P2-P3 P2-P3 P2-P3 P1-P3 P1-P3
P1-P3 P1-P3 P1-P3 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3
P1-P3 P1-P3 P1-P3 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3
P1-P3 P1-P3 P1-P3 P2-P4 P2-P4 P2-P4 P2-P4 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3 P1-P3

Case: 100_350 Case: 100_350_E

Bay 3 Bay 3

 

Figure 28: Loading Plans Departure First Port  

  
 The sensitivity analysis was presented with respect to model parameters, and was 

performed with respect to the re-arrangement cost. The results indicated that the proposed 

model performed as expected with respect to changes in these parameters.  
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Chapter 8: Conclusion and Future Research 
 

 An extensive research effort was necessary for this study to create and validate 

the optimization model presented in this thesis.  This chapter provides a summary and 

conclusions as well as recommendations for future research. 

 

8.1 Summary and Conclusions 

 In this research we proposed a new formulation for a stowage-planning program 

that can deal with real life constraints.  A stowage-planning mathematical model is 

developed which considers all real life constraints and considering loading/unloading 

along the voyage.    In addition, the formulation allowed all related loading parameters to 

be specified. The focus of the thesis has been the overstowage problem that has been 

examined in an order of increasing difficulty. This model was created to specifically to 

deal with the problem subsets, since the stowage problem is a combination of the 

assignment, three dimensional bin packing, and knapsack problems.  The formulation 

proposed in this thesis deals with containership operations, but in reality the problem also 

arises in many other applications.   

 The stowage planning  is a combinatorial problem with the number of possible 

stowage configuration for a containership of 2000 TEU being huge (approximately 3.3 

times ten to 5735th power (Wilson, 1999, and Avriel 1993) and can be described as being 

NP-hard (Avriel, 1998).  This means that an exact optimal solution cannot be found in a 

reasonable time using any available computer and software, and a heuristic solution 

algorithm is needed to solve problem of reasonable size. 
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 The design of efficient approximation algorithms for this problem requires deep 

insight into its mathematical structure and inherent complexity.  The problem is really 

complex due to large number of variables, such as vessel stability, reefer and hazardous 

cargo assignment on specific cells on board.  To overcome the computational difficulties 

associated with producing a solution for the stowage-planning problem the problem was 

decomposed into two subproblems namely: 

1) A general planning process involving the assignment of containers to a 

blocked bay-section space. 

2) A cell planning process, which involves the assignment of the containers to 

specific cells within their assigned blocked bay-section space. 

 The solution of the general planning process gives a picture of the containers 

stowage distribution at each port at the end of the loading/unloading process. This 

approach reduces the combinatorial size of the problem and retains its characteristics at 

the same time. Blocking the available cargo space at each port of loading determines the 

number of options available at any stage of the stowage planning process.  Stress and 

stability can be calculated for this phase using the stability and the vessel constraints from 

the model.  

 In the cell-planning process specific containers are assigned and/or re-arranged to 

specific cells within the blocked bay-section area.  In this phase, the neighborhood is 

reduced to the moves within the same blocked area, and avoids the combinatorial 

difficulties. 

 A literature search was performed to survey the existing loading and heuristic 

models.  This led to a good understanding of container loading and what research 



 

 145

scholars in the field had already performed.  We reviewed heuristic techniques such as 

the branch and bound that we used to allocate all the containers on board into individuals 

bay-section cargo areas.  We reviewed the general simulated annealing (SA) background 

and structure. We also reviewed the application of SA’s for the Bin-packing problem as 

well as developed a Simulated Annealing to solve the formulated problem.  We modified 

the simulated annealing random keys and characteristics to fit our problem. We also 

tested the parameters used in the SA, including the number of multiple runs, the stopping 

criteria, and etc. The tests showed that the SA gave the appropriate results.  

To verify the performance of the proposed heuristic, we compared the results 

from the heuristic solution procedure to the exact solution and a lower bound. The 

problem sizes that could be solved by different solution procedures are different.  In the 

case of the exact solution procedure, we could get the results for problems with less than 

1500 containers. For small problems, the heuristic produced very good results compared 

with the exact solution procedure within a very short period of time. The comparison 

between the exact solution and the heuristic solution shows that the heuristic produced 

good results quickly.  

For larger problems, we designed a method to obtain lower bounds. We were able 

to obtain lower bounds for problems with up to 4500 containers. The difference between 

the heuristic solutions and the lower bounds were less than 4% except for the 5000 

container problems that have gaps less than 6-7%. When we consider that the lower 

bound solutions had less than 4% gaps with the exact solutions, the proposed heuristic 

produced acceptable solutions. 
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In summary: 

• Data from the maritime industry were used to calibrate the optimum-loading 

model.  The results from the heuristic procedure using this data indicate that the 

proposed heuristic procedure works well. 

• The analysis of the results of the experiment presented in this thesis showed that 

we could improve on loading operations at the port. 

• The ability to define all of the model’s parameters such as GM, trim, stability, etc 

makes the model very useful for loading planners as well as port authorities who 

deal with the day-to-day operations of the port. 

• The heuristic has the advantage of requiring minimal computational time 

compared with the methods that we discussed in the literature review. 

• The model is useful in the assignment of containers on containerships, optimizing 

costs, and improving productivity. 

• It would be really good for this model to compare the results with the real world 

situation, if we can get data from any containership company.  The problem here 

is that the companies do not release any information because of their business 

strategic plans.  

 

8.2 Future Research and Performance Enhancements 

 Although this thesis explores container-loading patterns and the development is 

quite elaborate and realistic, it is clear that some aspects of this research suggest areas for 

future work.  For instance, additional factors, such as quay crane movements during the 

loading/unloading process would result in container load sequence that minimizes total 



 

 147

cost and time from the container terminal perspective.  One extension to our model of 

special interests would be the additional constraint on loading sequence.   How the 

containers have been distributed on board and how many quay cranes have assigned to 

the vessel for each port is really important.  As mentioned earlier, for each section 

position, the stowage plan model assigns a container type with respect to the stability and 

vessels constraints along the route.  However, a feasible stowage plan does not guarantee 

that the vessel will spend the minimum time at the port. Consequently, only a careful 

assignment of transportation duties to quay cranes will optimize the overall loading 

process.  A quay crane requires between 80 and 120 seconds to load a single container to 

its section position.   Also, the quay cranes should not be too close because they can 

interfere with each other.  Loading/Unloading time increases if there are more shifting 

operations caused by over stows or if there are more longitudinal movements of cranes.  

Moving distance or time required for the movement is proportional to the number of 

sections where containers are to be loaded or unloaded. A more or less regular sequence 

of loading events ensures a smooth loading process that helps to avoid waiting times.    

 Another area of extension is the consideration of probabilistic shipment matrix.  It 

is useful to extend the analysis to incorporate more general assumptions about when the 

containers of the shipment matrix become known and how the stowage planning is 

affected.  Optimal decision-making can be achieved through perfect information.  

Unfortunately, in many cases in the maritime industry, complete container information is 

not available to the decision makers.  Probability theory will allow decision makers to 

rationalize their decisions in the circumstances and determine a course of action.  

Therefore, decision support systems that try to optimize decisions made by practitioners 
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by determining relationships between supply and demand should present predictions in 

terms of probabilities.  Aslidis (1989) made a first step towards this direction by 

assuming that one of the elements of the shipment matrix is known only up to its 

probability distribution 

 Another extension to the problem is the consideration of container dock 

assignment, equipment assignment and periodic shipment requirements among a finite set 

of ports.  High operating costs for vessels and container terminals and also high 

capitalization of the vessels, containers and port equipment demand a reduction of 

unproductive time at port.  Therefore, the potential for cost savings is high.  A key to 

efficiency is the automation in container terminal, storing, and stacking to increase the 

terminal throughput and decrease ship turnaround time at the terminal.  One of the most 

important issues regarding terminal automation is the lack of appreciation of the 

usefulness of existing optimization techniques to improve the efficiency of operations.  

An automated system should reduce such preparation time to a minimum.  Additional 

factors, such as container and crane movement during the loading process, factored into 

the evaluation of a stowage plan, would result in container loading procedure that 

minimize cost from the terminals point of view. 

 For containership that is loading / unloading, containers have to be transported 

from the storage area or from the dock to the containership and vice versa.  Transport 

optimization at the quayside not only means a reduction in transport times, but also the 

synchronization of the transport with the loading/unloading process of the quay cranes.  

A general aim is to enhance crane productivity and containership turnaround time.  The 

real performance at operation is in the range of 22-30 containers/hr moves.  However, 
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crane productivity can be even higher according to technical data.  The reduced 

productivity comes from unnecessary shifts, moves of hatch covers, and lashing 

equipment.  Additionally, more transport vehicles provoke further costs and containership 

operation becomes less economic.   Concerning logistics, a gain in containership 

productivity cannot be necessarily achieved by enhancing the number or the speed of 

transport vehicles operating at the quayside. This is because the possibility of congestion 

at the cranes and in the yard increases more than proportionally with the number of 

vehicles or their speed.   Therefore, an optimization system also has to cope with the 

minimization of port congestion. 

 In the area of heuristic algorithm design and analysis, there are several research 

efforts that can be undertaken both from the analytical and computational viewpoint.  

Testing of the proposed heuristic is as necessary as further development of the theoretical 

analysis of the stowage-planning problem.  It is also worth examining alternative 

approaches such as Genetic Algorithm (GA), and neighborhood search with tabu search.  

Some research is devoted to developing GAs that can be implemented in parallel 

machines. To implement a parallel GA, we need to study the way to re-distribute 

information among the sub-populations.  Parallel computing is another area of extension 

that is the simultaneously execution of the same task on multiple processors in order to 

obtain results faster.  The idea is based on the fact that the process solving a problem 

usually can be divided into smaller tasks, which may be carried out simultaneously with 

some coordination.    

 Finally, we can take under consideration the different container height constraint.  

Today, containerships are dealing with two (2) to three (3) different height types of 
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container and it would be interesting to see what effect this has on stowage planning.  

This type of constraint definitely affects the maximum number of containers per stack 

especially on deck or abroad a cargo ship going from one location to another.  It also 

determines its location, size, and weight and the actual time it takes to load and unload.  
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